Refine
Year of publication
Document Type
- Article (53)
- conference proceeding (article) (49)
- conference proceeding (presentation, abstract) (21)
- Part of Periodical (5)
- Preprint (2)
- Book (1)
Is part of the Bibliography
- no (131)
Keywords
- Bildgebendes Verfahren (18)
- Diagnose (14)
- Deep Learning (13)
- Maschinelles Lernen (12)
- Gehirn (11)
- Artificial Intelligence (10)
- Kernspintomografie (9)
- Künstliche Intelligenz (9)
- Dreidimensionale Bildverarbeitung (8)
- Registrierung <Bildverarbeitung> (8)
Institute
- Fakultät Informatik und Mathematik (126)
- Regensburg Medical Image Computing (ReMIC) (126)
- Regensburg Center of Biomedical Engineering - RCBE (36)
- Regensburg Center of Health Sciences and Technology - RCHST (20)
- Hochschulleitung (5)
- Institut für Angewandte Forschung und Wirtschaftskooperationen (IAFW) (5)
- Fakultät Angewandte Sozial- und Gesundheitswissenschaften (1)
- Institut für Sozialforschung und Technikfolgenabschätzung (1)
- Institut für Sozialforschung und Technikfolgenabschätzung (IST) (1)
- Labor Empirische Sozialforschung (1)
Begutachtungsstatus
- peer-reviewed (56)
Aims
Eosinophilic esophagitis (EoE) is easily missed during endoscopy, either because physicians are not familiar with its endoscopic features or the morphologic changes are too subtle. In this preliminary paper, we present the first attempt to detect EoE in endoscopic white light (WL) images using a deep learning network (EoE-AI).
Methods
401 WL images of eosinophilic esophagitis and 871 WL images of normal esophageal mucosa were evaluated. All images were assessed for the Endoscopic Reference score (EREFS) (edema, rings, exudates, furrows, strictures). Images with strictures were excluded. EoE was defined as the presence of at least 15 eosinophils per high power field on biopsy. A convolutional neural network based on the ResNet architecture with several five-fold cross-validation runs was used. Adding auxiliary EREFS-classification branches to the neural network allowed the inclusion of the scores as optimization criteria during training. EoE-AI was evaluated for sensitivity, specificity, and F1-score. In addition, two human endoscopists evaluated the images.
Results
EoE-AI showed a mean sensitivity, specificity, and F1 of 0.759, 0.976, and 0.834 respectively, averaged over the five distinct cross-validation runs. With the EREFS-augmented architecture, a mean sensitivity, specificity, and F1-score of 0.848, 0.945, and 0.861 could be demonstrated respectively. In comparison, the two human endoscopists had an average sensitivity, specificity, and F1-score of 0.718, 0.958, and 0.793.
Conclusions
To the best of our knowledge, this is the first application of deep learning to endoscopic images of EoE which were also assessed after augmentation with the EREFS-score. The next step is the evaluation of EoE-AI using an external dataset. We then plan to assess the EoE-AI tool on endoscopic videos, and also in real-time. This preliminary work is encouraging regarding the ability for AI to enhance physician detection of EoE, and potentially to do a true “optical biopsy” but more work is needed.
Forschung 2019
(2019)
GinJinn: An object-detection pipeline for automated feature extraction from herbarium specimens
(2020)
PREMISE:
The generation of morphological data in evolutionary, taxonomic, and ecological studies of plants using herbarium material has traditionally been a labor-intensive task. Recent progress in machine learning using deep artificial neural networks (deep learning) for image classification and object detection has facilitated the establishment of a pipeline for the automatic recognition and extraction of relevant structures in images of herbarium specimens.
METHODS AND RESULTS:
We implemented an extendable pipeline based on state-of-the-art deep-learning object-detection methods to collect leaf images from herbarium specimens of two species of the genus Leucanthemum. Using 183 specimens as the training data set, our pipeline extracted one or more intact leaves in 95% of the 61 test images.
CONCLUSIONS:
We establish GinJinn as a deep-learning object-detection tool for the automatic recognition and extraction of individual leaves or other structures from herbarium specimens. Our pipeline offers greater flexibility and a lower entrance barrier than previous image-processing approaches based on hand-crafted features.
Forschungsbericht 2017
(2017)
Forschungsbericht 2012
(2012)
The endoscopic features associated with eosinophilic esophagitis (EoE) may be missed during routine endoscopy. We aimed to develop and evaluate an Artificial Intelligence (AI) algorithm for detecting and quantifying the endoscopic features of EoE in white light images, supplemented by the EoE Endoscopic Reference Score (EREFS). An AI algorithm (AI-EoE) was constructed and trained to differentiate between EoE and normal esophagus using endoscopic white light images extracted from the database of the University Hospital Augsburg. In addition to binary classification, a second algorithm was trained with specific auxiliary branches for each EREFS feature (AI-EoE-EREFS). The AI algorithms were evaluated on an external data set from the University of North Carolina, Chapel Hill (UNC), and compared with the performance of human endoscopists with varying levels of experience. The overall sensitivity, specificity, and accuracy of AI-EoE were 0.93 for all measures, while the AUC was 0.986. With additional auxiliary branches for the EREFS categories, the AI algorithm (AI-EoEEREFS) performance improved to 0.96, 0.94, 0.95, and 0.992 for sensitivity, specificity, accuracy, and AUC, respectively. AI-EoE and AI-EoE-EREFS performed significantly better than endoscopy beginners and senior fellows on the same set of images. An AI algorithm can be trained to detect and quantify endoscopic features of EoE with excellent performance scores. The addition of the EREFS criteria improved the performance of the AI algorithm, which performed significantly better than endoscopists with a lower or medium experience level.
Forschungsbericht 2016
(2016)
In this study, we aimed to develop an artificial intelligence clinical decision support solution to mitigate operator-dependent limitations during complex endoscopic procedures such as endoscopic submucosal dissection and peroral endoscopic myotomy, for example, bleeding and perforation. A DeepLabv3-based model was trained to delineate vessels, tissue structures and instruments on endoscopic still images from such procedures. The mean cross-validated Intersection over Union and Dice Score were 63% and 76%, respectively. Applied to standardised video clips from third-space endoscopic procedures, the algorithm showed a mean vessel detection rate of 85% with a false-positive rate of 0.75/min. These performance statistics suggest a potential clinical benefit for procedure safety, time and also training.
Background and aims
Celiac disease with its endoscopic manifestation of villous atrophy is underdiagnosed worldwide. The application of artificial intelligence (AI) for the macroscopic detection of villous atrophy at routine esophagogastroduodenoscopy may improve diagnostic performance.
Methods
A dataset of 858 endoscopic images of 182 patients with villous atrophy and 846 images from 323 patients with normal duodenal mucosa was collected and used to train a ResNet 18 deep learning model to detect villous atrophy. An external data set was used to test the algorithm, in addition to six fellows and four board certified gastroenterologists. Fellows could consult the AI algorithm’s result during the test. From their consultation distribution, a stratification of test images into “easy” and “difficult” was performed and used for classified performance measurement.
Results
External validation of the AI algorithm yielded values of 90 %, 76 %, and 84 % for sensitivity, specificity, and accuracy, respectively. Fellows scored values of 63 %, 72 % and 67 %, while the corresponding values in experts were 72 %, 69 % and 71 %, respectively. AI consultation significantly improved all trainee performance statistics. While fellows and experts showed significantly lower performance for “difficult” images, the performance of the AI algorithm was stable.
Conclusion
In this study, an AI algorithm outperformed endoscopy fellows and experts in the detection of villous atrophy on endoscopic still images. AI decision support significantly improved the performance of non-expert endoscopists. The stable performance on “difficult” images suggests a further positive add-on effect in challenging cases.