Refine
Year of publication
Document Type
Is part of the Bibliography
- no (39)
Keywords
- Diagnose (12)
- Künstliche Intelligenz (11)
- Maschinelles Lernen (10)
- Artificial Intelligence (9)
- Speiseröhrenkrebs (7)
- Machine learning (6)
- Speiseröhrenkrankheit (6)
- Adenocarcinoma (5)
- Barrett's esophagus (5)
- Deep Learning (5)
Institute
- Fakultät Informatik und Mathematik (38)
- Regensburg Medical Image Computing (ReMIC) (37)
- Regensburg Center of Health Sciences and Technology - RCHST (13)
- Regensburg Center of Biomedical Engineering - RCBE (4)
- Hochschulleitung/Hochschulverwaltung (1)
- Zentrum für Forschung und Transfer (ZFT ab 2024; vorher: IAFW) (1)
Begutachtungsstatus
- peer-reviewed (32)
Forschungsbericht 2016
(2016)
Background and aims
Celiac disease with its endoscopic manifestation of villous atrophy is underdiagnosed worldwide. The application of artificial intelligence (AI) for the macroscopic detection of villous atrophy at routine esophagogastroduodenoscopy may improve diagnostic performance.
Methods
A dataset of 858 endoscopic images of 182 patients with villous atrophy and 846 images from 323 patients with normal duodenal mucosa was collected and used to train a ResNet 18 deep learning model to detect villous atrophy. An external data set was used to test the algorithm, in addition to six fellows and four board certified gastroenterologists. Fellows could consult the AI algorithm’s result during the test. From their consultation distribution, a stratification of test images into “easy” and “difficult” was performed and used for classified performance measurement.
Results
External validation of the AI algorithm yielded values of 90 %, 76 %, and 84 % for sensitivity, specificity, and accuracy, respectively. Fellows scored values of 63 %, 72 % and 67 %, while the corresponding values in experts were 72 %, 69 % and 71 %, respectively. AI consultation significantly improved all trainee performance statistics. While fellows and experts showed significantly lower performance for “difficult” images, the performance of the AI algorithm was stable.
Conclusion
In this study, an AI algorithm outperformed endoscopy fellows and experts in the detection of villous atrophy on endoscopic still images. AI decision support significantly improved the performance of non-expert endoscopists. The stable performance on “difficult” images suggests a further positive add-on effect in challenging cases.
Effect of AI on performance of endoscopists to detect Barrett neoplasia: A Randomized Tandem Trial
()
Background and study aims
To evaluate the effect of an AI-based clinical decision support system (AI) on the performance and diagnostic confidence of endoscopists during the assessment of Barrett's esophagus (BE).
Patients and Methods
Ninety-six standardized endoscopy videos were assessed by 22 endoscopists from 12 different centers with varying degrees of BE experience.
The assessment was randomized into two video sets: Group A (review first without AI and second with AI) and group B (review first with AI and second without AI). Endoscopists were required to evaluate each video for the presence of Barrett's esophagus-related neoplasia (BERN) and then decide on a spot for a targeted biopsy. After the second assessment, they were allowed to change their clinical decision and confidence level.
Results
AI had a standalone sensitivity, specificity, and accuracy of 92.2%, 68.9%, and 81.6%, respectively. Without AI, BE experts had an overall sensitivity, specificity, and accuracy of 83.3%, 58.1 and 71.5%, respectively. With AI, BE nonexperts showed a significant improvement in sensitivity and specificity when videos were assessed a second time with AI (sensitivity 69.7% (95% CI, 65.2% - 74.2%) to 78.0% (95% CI, 74.0% - 82.0%); specificity 67.3% (95% CI, 62.5% - 72.2%) to 72.7% (95 CI, 68.2% - 77.3%). In addition, the diagnostic confidence of BE nonexperts improved significantly with AI.
Conclusion
BE nonexperts benefitted significantly from the additional AI. BE experts and nonexperts remained below the standalone performance of AI, suggesting that there may be other factors influencing endoscopists to follow or discard AI advice.
Barrett's esophagus figured a swift rise in the number of cases in the past years. Although traditional diagnosis methods offered a vital role in early-stage treatment, they are generally time- and resource-consuming. In this context, computer-aided approaches for automatic diagnosis emerged in the literature since early detection is intrinsically related to remission probabilities. However, they still suffer from drawbacks because of the lack of available data for machine learning purposes, thus implying reduced recognition rates. This work introduces Generative Adversarial Networks to generate high-quality endoscopic images, thereby identifying Barrett's esophagus and adenocarcinoma more precisely. Further, Convolution Neural Networks are used for feature extraction and classification purposes. The proposed approach is validated over two datasets of endoscopic images, with the experiments conducted over the full and patch-split images. The application of Deep Convolutional Generative Adversarial Networks for the data augmentation step and LeNet-5 and AlexNet for the classification step allowed us to validate the proposed methodology over an extensive set of datasets (based on original and augmented sets), reaching results of 90% of accuracy for the patch-based approach and 85% for the image-based approach. Both results are based on augmented datasets and are statistically different from the ones obtained in the original datasets of the same kind. Moreover, the impact of data augmentation was evaluated in the context of image description and classification, and the results obtained using synthetic images outperformed the ones over the original datasets, as well as other recent approaches from the literature. Such results suggest promising insights related to the importance of proper data for the accurate classification concerning computer-assisted Barrett's esophagus and adenocarcinoma detection.
Einleitung Die Endoskopische Retrograde Cholangiopankreatikographie (ERCP) ist der Goldstandard in der Diagnostik und Therapie von Erkrankungen des pankreatobiliären Trakts. Jedoch ist sie technisch sehr anspruchsvoll und weist eine vergleichsweise hohe Komplikationsrate auf.
Ziele
In der vorliegenden Machbarkeitsstudie soll geprüft werden, ob mithilfe eines Deep-learning-Algorithmus die Papille und das Ostium zuverlässig detektiert werden können und somit für Endoskopiker mit geringer Erfahrung ein geeignetes Hilfsmittel, insbesondere für die Ausbildungssituation, darstellen könnten.
Methodik
Wir betrachteten insgesamt 606 Bilddatensätze von 65 Patienten. In diesen wurde sowohl die Papilla duodeni major als auch das Ostium segmentiert. Anschließend wurde eine neuronales Netz mittels eines Deep-learning-Algorithmus trainiert. Außerdem erfolgte eine 5-fache Kreuzvaldierung.
Ergebnisse
Bei einer 5-fachen Kreuzvaldierung auf den 606 gelabelten Daten konnte für die Klasse Papille eine F1-Wert von 0,7908, eine Sensitivität von 0,7943 und eine Spezifität von 0,9785 erreicht werden, für die Klasse Ostium eine F1-Wert von 0,5538, eine Sensitivität von 0,5094 und eine Spezifität von 0,9970 (vgl. [Tab. 1]). Unabhängig von der Klasse zeigte sich gemittelt (Klasse Papille und Klasse Ostium) ein F1-Wert von 0,6673, eine Sensitivität von 0,6519 und eine Spezifität von 0,9877 (vgl. [Tab. 2]).
Schlussfolgerung
In vorliegende Machbarkeitsstudie konnte das neuronale Netz die Papilla duodeni major mit einer hohen Sensitivität und sehr hohen Spezifität identifizieren. Bei der Detektion des Ostiums war die Sensitivität deutlich geringer. Zukünftig soll das das neuronale Netz mit mehr Daten trainiert werden. Außerdem ist geplant, den Algorithmus auch auf Videos anzuwenden. Somit könnte langfristig ein geeignetes Hilfsmittel für die ERCP etabliert werden.
Aims
VA is an endoscopic finding of celiac disease (CD), which can easily be missed if pretest probability is low. In this study, we aimed to develop an artificial intelligence (AI) algorithm for the detection of villous atrophy on endoscopic images.
Methods
858 images from 182 patients with VA and 846 images from 323 patients with normal duodenal mucosa were used for training and internal validation of an AI algorithm (ResNet18). A separate dataset was used for external validation, as well as determination of detection performance of experts, trainees and trainees with AI support. According to the AI consultation distribution, images were stratified into “easy” and “difficult”.
Results
Internal validation showed 82%, 85% and 84% for sensitivity, specificity and accuracy. External validation showed 90%, 76% and 84%. The algorithm was significantly more sensitive and accurate than trainees, trainees with AI support and experts in endoscopy. AI support in trainees was associated with significantly improved performance. While all endoscopists showed significantly lower detection for “difficult” images, AI performance remained stable.
Conclusions
The algorithm outperformed trainees and experts in sensitivity and accuracy for VA detection. The significant improvement with AI support suggests a potential clinical benefit. Stable performance of the algorithm in “easy” and “difficult” test images may indicate an advantage in macroscopically challenging cases.
Clinical setting
Third space procedures such as endoscopic submucosal dissection (ESD) and peroral endoscopic myotomy (POEM) are complex minimally invasive techniques with an elevated risk for operator-dependent adverse events such as bleeding and perforation. This risk arises from accidental dissection into the muscle layer or through submucosal blood vessels as the submucosal cutting plane within the expanding resection site is not always apparent. Deep learning algorithms have shown considerable potential for the detection and characterization of gastrointestinal lesions. So-called AI – clinical decision support solutions (AI-CDSS) are commercially available for polyp detection during colonoscopy. Until now, these computer programs have concentrated on diagnostics whereas an AI-CDSS for interventional endoscopy has not yet been introduced. We aimed to develop an AI-CDSS („Smart ESD“) for real-time intra-procedural detection and delineation of blood vessels, tissue structures and endoscopic instruments during third-space endoscopic procedures.
Characteristics of Smart ESD
An AI-CDSS was invented that delineates blood vessels, tissue structures and endoscopic instruments during third-space endoscopy in real-time. The output can be displayed by an overlay over the endoscopic image with different modes of visualization, such as a color-coded semitransparent area overlay, or border tracing (demonstration video). Hereby the optimal layer for dissection can be visualized, which is close above or directly at the muscle layer, depending on the applied technique (ESD or POEM). Furthermore, relevant blood vessels (thickness> 1mm) are delineated. Spatial proximity between the electrosurgical knife and a blood vessel triggers a warning signal. By this guidance system, inadvertent dissection through blood vessels could be averted.
Technical specifications
A DeepLabv3+ neural network architecture with KSAC and a 101-layer ResNeSt backbone was used for the development of Smart ESD. It was trained and validated with 2565 annotated still images from 27 full length third-space endoscopic videos. The annotation classes were blood vessel, submucosal layer, muscle layer, electrosurgical knife and endoscopic instrument shaft. A test on a separate data set yielded an intersection over union (IoU) of 68%, a Dice Score of 80% and a pixel accuracy of 87%, demonstrating a high overlap between expert and AI segmentation. Further experiments on standardized video clips showed a mean vessel detection rate (VDR) of 85% with values of 92%, 70% and 95% for POEM, rectal ESD and esophageal ESD respectively. False positive measurements occurred 0.75 times per minute. 7 out of 9 vessels which caused intraprocedural bleeding were caught by the algorithm, as well as both vessels which required hemostasis via hemostatic forceps.
Future perspectives
Smart ESD performed well for vessel and tissue detection and delineation on still images, as well as on video clips. During a live demonstration in the endoscopy suite, clinical applicability of the innovation was examined. The lag time for processing of the live endoscopic image was too short to be visually detectable for the interventionist. Even though the algorithm could not be applied during actual dissection by the interventionist, Smart ESD appeared readily deployable during visual assessment by ESD experts. Therefore, we plan to conduct a clinical trial in order to obtain CE-certification of the algorithm. This new technology may improve procedural safety and speed, as well as training of modern minimally invasive endoscopic resection techniques.
Aims
Human-computer interactions (HCI) may have a relevant impact on the performance of Artificial Intelligence (AI). Studies show that although endoscopists assessing Barrett’s esophagus (BE) with AI improve their performance significantly, they do not achieve the level of the stand-alone performance of AI. One aspect of HCI is the impact of AI on the degree of certainty and confidence displayed by the endoscopist. Indirectly, diagnostic confidence when using AI may be linked to trust and acceptance of AI. In a BE video study, we aimed to understand the impact of AI on the diagnostic confidence of endoscopists and the possible correlation with diagnostic performance.
Methods
22 endoscopists from 12 centers with varying levels of BE experience reviewed ninety-six standardized endoscopy videos. Endoscopists were categorized into experts and non-experts and randomly assigned to assess the videos with and without AI. Participants were randomized in two arms: Arm A assessed videos first without AI and then with AI, while Arm B assessed videos in the opposite order. Evaluators were tasked with identifying BE-related neoplasia and rating their confidence with and without AI on a scale from 0 to 9.
Results
The utilization of AI in Arm A (without AI first, with AI second) significantly elevated confidence levels for experts and non-experts (7.1 to 8.0 and 6.1 to 6.6, respectively). Only non-experts benefitted from AI with a significant increase in accuracy (68.6% to 75.5%). Interestingly, while the confidence levels of experts without AI were higher than those of non-experts with AI, there was no significant difference in accuracy between these two groups (71.3% vs. 75.5%). In Arm B (with AI first, without AI second), experts and non-experts experienced a significant reduction in confidence (7.6 to 7.1 and 6.4 to 6.2, respectively), while maintaining consistent accuracy levels (71.8% to 71.8% and 67.5% to 67.1%, respectively).
Conclusions
AI significantly enhanced confidence levels for both expert and non-expert endoscopists. Endoscopists felt significantly more uncertain in their assessments without AI. Furthermore, experts with or without AI consistently displayed higher confidence levels than non-experts with AI, irrespective of comparable outcomes. These findings underscore the possible role of AI in improving diagnostic confidence during endoscopic assessment.
Aims
Barrett´s esophagus related neoplasia (BERN) is difficult to detect and characterize during endoscopy, even for expert endoscopists. We aimed to assess the add-on effect of an Artificial Intelligence (AI) algorithm (Barrett-Ampel) as a decision support system (DSS) for non-expert endoscopists in the evaluation of Barrett’s esophagus (BE) and BERN.
Methods
Twelve videos with multimodal imaging white light (WL), narrow-band imaging (NBI), texture and color enhanced imaging (TXI) of histologically confirmed BE and BERN were assessed by expert and non-expert endoscopists. For each video, endoscopists were asked to identify the area of BERN and decide on the biopsy spot. Videos were assessed by the AI algorithm and regions of BERN were highlighted in real-time by a transparent overlay. Finally, endoscopists were shown the AI videos and asked to either confirm or change their initial decision based on the AI support.
Results
Barrett-Ampel correctly identified all areas of BERN, irrespective of the imaging modality (WL, NBI, TXI), but misinterpreted two inflammatory lesions (Accuracy=75%). Expert endoscopists had a similar performance (Accuracy=70,8%), while non-experts had an accuracy of 58.3%. When AI was implemented as a DSS, non-expert endoscopists improved their diagnostic accuracy to 75%.
Conclusions
AI may have the potential to support non-expert endoscopists in the assessment of videos of BE and BERN. Limitations of this study include the low number of videos used. Randomized clinical trials in a real-life setting should be performed to confirm these results.
ARTIFICIAL INTELLIGENCE (AI) – ASSISTED VESSEL AND TISSUE RECOGNITION IN THIRD-SPACE ENDOSCOPY
(2022)
Aims
Third-space endoscopy procedures such as endoscopic submucosal dissection (ESD) and peroral endoscopic myotomy (POEM) are complex interventions with elevated risk of operator-dependent adverse events, such as intra-procedural bleeding and perforation. We aimed to design an artificial intelligence clinical decision support solution (AI-CDSS, “Smart ESD”) for the detection and delineation of vessels, tissue structures, and instruments during third-space endoscopy procedures.
Methods
Twelve full-length third-space endoscopy videos were extracted from the Augsburg University Hospital database. 1686 frames were annotated for the following categories: Submucosal layer, blood vessels, electrosurgical knife and endoscopic instrument. A DeepLabv3+neural network with a 101-layer ResNet backbone was trained and validated internally. Finally, the ability of the AI system to detect visible vessels during ESD and POEM was determined on 24 separate video clips of 7 to 46 seconds duration and showing 33 predefined vessels. These video clips were also assessed by an expert in third-space endoscopy.
Results
Smart ESD showed a vessel detection rate (VDR) of 93.94%, while an average of 1.87 false positive signals were recorded per minute. VDR of the expert endoscopist was 90.1% with no false positive findings. On the internal validation data set using still images, the AI system demonstrated an Intersection over Union (IoU), mean Dice score and pixel accuracy of 63.47%, 76.18% and 86.61%, respectively.
Conclusions
This is the first AI-CDSS aiming to mitigate operator-dependent limitations during third-space endoscopy. Further clinical trials are underway to better understand the role of AI in such procedures.