Refine
Document Type
Publication reviewed
- begutachtet (30)
- nicht begutachtet (2)
Keywords
- LILIPUT (7)
- DrGaN (5)
- MEDAL (5)
- ARCHIVE (4)
- GaNmsPEBB (3)
- Sinterpack (3)
- MShunt2 (2)
- Halbleiterbauelement (1)
- Leiterplattenembedding (1)
- Piezoelektrizität (1)
Institute
Das Einbetten von Halbleiterbauelementen stellt einen innovativen Ansatz für die Aufbau- und Verbindungstechnik (AVT) leistungselektronischer Systeme dar. Im Rahmen von zahlreichen Forschungsvorhaben wurde gezeigt, dass im Vergleich zu einer konventionellen AVT geringere parasitäre Induktivitäten und Widerstände [1, 2]und damit geringere Leitungs- und Schaltverluste ermöglicht werden. Auch kann der thermische Widerstand durch den Einsatz von Dickkupfersubstraten und wärmeleitfähigen organischen Isolatoren erheblich reduziert werden [2, 3, 4]. Dadurch lässt sich auf Systemebene eine höher Leistungsdichte erreichen [5], ohne dass dadurch die Lastwechselfestigkeit leidet [6, 3].
Dennoch findet die Technologie bis heute nur im Low-Power Bereich oder zum Chip-Scale Packaging von einzelnen Leistungsschaltern kommerziellen Einsatz.
Dieser Vortrag diskutiert mögliche Hemmnisse und Grenzen der Technologie.
PCB embedding is an attractive packaging technology for highly integrated future power systems. Electrical and thermal benefits and limitations are well understood, but only few publications focus on reliability. Here we are addressing high-humidity high temperature reverse bias (H3TRB) tests, which are performed to gain deeper understanding of the limitations of this technology. Cu filament growth is observed on both, PCB embedded samples and silicone potted reference samples. These filaments may form a conductive path and lead to an increased leakage current in blocking mode. Electrochemical corrosion of the Cu-plated guard ring is identified as root cause.
This paper presents a novel approach to embed power semiconductor devices into a printed circuit board. Here, IGBTs and diodes with reinforced top side chip contact are used in an IGBT half bridge with 25 A / 1200 V rating. Thermal simulations highlight the improved thermal impedance caused by the reinforced top contact and the benefits of the insulated copper substrate compared to a commercial DBC-based reference module.
The fabrication process is discussed in detail and preliminary test results are presented. The results of the thermal characterization support the theoretical
considerations.
This work investigates a packaging solution for high voltage semiconductors (20 kV), allowing for a dramatic reduction in size and complexity of power electronics modules. The standard packaging structures typically introduce a competition between electrical insulation (which requires thick insulating layers) and thermal performance (where thin, high thermal conductivity layers are preferred). Here, we introduce a concept which addresses this competition and is based on direct cooling using dielectric liquid. Single-chip heatsinks are designed, optimized using computational fluid dynamics (CFD), built and tested.
This work investigates a packaging solution for high power density semiconductors (> 200 W/cm 2), allowing for a dramatic reduction in size and complexity of power electronics modules. The multiple layers in standard packaging structures degrade the cooling efficiency due as they lengthen the path between dies and heatsinks. Here, we reduce the layer count by merging the ceramic substrate and the heat exchanger in a single part. CFD simulations and experimental validation are performed on a single-chip cooling packaging, and demonstrate a 10-20 % reduction in thermal resistance over more traditional cooling solutions.
Embedding power semiconductor devices in pre-packages may enable low-inductive power semiconductor module designs with superior thermal performance and reliability. However, it is crucial to understand mechanical stress formation due to the differences in thermal expansion of the materials used. This paper presents a systematic study of thermomechanical stresses in Si and SiC power semiconductor pre-packages based on PCB embedding or compression molding. The analysis is based on thermomechanical FEM simulations and complemented by passive thermal cycling of different test carrier designs. Patterning and CTE-matching of contacts are proven as strategies to minimize thermomechanical stress.
This paper presents design, fabrication, and analysis of a PCB embedded half-bridge. Here, a pre-package that contains a 100 V / 100 A MOSFET half bridge is fabricated and embedded into a converter level power PCB, allowing for two routing layers on top of the semiconductors. This enables to minimize the commutation loop inductance by placing a decoupling capacitor directly on top of the switches. Experimentally a parasitic inductance of 1.4 nH is deducted from the ringing frequency in switching experiments. The second design goal is an optimized thermal
performance. Both, simulation with ANSYS Icepak and experiments indicate a value of 1.77 K/W. Based on the results, a 12 V / 48 V bidirectional converter was implemented and operated with a maximum power of 620 W.
Thermal impedance evaluation of optimized PCB-based GaN HEMT Single-ChipPrepackage using VGS Method
(2022)
This study evaluates the measurement of the thermal resistance and impedance of GaN HEMTs packages with gatesource voltage (VGS) for junction temperature measurement. First, calibration measurement of VGS vs temperature is performed in an oven. Large deviations from chip to chip require that each device is calibrated separately. Zth is measured for an experimental single-chip prepackage (SCP), developed in our lab, and a commercial reference package (GaNpx). The measured junction to ambient thermal resistance of the SCP is 35% lower compared to the reference. This is caused by a copper heat spreader integrated in the package. The thermal resistance of multiple packages attached on one PCB is also performed. This measurement indicates a maximum difference of 35%. This difference remained the same in several experiments with two thermal interface materials and pressure levels.
PCB embedding in combination with direct-bonded copper (DBC) substrates is an attractive approach for packaging of power semiconductors facilitating low-inductive designs while relying on a proven insulating material. However, the CTE mismatch of these materials could cause reliability issues. This study presents an initial reliability screening using simple IGBT prepackages with alumina-based DBC as test vehicles. After -40/150 °C temperature cycles, fracture of the substrate and the chip is observed, resulting in an increased on-state resistance. Literature data suggest that the substrate failure is independent from the embedding. To gain a deeper understanding of the limitations of the technology, further research with optimized DBC substrates is required.