Einfluss von Künstlicher Intelligenz auf die Performance von niedergelassenen Gastroenterolog:innen bei der Beurteilung von Barrett-Ösophagus

  • Einleitung  Die Differenzierung zwischen nicht dysplastischem Barrett-Ösophagus (NDBE) und mit Barrett-Ösophagus assoziierten Neoplasien (BERN) während der endoskopischen Inspektion erfordert viel Expertise. Die frühe Diagnosestellung ist wichtig für die weitere Prognose des Barrett-Karzinoms. In Deutschland werden Patient:innen mit einem Barrett-Ösophagus (BE) in der Regel im niedergelassenen Sektor überwacht. Ziele  Ziel ist es, den Einfluss von einem auf Künstlicher Intelligenz (KI) basierenden klinischen Entscheidungsunterstützungssystems (CDSS) auf die Performance von niedergelassenen Gastroenterolog:innen (NG) bei der Evaluation von Barrett-Ösophagus (BE) zu untersuchen. Methodik  Es erfolgte die prospektive Sammlung von 96 unveränderten hochauflösenden Videos mit Fällen von Patient:innen mit histologisch bestätigtem NDBE und BERN. Alle eingeschlossenen Fälle enthielten mindestens zwei der folgenden Darstellungsmethoden: HD-Weißlichtendoskopie, Narrow Band Imaging oder Texture and Color Enhancement Imaging. Sechs NG von sechs unterschiedlichen Praxen wurden als Proband:innen eingeschlossen. Es erfolgte eine permutierte Block-Randomisierung der Videofälle in entweder Gruppe A oder Gruppe B. Gruppe A implizierte eine Evaluation des Falls durch Proband:innen zunächst ohne KI und anschließend mit KI als CDSS. In Gruppe B erfolgte die Evaluation in umgekehrter Reihenfolge. Anschließend erfolgte eine zufällige Wiedergabe der so entstandenen Subgruppen im Rahmen des Tests. Ergebnis  In diesem Test konnte ein von uns entwickeltes KI-System (Barrett-Ampel) eine Sensitivität von 92,2%, eine Spezifität von 68,9% und eine Accuracy von 81,3% erreichen. Mit der Hilfe von KI verbesserte sich die Sensitivität der NG von 64,1% auf 71,2% (p<0,001) und die Accuracy von 66,3% auf 70,8% (p=0,006) signifikant. Eine signifikante Verbesserung dieser Parameter zeigte sich ebenfalls, wenn die Proband:innen die Fälle zunächst ohne KI evaluierten (Gruppe A). Wurde der Fall jedoch als Erstes mit der Hilfe von KI evaluiert (Gruppe B), blieb die Performance nahezu konstant. Schlussfolgerung  Es konnte ein performantes KI-System zur Evaluation von BE entwickelt werden. NG verbessern sich bei der Evaluation von BE durch den Einsatz von KI.

Export metadata

Additional Services

Share in Twitter Search Google Scholar Statistics
Metadaten
Author:Michael Meinikheim, Robert Mendel, Andreas Probst, Markus W. Scheppach, Sandra Nagl, Elisabeth Schnoy, Christoph Römmele, Friederike Prinz, Jakob Schlottmann, Helmut Messmann, Christoph PalmORCiDGND, Alanna EbigboORCiD
URL / DOI:https://www.thieme-connect.de/products/ejournals/abstract/10.1055/s-0043-1771711
DOI:https://doi.org/10.1055/s-0043-1771711
Parent Title (German):Zeitschrift für Gastroenterologie
Publisher:Thieme
Place of publication:Stuttgart
Document Type:conference proceeding (presentation, abstract)
Language:German
Year of first Publication:2023
Release Date:2023/09/18
Tag:Barrett-Ösophagus; Künstliche Intelligenz
Volume:61
Issue:8
Konferenzangabe:Viszeralmedizin 2023 77. Jahrestagung der DGVS mit Sektion Endoskopie Herbsttagung der Deutschen Gesellschaft für Allgemein- und Viszeralchirurgie mit den Arbeitsgemeinschaften der DGAV und Jahrestagung der CACP
Institutes:Fakultät Informatik und Mathematik
Fakultät Informatik und Mathematik / Regensburg Medical Image Computing (ReMIC)
research focus:Lebenswissenschaften und Ethik
Licence (German):Keine Lizenz - Es gilt das deutsche Urheberrecht: § 53 UrhG