Refine
Document Type
Is part of the Bibliography
- no (42)
Keywords
- Diagnose (12)
- Artificial Intelligence (10)
- Deep Learning (10)
- Künstliche Intelligenz (10)
- Maschinelles Lernen (10)
- Speiseröhrenkrebs (7)
- Machine learning (6)
- Speiseröhrenkrankheit (6)
- Adenocarcinoma (5)
- Barrett's esophagus (5)
Institute
Begutachtungsstatus
- peer-reviewed (34)
Pixel-level classification is an essential part of computer vision. For learning from labeled data, many powerful deep learning models have been developed recently. In this work, we augment such supervised segmentation models by allowing them to learn from unlabeled data. Our semi-supervised approach, termed Error-Correcting Supervision, leverages a collaborative strategy. Apart from the supervised training on the labeled data, the segmentation network is judged by an additional network.
Barrett's esophagus figured a swift rise in the number of cases in the past years. Although traditional diagnosis methods offered a vital role in early-stage treatment, they are generally time- and resource-consuming. In this context, computer-aided approaches for automatic diagnosis emerged in the literature since early detection is intrinsically related to remission probabilities. However, they still suffer from drawbacks because of the lack of available data for machine learning purposes, thus implying reduced recognition rates. This work introduces Generative Adversarial Networks to generate high-quality endoscopic images, thereby identifying Barrett's esophagus and adenocarcinoma more precisely. Further, Convolution Neural Networks are used for feature extraction and classification purposes. The proposed approach is validated over two datasets of endoscopic images, with the experiments conducted over the full and patch-split images. The application of Deep Convolutional Generative Adversarial Networks for the data augmentation step and LeNet-5 and AlexNet for the classification step allowed us to validate the proposed methodology over an extensive set of datasets (based on original and augmented sets), reaching results of 90% of accuracy for the patch-based approach and 85% for the image-based approach. Both results are based on augmented datasets and are statistically different from the ones obtained in the original datasets of the same kind. Moreover, the impact of data augmentation was evaluated in the context of image description and classification, and the results obtained using synthetic images outperformed the ones over the original datasets, as well as other recent approaches from the literature. Such results suggest promising insights related to the importance of proper data for the accurate classification concerning computer-assisted Barrett's esophagus and adenocarcinoma detection.
We investigate contrastive learning in a multi-task learning setting classifying and segmenting early Barrett’s cancer. How can contrastive learning be applied in a domain with few classes and low inter-class and inter-sample variance, potentially enabling image retrieval or image attribution? We introduce a data sampling strategy that mines per-lesion data for positive samples and keeps a queue of the recent projections as negative samples. We propose a masking strategy for the NT-Xent loss that keeps the negative set pure and removes samples from the same lesion. We show cohesion and uniqueness improvements of the proposed method in feature space. The introduction of the auxiliary objective does not affect the performance but adds the ability to indicate similarity between lesions. Therefore, the approach could enable downstream auto-documentation tasks on homogeneous medical image data.
Clinical setting
Third space procedures such as endoscopic submucosal dissection (ESD) and peroral endoscopic myotomy (POEM) are complex minimally invasive techniques with an elevated risk for operator-dependent adverse events such as bleeding and perforation. This risk arises from accidental dissection into the muscle layer or through submucosal blood vessels as the submucosal cutting plane within the expanding resection site is not always apparent. Deep learning algorithms have shown considerable potential for the detection and characterization of gastrointestinal lesions. So-called AI – clinical decision support solutions (AI-CDSS) are commercially available for polyp detection during colonoscopy. Until now, these computer programs have concentrated on diagnostics whereas an AI-CDSS for interventional endoscopy has not yet been introduced. We aimed to develop an AI-CDSS („Smart ESD“) for real-time intra-procedural detection and delineation of blood vessels, tissue structures and endoscopic instruments during third-space endoscopic procedures.
Characteristics of Smart ESD
An AI-CDSS was invented that delineates blood vessels, tissue structures and endoscopic instruments during third-space endoscopy in real-time. The output can be displayed by an overlay over the endoscopic image with different modes of visualization, such as a color-coded semitransparent area overlay, or border tracing (demonstration video). Hereby the optimal layer for dissection can be visualized, which is close above or directly at the muscle layer, depending on the applied technique (ESD or POEM). Furthermore, relevant blood vessels (thickness> 1mm) are delineated. Spatial proximity between the electrosurgical knife and a blood vessel triggers a warning signal. By this guidance system, inadvertent dissection through blood vessels could be averted.
Technical specifications
A DeepLabv3+ neural network architecture with KSAC and a 101-layer ResNeSt backbone was used for the development of Smart ESD. It was trained and validated with 2565 annotated still images from 27 full length third-space endoscopic videos. The annotation classes were blood vessel, submucosal layer, muscle layer, electrosurgical knife and endoscopic instrument shaft. A test on a separate data set yielded an intersection over union (IoU) of 68%, a Dice Score of 80% and a pixel accuracy of 87%, demonstrating a high overlap between expert and AI segmentation. Further experiments on standardized video clips showed a mean vessel detection rate (VDR) of 85% with values of 92%, 70% and 95% for POEM, rectal ESD and esophageal ESD respectively. False positive measurements occurred 0.75 times per minute. 7 out of 9 vessels which caused intraprocedural bleeding were caught by the algorithm, as well as both vessels which required hemostasis via hemostatic forceps.
Future perspectives
Smart ESD performed well for vessel and tissue detection and delineation on still images, as well as on video clips. During a live demonstration in the endoscopy suite, clinical applicability of the innovation was examined. The lag time for processing of the live endoscopic image was too short to be visually detectable for the interventionist. Even though the algorithm could not be applied during actual dissection by the interventionist, Smart ESD appeared readily deployable during visual assessment by ESD experts. Therefore, we plan to conduct a clinical trial in order to obtain CE-certification of the algorithm. This new technology may improve procedural safety and speed, as well as training of modern minimally invasive endoscopic resection techniques.
Aims
Human-computer interactions (HCI) may have a relevant impact on the performance of Artificial Intelligence (AI). Studies show that although endoscopists assessing Barrett’s esophagus (BE) with AI improve their performance significantly, they do not achieve the level of the stand-alone performance of AI. One aspect of HCI is the impact of AI on the degree of certainty and confidence displayed by the endoscopist. Indirectly, diagnostic confidence when using AI may be linked to trust and acceptance of AI. In a BE video study, we aimed to understand the impact of AI on the diagnostic confidence of endoscopists and the possible correlation with diagnostic performance.
Methods
22 endoscopists from 12 centers with varying levels of BE experience reviewed ninety-six standardized endoscopy videos. Endoscopists were categorized into experts and non-experts and randomly assigned to assess the videos with and without AI. Participants were randomized in two arms: Arm A assessed videos first without AI and then with AI, while Arm B assessed videos in the opposite order. Evaluators were tasked with identifying BE-related neoplasia and rating their confidence with and without AI on a scale from 0 to 9.
Results
The utilization of AI in Arm A (without AI first, with AI second) significantly elevated confidence levels for experts and non-experts (7.1 to 8.0 and 6.1 to 6.6, respectively). Only non-experts benefitted from AI with a significant increase in accuracy (68.6% to 75.5%). Interestingly, while the confidence levels of experts without AI were higher than those of non-experts with AI, there was no significant difference in accuracy between these two groups (71.3% vs. 75.5%). In Arm B (with AI first, without AI second), experts and non-experts experienced a significant reduction in confidence (7.6 to 7.1 and 6.4 to 6.2, respectively), while maintaining consistent accuracy levels (71.8% to 71.8% and 67.5% to 67.1%, respectively).
Conclusions
AI significantly enhanced confidence levels for both expert and non-expert endoscopists. Endoscopists felt significantly more uncertain in their assessments without AI. Furthermore, experts with or without AI consistently displayed higher confidence levels than non-experts with AI, irrespective of comparable outcomes. These findings underscore the possible role of AI in improving diagnostic confidence during endoscopic assessment.
Aims
Barrett´s esophagus related neoplasia (BERN) is difficult to detect and characterize during endoscopy, even for expert endoscopists. We aimed to assess the add-on effect of an Artificial Intelligence (AI) algorithm (Barrett-Ampel) as a decision support system (DSS) for non-expert endoscopists in the evaluation of Barrett’s esophagus (BE) and BERN.
Methods
Twelve videos with multimodal imaging white light (WL), narrow-band imaging (NBI), texture and color enhanced imaging (TXI) of histologically confirmed BE and BERN were assessed by expert and non-expert endoscopists. For each video, endoscopists were asked to identify the area of BERN and decide on the biopsy spot. Videos were assessed by the AI algorithm and regions of BERN were highlighted in real-time by a transparent overlay. Finally, endoscopists were shown the AI videos and asked to either confirm or change their initial decision based on the AI support.
Results
Barrett-Ampel correctly identified all areas of BERN, irrespective of the imaging modality (WL, NBI, TXI), but misinterpreted two inflammatory lesions (Accuracy=75%). Expert endoscopists had a similar performance (Accuracy=70,8%), while non-experts had an accuracy of 58.3%. When AI was implemented as a DSS, non-expert endoscopists improved their diagnostic accuracy to 75%.
Conclusions
AI may have the potential to support non-expert endoscopists in the assessment of videos of BE and BERN. Limitations of this study include the low number of videos used. Randomized clinical trials in a real-life setting should be performed to confirm these results.
Effect of AI on performance of endoscopists to detect Barrett neoplasia: A Randomized Tandem Trial
()
Background and study aims
To evaluate the effect of an AI-based clinical decision support system (AI) on the performance and diagnostic confidence of endoscopists during the assessment of Barrett's esophagus (BE).
Patients and Methods
Ninety-six standardized endoscopy videos were assessed by 22 endoscopists from 12 different centers with varying degrees of BE experience.
The assessment was randomized into two video sets: Group A (review first without AI and second with AI) and group B (review first with AI and second without AI). Endoscopists were required to evaluate each video for the presence of Barrett's esophagus-related neoplasia (BERN) and then decide on a spot for a targeted biopsy. After the second assessment, they were allowed to change their clinical decision and confidence level.
Results
AI had a standalone sensitivity, specificity, and accuracy of 92.2%, 68.9%, and 81.6%, respectively. Without AI, BE experts had an overall sensitivity, specificity, and accuracy of 83.3%, 58.1 and 71.5%, respectively. With AI, BE nonexperts showed a significant improvement in sensitivity and specificity when videos were assessed a second time with AI (sensitivity 69.7% (95% CI, 65.2% - 74.2%) to 78.0% (95% CI, 74.0% - 82.0%); specificity 67.3% (95% CI, 62.5% - 72.2%) to 72.7% (95 CI, 68.2% - 77.3%). In addition, the diagnostic confidence of BE nonexperts improved significantly with AI.
Conclusion
BE nonexperts benefitted significantly from the additional AI. BE experts and nonexperts remained below the standalone performance of AI, suggesting that there may be other factors influencing endoscopists to follow or discard AI advice.
ARTIFICIAL INTELLIGENCE (AI) – ASSISTED VESSEL AND TISSUE RECOGNITION IN THIRD-SPACE ENDOSCOPY
(2022)
Aims
Third-space endoscopy procedures such as endoscopic submucosal dissection (ESD) and peroral endoscopic myotomy (POEM) are complex interventions with elevated risk of operator-dependent adverse events, such as intra-procedural bleeding and perforation. We aimed to design an artificial intelligence clinical decision support solution (AI-CDSS, “Smart ESD”) for the detection and delineation of vessels, tissue structures, and instruments during third-space endoscopy procedures.
Methods
Twelve full-length third-space endoscopy videos were extracted from the Augsburg University Hospital database. 1686 frames were annotated for the following categories: Submucosal layer, blood vessels, electrosurgical knife and endoscopic instrument. A DeepLabv3+neural network with a 101-layer ResNet backbone was trained and validated internally. Finally, the ability of the AI system to detect visible vessels during ESD and POEM was determined on 24 separate video clips of 7 to 46 seconds duration and showing 33 predefined vessels. These video clips were also assessed by an expert in third-space endoscopy.
Results
Smart ESD showed a vessel detection rate (VDR) of 93.94%, while an average of 1.87 false positive signals were recorded per minute. VDR of the expert endoscopist was 90.1% with no false positive findings. On the internal validation data set using still images, the AI system demonstrated an Intersection over Union (IoU), mean Dice score and pixel accuracy of 63.47%, 76.18% and 86.61%, respectively.
Conclusions
This is the first AI-CDSS aiming to mitigate operator-dependent limitations during third-space endoscopy. Further clinical trials are underway to better understand the role of AI in such procedures.
The endoscopic features associated with eosinophilic esophagitis (EoE) may be missed during routine endoscopy. We aimed to develop and evaluate an Artificial Intelligence (AI) algorithm for detecting and quantifying the endoscopic features of EoE in white light images, supplemented by the EoE Endoscopic Reference Score (EREFS). An AI algorithm (AI-EoE) was constructed and trained to differentiate between EoE and normal esophagus using endoscopic white light images extracted from the database of the University Hospital Augsburg. In addition to binary classification, a second algorithm was trained with specific auxiliary branches for each EREFS feature (AI-EoE-EREFS). The AI algorithms were evaluated on an external data set from the University of North Carolina, Chapel Hill (UNC), and compared with the performance of human endoscopists with varying levels of experience. The overall sensitivity, specificity, and accuracy of AI-EoE were 0.93 for all measures, while the AUC was 0.986. With additional auxiliary branches for the EREFS categories, the AI algorithm (AI-EoEEREFS) performance improved to 0.96, 0.94, 0.95, and 0.992 for sensitivity, specificity, accuracy, and AUC, respectively. AI-EoE and AI-EoE-EREFS performed significantly better than endoscopy beginners and senior fellows on the same set of images. An AI algorithm can be trained to detect and quantify endoscopic features of EoE with excellent performance scores. The addition of the EREFS criteria improved the performance of the AI algorithm, which performed significantly better than endoscopists with a lower or medium experience level.
Aims
Eosinophilic esophagitis (EoE) is easily missed during endoscopy, either because physicians are not familiar with its endoscopic features or the morphologic changes are too subtle. In this preliminary paper, we present the first attempt to detect EoE in endoscopic white light (WL) images using a deep learning network (EoE-AI).
Methods
401 WL images of eosinophilic esophagitis and 871 WL images of normal esophageal mucosa were evaluated. All images were assessed for the Endoscopic Reference score (EREFS) (edema, rings, exudates, furrows, strictures). Images with strictures were excluded. EoE was defined as the presence of at least 15 eosinophils per high power field on biopsy. A convolutional neural network based on the ResNet architecture with several five-fold cross-validation runs was used. Adding auxiliary EREFS-classification branches to the neural network allowed the inclusion of the scores as optimization criteria during training. EoE-AI was evaluated for sensitivity, specificity, and F1-score. In addition, two human endoscopists evaluated the images.
Results
EoE-AI showed a mean sensitivity, specificity, and F1 of 0.759, 0.976, and 0.834 respectively, averaged over the five distinct cross-validation runs. With the EREFS-augmented architecture, a mean sensitivity, specificity, and F1-score of 0.848, 0.945, and 0.861 could be demonstrated respectively. In comparison, the two human endoscopists had an average sensitivity, specificity, and F1-score of 0.718, 0.958, and 0.793.
Conclusions
To the best of our knowledge, this is the first application of deep learning to endoscopic images of EoE which were also assessed after augmentation with the EREFS-score. The next step is the evaluation of EoE-AI using an external dataset. We then plan to assess the EoE-AI tool on endoscopic videos, and also in real-time. This preliminary work is encouraging regarding the ability for AI to enhance physician detection of EoE, and potentially to do a true “optical biopsy” but more work is needed.