Fakultät Informatik und Mathematik
Refine
Year of publication
Document Type
- conference proceeding (article) (355)
- Article (348)
- conference proceeding (presentation, abstract) (74)
- Part of a Book (62)
- Book (19)
- conference proceeding (volume) (19)
- Preprint (18)
- Report (9)
- Working Paper (7)
- conference talk (6)
Is part of the Bibliography
- no (931)
Keywords
- Bildgebendes Verfahren (20)
- Produktionsplanung (18)
- Betriebliches Informationssystem (17)
- Deep Learning (15)
- Diagnose (15)
- Gebärmutterhalskrebs (14)
- Informationstechnik (14)
- Maschinelles Lernen (14)
- Offshoring (13)
- Simulation (13)
Institute
- Fakultät Informatik und Mathematik (931)
- Regensburg Medical Image Computing (ReMIC) (136)
- Institut für Sozialforschung und Technikfolgenabschätzung (96)
- Institut für Sozialforschung und Technikfolgenabschätzung (IST) (91)
- Regensburg Strategic IT Management (ReSITM) (80)
- Labor für Digitalisierung (LFD) (70)
- Labor für Technikfolgenabschätzung und Angewandte Ethik (LaTe) (62)
- Labor eHealth (eH) (58)
- Fakultät Angewandte Sozial- und Gesundheitswissenschaften (51)
- Regensburg Center of Biomedical Engineering - RCBE (46)
Begutachtungsstatus
- peer-reviewed (367)
- begutachtet (3)
The paper presents a penetration testing framework for automotive IT security education and evaluates its realization. The automotive sector is changing due to automated driving functions, connected vehicles, and electric vehicles. This development also creates new and more critical vulnerabilities. This paper addresses a possible countermeasure, automotive IT security education. Some existing solutions are evaluated and compared with the created Automotive Penetration Testing Education Platform (APTEP) framework. In addition, the APTEP architecture is described. It consists of three layers representing different attack points of a vehicle. The realization of the APTEP is a hardware case and a virtual platform referred to as the Automotive Network Security Case (ANSKo). The hardware case contains emulated control units and different communication protocols. The virtual platform uses Docker containers to provide a similar experience over the internet. Both offer two kinds of challenges.
The first introduces users to a specific interface, while the second combines multiple interfaces, to a complex and realistic challenge. This concept is based on modern didactic theories, such as constructivism and problem-based/challenge-based learning.
Computer Science students from the Ostbayerische Technische Hochschule (OTH) Regensburg experienced the challenges as part of a elective subject. In an online survey evaluated in this paper, they gave positive feedback. Also, a part of the evaluation is the mapping of the ANSKo and the maturity levels in the Software Assurance Maturity Model (SAMM) practice Education & Guidance as well as the SAMM practice Security Testing. The scientific contribution of this paper is to present an APTEP, a corresponding learning concept and an evaluation method.
We compute the Fourier expansion of Hecke operators on vector-valued modular forms for the Weil representation associated to a lattice L. The Hecke operators considered in this paper include operators T(p^2l) where p is a prime dividing the level of the lattice L. Additionally, an explicit formula for a general type of Gauss sum associated to a lattice L drops out as a by-product.
Die Konformitätsanalyse ist eine Technik der statischen Code-Analyse (SCA) zur Software-Qualitätssicherung. Ihr Kernproblem ist, dass Werkzeuge nicht aus bereits eingetretenen Fehlern automatisiert dazulernen. Zur Lösung wurde in dieser Arbeit das maschinelle Lernen (ML) evaluiert, indem ein wissenschaftlich fundierter und praktisch erprobter Ansatz zur unüberwachten Lerntechnik angewandt und das Ergebnis analysiert wurde. Es wurde festgestellt, dass zur Anwendung auf verschiedene Programmiersprachen nur ein sprachspezifisches API Mining-Tool notwendig ist. Ein derartiges Tool durchsucht in parallelisierter Form Codezeilen und normalisiert sie für maschinelle Lernprozesse. Dieses System wurde für die Programmiersprache C# implementiert, da viele Industrieprojekte in dieser Sprache entwickelt werden. Zur funktionalen Validierung wurde in einer Fallstudie gezeigt, dass Regeln mit einem positiven Effekt auf Software-Qualität gelernt wurden. Konkret wurde der Wartungsaufwand eines Code-Smells in einem Beispielprojekt durch das Auslagern einer gelernten Assoziation in eine gemeinsame Methode um den Faktor 30 reduziert. Die Laufzeit des Algorithmus wurde empirisch in acht open-source Repositorys evaluiert. Durch Parallelisierung kann eine durchschnittliche Laufzeitverbesserung von 45,16% erwartet werden. Allerdings wurden bei der Anwendung auch Grenzen deutlich: Viele Assoziationen sind nutzlos, die Regelbewertung ist von einem subjektiven Faktor abhängig und die Wirtschaftlichkeit des Tools ist deshalb nicht transparent. Dennoch belegt diese Arbeit, dass ein ML-basiertes SCA-Tool als ergänzende Qualitätssicherungsmaßnahme im Software-Engineering möglich ist.
Digitale Transformation in Echtzeit: Die Ziele von morgen basierend auf dem Datenmodell von gestern
(2022)
Die Digitale Transformation fordert Unternehmen aller Couleur. Ironischer Weise sind es gerade die bisher verwendeten IT-Systeme mit ihren starren Strukturen, die Unternehmen in Ihrer digitalen Trans-formation oft ausbremsen. Auch wenn die Soft-warehersteller längst reagiert haben und neue, flexib-lere Versionen ihrer Produkte anbieten, so ist ein größerer Softwarewechsel immer noch eine Heraus-forderung für Unternehmen und ein Schritt der wohl-überlegt und geplant sein will. In dieser Arbeit wird deshalb ein Vorgehen vorge-stellt, um mittels In-Memory Technologie und Vir-tualisierung zumindest die wichtigsten Ergebnisse der Transformation bereits auf den bestehenden Da-tenmodellen in Echtzeit zu generieren. Dadurch wird genug Zeit gewonnen, um die eigentliche Transfor-mation der IT-Landschaft geplant und mit der not-wendigen Sorgfalt durchzuführen.
The prospect of achieving computational speedups by exploiting quantum phenomena makes the use of quantum processing units (QPUs) attractive for many algorithmic database problems. Query optimisation, which concerns problems that typically need to explore large search spaces, seems like an ideal match for the known quantum algorithms. We present the first quantum implementation of join ordering, which is one of the most investigated and fundamental query optimisation problems, based on a reformulation to quadratic binary unconstrained optimisation problems. We empirically characterise our method on two state-of-the-art approaches (gate-based quantum computing and quantum annealing), and identify speed-ups compared to the best know classical join ordering approaches for input sizes that can be processed with current quantum annealers. However, we also confirm that limits of early-stage technology are quickly reached.
Current QPUs are classified as noisy, intermediate scale quantum computers (NISQ), and are restricted by a variety of limitations that reduce their capabilities as compared to ideal future quantum computers, which prevents us from scaling up problem dimensions and reaching practical utility. To overcome these challenges, our formulation accounts for specific QPU properties and limitations, and allows us to trade between achievable solution quality and possible problem size.
In contrast to all prior work on quantum computing for query optimisation and database-related challenges, we go beyond currently available QPUs, and explicitly target the scalability limitations: Using insights gained from numerical simulations and our experimental analysis, we identify key criteria for co-designing QPUs to improve their usefulness for join ordering, and show how even relatively minor physical architectural improvements can result in substantial enhancements. Finally, we outline a path towards practical utility of custom-designed QPUs.
We evaluate the applicability of quantum computing on two fundamental query optimization problems, join order optimization and multi query optimization (MQO). We analyze the problem dimensions that can be solved on current gate-based quantum systems and quantum annealers, the two currently commercially available architectures.
First, we evaluate the use of gate-based systems on MQO, previously solved with quantum annealing. We show that, contrary to classical computing, a different architecture requires involved adaptations. We moreover propose a multi-step reformulation for join ordering problems to make them solvable on current quantum systems. Finally, we systematically evaluate our contributions for gate-based quantum systems and quantum annealers. Doing so, we identify the scope of current limitations, as well as the future potential of quantum computing technologies for database systems.
Most of the common model-based reconstruction schemes in magnetic particle imaging (MPI) use idealized assumptions, e.g., of an ideal field-free-line (FFL) topology. However, the magnetic fields that are generated in real MPI scanners have distortions and, therefore, model-based approaches often lead to inaccurate reconstructions and may contain artifacts. In order to improve the reconstruction quality in MPI, more realistic MPI models need to be derived. In the present work, we address this problem and present a hybrid model for MPI that allows us to incorporates real measurements of the applied magnetic fields. We will explain that the measurements, that are needed to setup a model for the magnetic fields, can be obtained in a novel calibration procedure that is independent of the resolution and which is much less time-consuming than the one employed in measurement-based MPI reconstructions.We will also present a discretization strategy for this model, that can be used in context of algebraic reconstructions. The presented approach was validated on simulated data in [1], however, its evaluation on real data is a topic for future research.