Refine
Document Type
Is part of the Bibliography
- no (33)
Keywords
- Diagnose (12)
- Artificial Intelligence (10)
- Maschinelles Lernen (10)
- Künstliche Intelligenz (9)
- Deep Learning (8)
- Speiseröhrenkrebs (7)
- Adenocarcinoma (6)
- Machine learning (6)
- Speiseröhrenkrankheit (6)
- Barrett's esophagus (5)
Institute
Begutachtungsstatus
- peer-reviewed (27)
Background and aims
Celiac disease with its endoscopic manifestation of villous atrophy is underdiagnosed worldwide. The application of artificial intelligence (AI) for the macroscopic detection of villous atrophy at routine esophagogastroduodenoscopy may improve diagnostic performance.
Methods
A dataset of 858 endoscopic images of 182 patients with villous atrophy and 846 images from 323 patients with normal duodenal mucosa was collected and used to train a ResNet 18 deep learning model to detect villous atrophy. An external data set was used to test the algorithm, in addition to six fellows and four board certified gastroenterologists. Fellows could consult the AI algorithm’s result during the test. From their consultation distribution, a stratification of test images into “easy” and “difficult” was performed and used for classified performance measurement.
Results
External validation of the AI algorithm yielded values of 90 %, 76 %, and 84 % for sensitivity, specificity, and accuracy, respectively. Fellows scored values of 63 %, 72 % and 67 %, while the corresponding values in experts were 72 %, 69 % and 71 %, respectively. AI consultation significantly improved all trainee performance statistics. While fellows and experts showed significantly lower performance for “difficult” images, the performance of the AI algorithm was stable.
Conclusion
In this study, an AI algorithm outperformed endoscopy fellows and experts in the detection of villous atrophy on endoscopic still images. AI decision support significantly improved the performance of non-expert endoscopists. The stable performance on “difficult” images suggests a further positive add-on effect in challenging cases.
The growing number of publications on the application of artificial intelligence (AI) in medicine underlines the enormous importance and potential of this emerging field of research.
In gastrointestinal endoscopy, AI has been applied to all segments of the gastrointestinal tract most importantly in the detection and characterization of colorectal polyps. However, AI research has been published also in the stomach and esophagus for both neoplastic and non-neoplastic disorders.
The various technical as well as medical aspects of AI, however, remain confusing especially for non-expert physicians.
This physician-engineer co-authored review explains the basic technical aspects of AI and provides a comprehensive overview of recent publications on AI in gastrointestinal endoscopy. Finally, a basic insight is offered into understanding publications on AI in gastrointestinal endoscopy.
Aims
Celiac disease (CD) is a complex condition caused by an autoimmune reaction to ingested gluten. Due to its polymorphic manifestation and subtle endoscopic presentation, the diagnosis is difficult and thus the disorder is underreported. We aimed to use deep learning to identify celiac disease on endoscopic images of the small bowel.
Methods
Patients with small intestinal histology compatible with CD (MARSH classification I-III) were extracted retrospectively from the database of Augsburg University hospital. They were compared to patients with no clinical signs of CD and histologically normal small intestinal mucosa. In a first step MARSH III and normal small intestinal mucosa were differentiated with the help of a deep learning algorithm. For this, the endoscopic white light images were divided into five equal-sized subsets. We avoided splitting the images of one patient into several subsets. A ResNet-50 model was trained with the images from four subsets and then validated with the remaining subset. This process was repeated for each subset, such that each subset was validated once. Sensitivity, specificity, and harmonic mean (F1) of the algorithm were determined.
Results
The algorithm showed values of 0.83, 0.88, and 0.84 for sensitivity, specificity, and F1, respectively. Further data showing a comparison between the detection rate of the AI model and that of experienced endoscopists will be available at the time of the upcoming conference.
Conclusions
We present the first clinical report on the use of a deep learning algorithm for the detection of celiac disease using endoscopic images. Further evaluation on an external data set, as well as in the detection of CD in real-time, will follow. However, this work at least suggests that AI can assist endoscopists in the endoscopic diagnosis of CD, and ultimately may be able to do a true optical biopsy in live-time.
We propose an automatic approach for early detection of adenocarcinoma in the esophagus. High-definition endoscopic images (50 cancer, 50 Barrett) are partitioned into a dataset containing approximately equal amounts of patches showing cancerous and non-cancerous regions. A deep convolutional neural network is adapted to the data using a transfer learning approach. The final classification of an image is determined by at least one patch, for which the probability being a cancer patch exceeds a given threshold. The model was evaluated with leave one patient out cross-validation. With sensitivity and specificity of 0.94 and 0.88, respectively, our findings improve recently published results on the same image data base considerably. Furthermore, the visualization of the class probabilities of each individual patch indicates, that our approach might be extensible to the segmentation domain.
Aims
Eosinophilic esophagitis (EoE) is easily missed during endoscopy, either because physicians are not familiar with its endoscopic features or the morphologic changes are too subtle. In this preliminary paper, we present the first attempt to detect EoE in endoscopic white light (WL) images using a deep learning network (EoE-AI).
Methods
401 WL images of eosinophilic esophagitis and 871 WL images of normal esophageal mucosa were evaluated. All images were assessed for the Endoscopic Reference score (EREFS) (edema, rings, exudates, furrows, strictures). Images with strictures were excluded. EoE was defined as the presence of at least 15 eosinophils per high power field on biopsy. A convolutional neural network based on the ResNet architecture with several five-fold cross-validation runs was used. Adding auxiliary EREFS-classification branches to the neural network allowed the inclusion of the scores as optimization criteria during training. EoE-AI was evaluated for sensitivity, specificity, and F1-score. In addition, two human endoscopists evaluated the images.
Results
EoE-AI showed a mean sensitivity, specificity, and F1 of 0.759, 0.976, and 0.834 respectively, averaged over the five distinct cross-validation runs. With the EREFS-augmented architecture, a mean sensitivity, specificity, and F1-score of 0.848, 0.945, and 0.861 could be demonstrated respectively. In comparison, the two human endoscopists had an average sensitivity, specificity, and F1-score of 0.718, 0.958, and 0.793.
Conclusions
To the best of our knowledge, this is the first application of deep learning to endoscopic images of EoE which were also assessed after augmentation with the EREFS-score. The next step is the evaluation of EoE-AI using an external dataset. We then plan to assess the EoE-AI tool on endoscopic videos, and also in real-time. This preliminary work is encouraging regarding the ability for AI to enhance physician detection of EoE, and potentially to do a true “optical biopsy” but more work is needed.
Introduction
We present a clinical case showing the real-time detection, characterization and delineation of an early Barrett’s cancer using AI.
Patients and methods
A 70-year old patient with a long-segment Barrett’s esophagus (C5M7) was assessed with an AI algorithm.
Results
The AI system detected a 10 mm focal lesion and AI characterization predicted cancer with a probability of >90%. After ESD resection, histopathology showed mucosal adenocarcinoma (T1a (m), R0) confirming AI diagnosis.
Conclusion
We demonstrate the real-time AI detection, characterization and delineation of a small and early mucosal Barrett’s cancer.
The endoscopic features associated with eosinophilic esophagitis (EoE) may be missed during routine endoscopy. We aimed to develop and evaluate an Artificial Intelligence (AI) algorithm for detecting and quantifying the endoscopic features of EoE in white light images, supplemented by the EoE Endoscopic Reference Score (EREFS). An AI algorithm (AI-EoE) was constructed and trained to differentiate between EoE and normal esophagus using endoscopic white light images extracted from the database of the University Hospital Augsburg. In addition to binary classification, a second algorithm was trained with specific auxiliary branches for each EREFS feature (AI-EoE-EREFS). The AI algorithms were evaluated on an external data set from the University of North Carolina, Chapel Hill (UNC), and compared with the performance of human endoscopists with varying levels of experience. The overall sensitivity, specificity, and accuracy of AI-EoE were 0.93 for all measures, while the AUC was 0.986. With additional auxiliary branches for the EREFS categories, the AI algorithm (AI-EoEEREFS) performance improved to 0.96, 0.94, 0.95, and 0.992 for sensitivity, specificity, accuracy, and AUC, respectively. AI-EoE and AI-EoE-EREFS performed significantly better than endoscopy beginners and senior fellows on the same set of images. An AI algorithm can be trained to detect and quantify endoscopic features of EoE with excellent performance scores. The addition of the EREFS criteria improved the performance of the AI algorithm, which performed significantly better than endoscopists with a lower or medium experience level.
Clinical setting
Third space procedures such as endoscopic submucosal dissection (ESD) and peroral endoscopic myotomy (POEM) are complex minimally invasive techniques with an elevated risk for operator-dependent adverse events such as bleeding and perforation. This risk arises from accidental dissection into the muscle layer or through submucosal blood vessels as the submucosal cutting plane within the expanding resection site is not always apparent. Deep learning algorithms have shown considerable potential for the detection and characterization of gastrointestinal lesions. So-called AI – clinical decision support solutions (AI-CDSS) are commercially available for polyp detection during colonoscopy. Until now, these computer programs have concentrated on diagnostics whereas an AI-CDSS for interventional endoscopy has not yet been introduced. We aimed to develop an AI-CDSS („Smart ESD“) for real-time intra-procedural detection and delineation of blood vessels, tissue structures and endoscopic instruments during third-space endoscopic procedures.
Characteristics of Smart ESD
An AI-CDSS was invented that delineates blood vessels, tissue structures and endoscopic instruments during third-space endoscopy in real-time. The output can be displayed by an overlay over the endoscopic image with different modes of visualization, such as a color-coded semitransparent area overlay, or border tracing (demonstration video). Hereby the optimal layer for dissection can be visualized, which is close above or directly at the muscle layer, depending on the applied technique (ESD or POEM). Furthermore, relevant blood vessels (thickness> 1mm) are delineated. Spatial proximity between the electrosurgical knife and a blood vessel triggers a warning signal. By this guidance system, inadvertent dissection through blood vessels could be averted.
Technical specifications
A DeepLabv3+ neural network architecture with KSAC and a 101-layer ResNeSt backbone was used for the development of Smart ESD. It was trained and validated with 2565 annotated still images from 27 full length third-space endoscopic videos. The annotation classes were blood vessel, submucosal layer, muscle layer, electrosurgical knife and endoscopic instrument shaft. A test on a separate data set yielded an intersection over union (IoU) of 68%, a Dice Score of 80% and a pixel accuracy of 87%, demonstrating a high overlap between expert and AI segmentation. Further experiments on standardized video clips showed a mean vessel detection rate (VDR) of 85% with values of 92%, 70% and 95% for POEM, rectal ESD and esophageal ESD respectively. False positive measurements occurred 0.75 times per minute. 7 out of 9 vessels which caused intraprocedural bleeding were caught by the algorithm, as well as both vessels which required hemostasis via hemostatic forceps.
Future perspectives
Smart ESD performed well for vessel and tissue detection and delineation on still images, as well as on video clips. During a live demonstration in the endoscopy suite, clinical applicability of the innovation was examined. The lag time for processing of the live endoscopic image was too short to be visually detectable for the interventionist. Even though the algorithm could not be applied during actual dissection by the interventionist, Smart ESD appeared readily deployable during visual assessment by ESD experts. Therefore, we plan to conduct a clinical trial in order to obtain CE-certification of the algorithm. This new technology may improve procedural safety and speed, as well as training of modern minimally invasive endoscopic resection techniques.
Einleitung
Die sichere Detektion und Charakterisierung von Barrett-Ösophagus assoziierten Neoplasien (BERN) stellt selbst für erfahrene Endoskopiker eine Herausforderung dar.
Ziel
Ziel dieser Studie ist es, den Add-on Effekt eines künstlichen Intelligenz (KI) Systems (Barrett-Ampel) als Entscheidungsunterstüzungssystem für Endoskopiker ohne Expertise bei der Untersuchung von BERN zu evaluieren.
Material und Methodik
Zwölf Videos in „Weißlicht“ (WL), „narrow-band imaging“ (NBI) und „texture and color enhanced imaging“ (TXI) von histologisch bestätigten Barrett-Metaplasien oder BERN wurden von Experten und Untersuchern ohne Barrett-Expertise evaluiert. Die Probanden wurden dazu aufgefordert in den Videos auftauchende BERN zu identifizieren und gegebenenfalls die optimale Biopsiestelle zu markieren. Unser KI-System wurde demselben Test unterzogen, wobei dieses BERN in Echtzeit segmentierte und farblich von umliegendem Epithel differenzierte. Anschließend wurden den Probanden die Videos mit zusätzlicher KI-Unterstützung gezeigt. Basierend auf dieser neuen Information, wurden die Probanden zu einer Reevaluation ihrer initialen Beurteilung aufgefordert.
Ergebnisse
Die „Barrett-Ampel“ identifizierte unabhängig von den verwendeten Darstellungsmodi (WL, NBI, TXI) alle BERN. Zwei entzündlich veränderte Läsionen wurden fehlinterpretiert (Genauigkeit=75%). Während Experten vergleichbare Ergebnisse erzielten (Genauigkeit=70,8%), hatten Endoskopiker ohne Expertise bei der Beurteilung von Barrett-Metaplasien eine Genauigkeit von lediglich 58,3%. Wurden die nicht-Experten allerdings von unserem KI-System unterstützt, erreichten diese eine Genauigkeit von 75%.
Zusammenfassung
Unser KI-System hat das Potential als Entscheidungsunterstützungssystem bei der Differenzierung zwischen Barrett-Metaplasie und BERN zu fungieren und so Endoskopiker ohne entsprechende Expertise zu assistieren. Eine Limitation dieser Studie ist die niedrige Anzahl an eingeschlossenen Videos. Um die Ergebnisse dieser Studie zu bestätigen, müssen randomisierte kontrollierte klinische Studien durchgeführt werden.
Aims
Barrett´s esophagus related neoplasia (BERN) is difficult to detect and characterize during endoscopy, even for expert endoscopists. We aimed to assess the add-on effect of an Artificial Intelligence (AI) algorithm (Barrett-Ampel) as a decision support system (DSS) for non-expert endoscopists in the evaluation of Barrett’s esophagus (BE) and BERN.
Methods
Twelve videos with multimodal imaging white light (WL), narrow-band imaging (NBI), texture and color enhanced imaging (TXI) of histologically confirmed BE and BERN were assessed by expert and non-expert endoscopists. For each video, endoscopists were asked to identify the area of BERN and decide on the biopsy spot. Videos were assessed by the AI algorithm and regions of BERN were highlighted in real-time by a transparent overlay. Finally, endoscopists were shown the AI videos and asked to either confirm or change their initial decision based on the AI support.
Results
Barrett-Ampel correctly identified all areas of BERN, irrespective of the imaging modality (WL, NBI, TXI), but misinterpreted two inflammatory lesions (Accuracy=75%). Expert endoscopists had a similar performance (Accuracy=70,8%), while non-experts had an accuracy of 58.3%. When AI was implemented as a DSS, non-expert endoscopists improved their diagnostic accuracy to 75%.
Conclusions
AI may have the potential to support non-expert endoscopists in the assessment of videos of BE and BERN. Limitations of this study include the low number of videos used. Randomized clinical trials in a real-life setting should be performed to confirm these results.