Labor Regensburg Medical Image Computing (ReMIC)
Refine
Year of publication
Document Type
- Article (69)
- conference proceeding (article) (57)
- conference proceeding (presentation, abstract) (40)
- conference proceeding (volume) (9)
- Preprint (7)
- Book (1)
- Part of a Book (1)
- Doctoral Thesis (1)
- Other (1)
Is part of the Bibliography
- no (186)
Keywords
- Bildgebendes Verfahren (23)
- Deep Learning (21)
- Diagnose (15)
- Künstliche Intelligenz (14)
- Artificial Intelligence (13)
- Maschinelles Lernen (12)
- Bildverarbeitung (11)
- Gehirn (11)
- Computerunterstützte Medizin (10)
- Kernspintomografie (9)
Institute
- Labor Regensburg Medical Image Computing (ReMIC) (186)
- Fakultät Informatik und Mathematik (184)
- Regensburg Center of Biomedical Engineering - RCBE (45)
- Regensburg Center of Health Sciences and Technology - RCHST (40)
- Fakultät Sozial- und Gesundheitswissenschaften (3)
- Labor Biomechanik (LBM) (2)
- Labor Empirische Sozialforschung (2)
- Labor für Technikfolgenabschätzung und Angewandte Ethik (LaTe) (2)
- Fakultät Elektro- und Informationstechnik (1)
- Fakultät Maschinenbau (1)
Begutachtungsstatus
- peer-reviewed (97)
- begutachtet (2)
Einleitung: Die endoskopische Submukosadissektion (ESD) ist ein komplexes endoskopisches Verfahren, das technische Expertise erfordert. Objektive Methoden zur Analyse von interventionellen Abläufen bei ESD könnten für Qualitätssicherung und Ausbildung, wie auch eine automatische Befunderstellung von Nutzen sein.
Ziele: In dieser Studie wurde ein KI-Algorithmus für die Erkennung und Klassifizierung der interventionellen Phasen der ESD entwickelt, um die technische Basis für eine standardisierte Leistungsbewertung und automatische Befunderstellung zu schaffen.
Methodik: Vollständige ESD-Videoaufnahmen von 49 Patienten wurden retrospektiv zusammengestellt. Der Datensatz umfasste 6.390.151 Einzelbilder, die alle für die folgenden interventionellen Phasen annotiert wurden: Diagnostik, Markierung, Injektion, Dissektion und Hämostase. 3.973.712 Bilder (28 Patienten) wurden für das Training eines Video-Swin-Transformers genutzt. Dabei wurde temporale Information durch standardisierte BIldextraktion in festgelegten zeitlichen Abständen zum analysierten Bild inkorporiert. 2.416.439 separate Bilder (21 Patienten) wurden für eine interne Validierung genutzt.
Ergebnis: Bei der internen Evaluation erreichte das System insgesamt einen F1-Wert von 0,88. Es wurden F1-Werte von 0,99, 0,89, 0,89, 0,91 und 0,52 für Diagnostik, Markierung, Injektion, Dissektion bzw. Blutungsmanagement gemessen. Die Sensitivitäten für dieselben Parameter betrugen 1,00, 0,80, 0,94, 0,89 und 0,67, die Spezifitäten lagen bei 1,00, 1,00, 0,98, 0,88 und 0,93. Positive prädiktive Werte wurden mit 0,98, 1,00, 0,85, 0,94 und 0,43 gemessen.
Schlussfolgerung: In dieser vorläufigen Studie zeigte ein KI-Algorithmus eine hohe Leistungsfähigkeit für die Einzelbild-Erkennung von Verfahrensphasen während der ESD. Die vergleichsweise niedrige Leistung für die Blutungsphase wurde auf das seltene Auftreten von Blutungsepisoden im Trainingsdatensatz zurückgeführt, der zu diesem Zeitpunkt nur Videos in voller Länge umfasste. Die zukünftige Entwicklung des Algorithmus wird sich auf die Reduzierung von Klassenungleichgewichten durch selektive Annotationsprotokolle konzentrieren.
Instrumentenerkennung während der endoskopischen Submukosadissektion mittels künstlicher Intelligenz
(2025)
Einleitung: Die endoskopische Submukosadissektion (ESD) ist eine komplexe Technik zur Resektion gastrointestinaler Frühneoplasien. Dabei werden für die verschiedenen Schritte der Intervention spezifische endoskopische Instrumente verwendet. Die präzise und automatische Erkennung und Abgrenzung der verwendeten Instrumente (Injektionsnadeln, elektrochirurgische Messer mit unterschiedlichen Konfigurationen, hämostatische Zangen) könnte wertvolle Informationen über den Fortschritt und die Verfahrensmerkmale der ESD liefern und eine automatische standardisierte Berichterstattung ermöglichen.
Ziele: Ziel dieser Studie war die Entwicklung eines KI-Algorithmus zur Erkennung und Delineation von endoskopischen Instrumenten bei der ESD.
Methodik: 17 ESD-Videos (9×rektal, 5×ösophageal, 3×gastrisch) wurden retrospektiv zusammengestellt. Auf 8530 Einzelbilder dieser Videos wurden durch 2 Studienmitarbeiter die folgenden Klassen eingezeichnet: Hakenmesser – Spitze, Hakenmesser – Katheter, Nadelmesser – Spitze und – Katheter, Injektionsnadel -Spitze und – Katheter sowie hämostatische Zange – Spitze und – Katheter. Der annotierte Datensatz wurde zum Training eines DeepLabV3+-Deep-Learning-Algorithmus mit ConvNeXt-Backbone zur Erkennung und Abgrenzung der genannten Klassen verwendet. Die Evaluation erfolgte durch 5-fache interne Kreuzvalidierung.
Ergebnis: Die Validierung auf Einzelpixelbasis ergab insgesamt einen F1-Score von 0,80, eine Sensitivität von 0,81 und eine Spezifität von 1,00. Es wurden F1-Scores von 1,00, 0,97, 0,80, 0,98, 0,85, 0,97, 0,80, 0,51 bzw. 0,85 für die Klassen Hakenmesser – Katheter und – Spitze, Nadelmesser – Katheter und – Spitze, Injektionsnadel – Katheter und – Spitze, hämostatische Zange – Katheter und – Spitze gemessen.
Schlussfolgerung: In dieser Studie wurden die wichtigsten endoskopischen Instrumente, die während der ESD verwendet werden, mit hoher Genauigkeit erkannt. Die geringere Leistung bei der hämostatische Zange – Katheter kann auf die Unterrepräsentation dieser Klassen in den Trainingsdaten zurückgeführt werden. Zukünftige Studien werden sich auf die Erweiterung der Instrumentenklassen sowie auf die Ausbalancierung der Trainingsdaten konzentrieren.
Reliable recognition and localization of surgical instruments in endoscopic video recordings are foundational for a wide range of applications in computer- and robot-assisted minimally invasive surgery (RAMIS), including surgical training, skill assessment, and autonomous assistance. However, robust performance under real-world conditions remains a significant challenge. Incorporating surgical context - such as the current procedural phase - has emerged as a promising strategy to improve robustness and interpretability. To address these challenges, we organized the Surgical Procedure Phase, Keypoint, and Instrument Recognition (PhaKIR) sub-challenge as part of the Endoscopic Vision (EndoVis) challenge at MICCAI 2024. We introduced a novel, multi-center dataset comprising thirteen full-length laparoscopic cholecystectomy videos collected from three distinct medical institutions, with unified annotations for three interrelated tasks: surgical phase recognition, instrument keypoint estimation, and instrument instance segmentation. Unlike existing datasets, ours enables joint investigation of instrument localization and procedural context within the same data while supporting the integration of temporal information across entire procedures. We report results and findings in accordance with the BIAS guidelines for biomedical image analysis challenges. The PhaKIR sub-challenge advances the field by providing a unique benchmark for developing temporally aware, context-driven methods in RAMIS and offers a high-quality resource to support future research in surgical scene understanding.
The growing reliance on Artificial Intelligence (AI) in critical domains such as healthcare demands robust mechanisms to ensure the trustworthiness of these systems, especially when faced with unexpected or anomalous inputs. This paper introduces the Open Medical Imaging Benchmarks for Out-Of-Distribution Detection (OpenMIBOOD), a comprehensive framework for evaluating out-of-distribution (OOD) detection methods specifically in medical imaging contexts. OpenMIBOOD includes three benchmarks from diverse medical domains, encompassing 14 datasets divided into covariate-shifted in-distribution, nearOOD, and far-OOD categories. We evaluate 24 post-hoc methods across these benchmarks, providing a standardized reference to advance the development and fair comparison of OODdetection methods. Results reveal that findings from broad-scale OOD benchmarks in natural image domains do not translate to medical applications, underscoring the critical need for such benchmarks in the medical field. By mitigating the risk of exposing AI models to inputs outside their training distribution, OpenMIBOOD aims to support the advancement of reliable and trustworthy AI systems in healthcare. The repository is available at https://github.com/remic-othr/OpenMIBOOD.
Objective
Despite high stand-alone performance, studies demonstrate that artificial intelligence (AI)-supported endoscopic diagnostics often fall short in clinical applications due to human-AI interaction factors. This video-based trial on Barrett's esophagus aimed to investigate how examiner behavior, their levels of confidence, and system usability influence the diagnostic outcomes of AI-assisted endoscopy.
Methods
The present analysis employed data from a multicenter randomized controlled tandem video trial involving 22 endoscopists with varying degrees of expertise. Participants were tasked with evaluating a set of 96 endoscopic videos of Barrett's esophagus in two distinct rounds, with and without AI assistance. Diagnostic confidence levels were recorded, and decision changes were categorized according to the AI prediction. Additional surveys assessed user experience and system usability ratings.
Results
AI assistance significantly increased examiner confidence levels (p < 0.001) and accuracy. Withdrawing AI assistance decreased confidence (p < 0.001), but not accuracy. Experts consistently reported higher confidence than non-experts (p < 0.001), regardless of performance. Despite improved confidence, correct AI guidance was disregarded in 16% of all cases, and 9% of initially correct diagnoses were changed to incorrect ones. Overreliance on AI, algorithm aversion, and uncertainty in AI predictions were identified as key factors influencing outcomes. The System Usability Scale questionnaire scores indicated good to excellent usability, with non-experts scoring 73.5 and experts 85.6.
Conclusions
Our findings highlight the pivotal function of examiner behavior in AI-assisted endoscopy. To fully realize the benefits of AI, implementing explainable AI, improving user interfaces, and providing targeted training are essential. Addressing these factors could enhance diagnostic accuracy and confidence in clinical practice.
Einleitung
Die Endoskopische Retrograde Cholangiopankreatikographie (ERCP) ist der Goldstandard in der endoskopischen Therapie von Erkrankungen des pankreatobiliären Trakts. Allerdings ist sie technisch anspruchsvoll, schwer zu erlernen und mit einer relativ hohen Komplikationsrate assoziiert. Daher soll in der vorliegenden Machbarkeitsstudie geprüft werden, ob mithilfe eines Deeplearning- Algorithmus die Papille und das Ostium zuverlässig detektiert werden können und dieser für Endoskopiker, insbesondere in der Ausbildungssituation, ein geeignetes Hilfsmittel darstellen könnte. Material und Methodik Insgesamt wurden 1534 ERCP-Bilder von 134 Patienten analysiert, wobei sowohl die Papilla duodeni major als auch das Ostium segmentiert wurden. Anschließend erfolgte das Training eines neuronalen Netzes unter Verwendung eines Deep-Learning-Algorithmus. Für den Test des Algorithmus erfolgte eine fünffache Kreuzvalidierung.
Ergebnisse
Auf den 1534 gelabelten Bildern wurden für die Klasse Papille ein F1-Wert von 0,7996, eine Sensitivität von 0,8488 und eine Spezifität von 0,9822 erzielt. Für die Klasse Ostium ergaben sich ein F1-Wert von 0,5198, eine Sensitivität von 0,5945 und eine Spezifität von 0,9974. Klassenübergreifend (Klasse Papille und Klasse Ostium) betrug der F1-Wert 0,6593, die Sensitivität 0,7216 und für die Spezifität 0,9898.
Zusammenfassung
In der vorliegenden Machbarkeitsstudie zeigte das neuronale Netz eine hohe Sensitivität und eine sehr hohe Spezifität bei der Identifikation der Papilla duodeni major. Die Detektion des Ostiums erfolgte hingegen mit einer deutlich geringeren Sensitivität. Zukünftig ist eine Erweiterung des Trainingsdatensatzes um Videos und klinische Daten vorgesehen, um die Leistungsfähigkeit des Netzwerks zu verbessern. Hierdurch könnte langfristig ein geeignetes Assistenzsystem für die ERCP, insbesondere in der Ausbildungssituation etabliert werden.
This paper presents a novel two-stage approach for computed tomography (CT) reconstruction, focusing on sparse-angle and low-dose setups to minimize radiation exposure while maintaining high image quality. Two-stage approaches consist of an initial reconstruction followed by a neural network for image refinement. In the initial reconstruction, we apply the backprojection (BP) instead of the traditional filtered backprojection (FBP). This enhances computational speed and offers potential advantages for more complex geometries, such as fan-beam and cone-beam CT. Additionally, BP addresses noise and artifacts in sparse-angle CT by leveraging its inherent noise-smoothing effect, which reduces streaking artifacts common in FBP reconstructions. For the second stage, we fine-tune the DRUNet proposed by Zhang et al. to further improve reconstruction quality. We call our method BP-DRUNet and evaluate its performance on a synthetically generated ellipsoid dataset alongside thewell-established LoDoPaBCT dataset. Our results show that BP-DRUNet produces competetive results in terms of PSNR and SSIM metrics compared to the FBP-based counterpart, FBPDRUNet, and delivers visually competitive results across all tested angular setups.
Barrett’s esophagus, also known as BE, is commonly associated with repeated exposure to stomach acid. If not treated properly, it may evolve into esophageal adenocarcinoma, aka esophageal cancer. This paper proposes TransConv, a hybrid architecture that benefits from features learned by pre-trained vision transformers (ViTs) and convolutional neural networks (CNNs), followed by a shallow neural network composed of three normalizations, ReLU activations, and fully connected layers, and a SoftMax head to distinguish between BE and esophageal cancer. TransConv is designed to be training-lightweight, and for the ViT and CNN backbone models, weights are kept frozen during training, i.e., the primary goal of TransConv is to learn the weights of the fully connected layer from both backbones only, avoiding the burden of updating their weights but still learning their final descriptions for the lightweight convolutional model. We report promising results with low computational training costs in two datasets, one public and another private. From our achievements, TransConv was able to deliver balanced accuracy results around 85% and 86% for each evaluated dataset, respectively, in a design that required only 50 epochs of model training, a very reduced number compared to state-of-the-art conducted studies in the same domain.
Aims
Precise surgical phase recognition and evaluation may improve our understanding of complex endoscopic procedures. Furthermore, quality control measurements and endoscopy training could benefit from objective descriptions of surgical phase distributions. Therefore, we aimed to develop an artificial intelligence algorithm for frame-by-frame operational phase recognition during endoscopic submucosal dissection (ESD).
Methods
Full length ESD-videos from 31 patients comprising 6.297.782 single images were collected retrospectively. Videos were annotated on a frame-by-frame basis for the operational macro-phases diagnostics, marking, injection, dissection and bleeding. Further subphases were the application of electrical current, visible injection of fluid into the submucosal space and scope manipulation, leading to 11 phases in total. 4.975.699 frames (21 patients) were used for training of a video swin transformer using uniform frame sampling for temporal information. Hyperparameter tuning was performed with 897.325 further frames (6 patients), while 424.758 frames (4 patients) were used for validation.
Results
The overall F1 scores on the test dataset for the macro-phases and all 11 phases were 0.96 and 0.90, respectively. The recall values for diagnostics, marking, injection, dissection and bleeding were 1.00, 1.00, 0.95, 0.96 and 0.93, respectively.
Conclusions
The algorithm classified operational phases during ESD with high accuracy. A precise evaluation of phase distribution may allow for the development of objective quality metrics for quality control and training.
Brain tumors pose significant challenges in neurology, making precise classification crucial for prognosis and treatment planning. This work investigates the effectiveness of a self-supervised learning approach–masked autoencoding (MAE)–to pre-train a vision transformer (ViT) model for brain tumor classification. Our method uses non-domain specific data, leveraging the ADNI and OASIS-3 MRI datasets, which primarily focus on degenerative diseases, for pretraining. The model is subsequently fine-tuned and evaluated on the BraTS glioma and meningioma datasets, representing a novel use of these datasets for tumor classification. The pre-trained MAE ViT model achieves an average F1 score of 0.91 in a 5-fold cross-validation setting, outperforming the nnU-Net encoder trained from scratch, particularly under limited data conditions. These findings highlight the potential of self-supervised MAE in enhancing brain tumor classification accuracy, even with restricted labeled data.