Regensburg Medical Image Computing (ReMIC)
Refine
Year of publication
Document Type
- Article (58)
- conference proceeding (article) (50)
- conference proceeding (presentation, abstract) (28)
- conference proceeding (volume) (7)
- Preprint (3)
- Doctoral Thesis (2)
- Book (1)
- Part of a Book (1)
Is part of the Bibliography
- no (150)
Keywords
- Bildgebendes Verfahren (21)
- Deep Learning (16)
- Diagnose (14)
- Künstliche Intelligenz (13)
- Maschinelles Lernen (12)
- Artificial Intelligence (11)
- Gehirn (11)
- Bildverarbeitung (9)
- Kernspintomografie (9)
- Computerunterstützte Medizin (8)
Institute
- Regensburg Medical Image Computing (ReMIC) (150)
- Fakultät Informatik und Mathematik (149)
- Regensburg Center of Biomedical Engineering - RCBE (41)
- Regensburg Center of Health Sciences and Technology - RCHST (27)
- Fakultät Angewandte Sozial- und Gesundheitswissenschaften (2)
- Fakultät Maschinenbau (2)
- Labor Biomechanik (LBM) (2)
- Labor Empirische Sozialforschung (2)
- Labor für Technikfolgenabschätzung und Angewandte Ethik (LaTe) (2)
- Institut für Sozialforschung und Technikfolgenabschätzung (IST) (1)
Begutachtungsstatus
- peer-reviewed (72)
Einleitung
Third space Endoskopieprozeduren wie die endoskopische Submukosadissektion (ESD) und die perorale endoskopische Myotomie (POEM) sind technisch anspruchsvoll und gehen mit untersucherabhängigen Komplikationen wie Blutungen und Perforationen einher. Grund hierfür ist die unabsichtliche Durchschneidung von submukosalen Blutgefäßen ohne präemptive Koagulation.
Ziele
Die Forschungsfrage, ob ein KI-Algorithmus die intraprozedurale Gefäßerkennung bei ESD und POEM unterstützen und damit Komplikationen wie Blutungen verhindern könnte, erscheint in Anbetracht des erfolgreichen Einsatzes von KI bei der Erkennung von Kolonpolypen interessant.
Methoden
Auf 5470 Einzelbildern von 59 third space Endoscopievideos wurden submukosale Blutgefäße annotiert. Zusammen mit weiteren 179.681 nicht-annotierten Bildern wurde ein DeepLabv3+neuronales Netzwerk mit dem ECMT-Verfahren für semi-supervised learning trainiert, um Blutgefäße in Echtzeit erkennen zu können. Für die Evaluation wurde ein Videotest mit 101 Videoclips aus 15 vom Trainingsdatensatz separaten Prozeduren mit 200 vordefinierten Gefäßen erstellt. Die Gefäßdetektionsrate, -zeit und -dauer, definiert als der Prozentsatz an Einzelbildern eines Videos bezogen auf den Goldstandard, auf denen ein definiertes Gefäß erkannt wurde, wurden erhoben. Acht erfahrene Endoskopiker wurden mithilfe dieses Videotests im Hinblick auf Gefäßdetektion getestet, wobei eine Hälfte der Videos nativ, die andere Hälfte nach Markierung durch den KI-Algorithmus angesehen wurde.
Ergebnisse
Der mittlere Dice Score des Algorithmus für Blutgefäße war 68%. Die mittlere Gefäßdetektionsrate im Videotest lag bei 94% (96% für ESD; 74% für POEM). Die mediane Gefäßdetektionszeit des Algorithmus lag bei 0,32 Sekunden (0,3 Sekunden für ESD; 0,62 Sekunden für POEM). Die mittlere Gefäßdetektionsdauer lag bei 59,1% (60,6% für ESD; 44,8% für POEM) des Goldstandards. Alle Endoskopiker hatten mit KI-Unterstützung eine höhere Gefäßdetektionsrate als ohne KI. Die mittlere Gefäßdetektionsrate ohne KI lag bei 56,4%, mit KI bei 71,2% (p<0.001).
Schlussfolgerung
KI-Unterstützung war mit einer statistisch signifikant höheren Gefäßdetektionsrate vergesellschaftet. Die mediane Gefäßdetektionszeit von deutlich unter einer Sekunde sowie eine Gefäßdetektionsdauer von größer 50% des Goldstandards wurden für den klinischen Einsatz als ausreichend erachtet. In prospektiven Anwendungsstudien sollte der KI-Algorithmus auf klinische Relevanz getestet werden.
Einleitung Die Endoskopische Retrograde Cholangiopankreatikographie (ERCP) ist der Goldstandard in der Diagnostik und Therapie von Erkrankungen des pankreatobiliären Trakts. Jedoch ist sie technisch sehr anspruchsvoll und weist eine vergleichsweise hohe Komplikationsrate auf.
Ziele
In der vorliegenden Machbarkeitsstudie soll geprüft werden, ob mithilfe eines Deep-learning-Algorithmus die Papille und das Ostium zuverlässig detektiert werden können und somit für Endoskopiker mit geringer Erfahrung ein geeignetes Hilfsmittel, insbesondere für die Ausbildungssituation, darstellen könnten.
Methodik
Wir betrachteten insgesamt 606 Bilddatensätze von 65 Patienten. In diesen wurde sowohl die Papilla duodeni major als auch das Ostium segmentiert. Anschließend wurde eine neuronales Netz mittels eines Deep-learning-Algorithmus trainiert. Außerdem erfolgte eine 5-fache Kreuzvaldierung.
Ergebnisse
Bei einer 5-fachen Kreuzvaldierung auf den 606 gelabelten Daten konnte für die Klasse Papille eine F1-Wert von 0,7908, eine Sensitivität von 0,7943 und eine Spezifität von 0,9785 erreicht werden, für die Klasse Ostium eine F1-Wert von 0,5538, eine Sensitivität von 0,5094 und eine Spezifität von 0,9970 (vgl. [Tab. 1]). Unabhängig von der Klasse zeigte sich gemittelt (Klasse Papille und Klasse Ostium) ein F1-Wert von 0,6673, eine Sensitivität von 0,6519 und eine Spezifität von 0,9877 (vgl. [Tab. 2]).
Schlussfolgerung
In vorliegende Machbarkeitsstudie konnte das neuronale Netz die Papilla duodeni major mit einer hohen Sensitivität und sehr hohen Spezifität identifizieren. Bei der Detektion des Ostiums war die Sensitivität deutlich geringer. Zukünftig soll das das neuronale Netz mit mehr Daten trainiert werden. Außerdem ist geplant, den Algorithmus auch auf Videos anzuwenden. Somit könnte langfristig ein geeignetes Hilfsmittel für die ERCP etabliert werden.
Einleitung
Die Differenzierung zwischen nicht dysplastischem Barrett-Ösophagus (NDBE) und mit Barrett-Ösophagus assoziierten Neoplasien (BERN) während der endoskopischen Inspektion erfordert viel Expertise. Die frühe Diagnosestellung ist wichtig für die weitere Prognose des Barrett-Karzinoms. In Deutschland werden Patient:innen mit einem Barrett-Ösophagus (BE) in der Regel im niedergelassenen Sektor überwacht.
Ziele
Ziel ist es, den Einfluss von einem auf Künstlicher Intelligenz (KI) basierenden klinischen Entscheidungsunterstützungssystems (CDSS) auf die Performance von niedergelassenen Gastroenterolog:innen (NG) bei der Evaluation von Barrett-Ösophagus (BE) zu untersuchen.
Methodik
Es erfolgte die prospektive Sammlung von 96 unveränderten hochauflösenden Videos mit Fällen von Patient:innen mit histologisch bestätigtem NDBE und BERN. Alle eingeschlossenen Fälle enthielten mindestens zwei der folgenden Darstellungsmethoden: HD-Weißlichtendoskopie, Narrow Band Imaging oder Texture and Color Enhancement Imaging. Sechs NG von sechs unterschiedlichen Praxen wurden als Proband:innen eingeschlossen. Es erfolgte eine permutierte Block-Randomisierung der Videofälle in entweder Gruppe A oder Gruppe B. Gruppe A implizierte eine Evaluation des Falls durch Proband:innen zunächst ohne KI und anschließend mit KI als CDSS. In Gruppe B erfolgte die Evaluation in umgekehrter Reihenfolge. Anschließend erfolgte eine zufällige Wiedergabe der so entstandenen Subgruppen im Rahmen des Tests.
Ergebnis
In diesem Test konnte ein von uns entwickeltes KI-System (Barrett-Ampel) eine Sensitivität von 92,2%, eine Spezifität von 68,9% und eine Accuracy von 81,3% erreichen. Mit der Hilfe von KI verbesserte sich die Sensitivität der NG von 64,1% auf 71,2% (p<0,001) und die Accuracy von 66,3% auf 70,8% (p=0,006) signifikant. Eine signifikante Verbesserung dieser Parameter zeigte sich ebenfalls, wenn die Proband:innen die Fälle zunächst ohne KI evaluierten (Gruppe A). Wurde der Fall jedoch als Erstes mit der Hilfe von KI evaluiert (Gruppe B), blieb die Performance nahezu konstant.
Schlussfolgerung
Es konnte ein performantes KI-System zur Evaluation von BE entwickelt werden. NG verbessern sich bei der Evaluation von BE durch den Einsatz von KI.
Seit mehr als 25 Jahren ist der Workshop "Bildverarbeitung für die Medizin" als erfolgreiche Veranstaltung etabliert. Ziel ist auch 2023 wieder die Darstellung aktueller Forschungsergebnisse und die Vertiefung der Gespräche zwischen Wissenschaftlern, Industrie und Anwendern. Die Beiträge dieses Bandes - viele davon in englischer Sprache - umfassen alle Bereiche der medizinischen Bildverarbeitung, insbesondere die Bildgebung und -akquisition, Segmentierung und Analyse, Visualisierung und Animation, computerunterstützte Diagnose sowie bildgestützte Therapieplanung und Therapie. Hierbei kommen Methoden des maschinelles Lernens, der biomechanischen Modellierung sowie der Validierung und Qualitätssicherung zum Einsatz.
We investigate contrastive learning in a multi-task learning setting classifying and segmenting early Barrett’s cancer. How can contrastive learning be applied in a domain with few classes and low inter-class and inter-sample variance, potentially enabling image retrieval or image attribution? We introduce a data sampling strategy that mines per-lesion data for positive samples and keeps a queue of the recent projections as negative samples. We propose a masking strategy for the NT-Xent loss that keeps the negative set pure and removes samples from the same lesion. We show cohesion and uniqueness improvements of the proposed method in feature space. The introduction of the auxiliary objective does not affect the performance but adds the ability to indicate similarity between lesions. Therefore, the approach could enable downstream auto-documentation tasks on homogeneous medical image data.
Aims
VA is an endoscopic finding of celiac disease (CD), which can easily be missed if pretest probability is low. In this study, we aimed to develop an artificial intelligence (AI) algorithm for the detection of villous atrophy on endoscopic images.
Methods
858 images from 182 patients with VA and 846 images from 323 patients with normal duodenal mucosa were used for training and internal validation of an AI algorithm (ResNet18). A separate dataset was used for external validation, as well as determination of detection performance of experts, trainees and trainees with AI support. According to the AI consultation distribution, images were stratified into “easy” and “difficult”.
Results
Internal validation showed 82%, 85% and 84% for sensitivity, specificity and accuracy. External validation showed 90%, 76% and 84%. The algorithm was significantly more sensitive and accurate than trainees, trainees with AI support and experts in endoscopy. AI support in trainees was associated with significantly improved performance. While all endoscopists showed significantly lower detection for “difficult” images, AI performance remained stable.
Conclusions
The algorithm outperformed trainees and experts in sensitivity and accuracy for VA detection. The significant improvement with AI support suggests a potential clinical benefit. Stable performance of the algorithm in “easy” and “difficult” test images may indicate an advantage in macroscopically challenging cases.
Aims
Evaluation of the add-on effect an artificial intelligence (AI) based clinical decision support system has on the performance of endoscopists with different degrees of expertise in the field of Barrett's esophagus (BE) and Barrett's esophagus-related neoplasia (BERN).
Methods
The support system is based on a multi-task deep learning model trained to solve a segmentation and several classification tasks. The training approach represents an extension of the ECMT semi-supervised learning algorithm. The complete system evaluates a decision tree between estimated motion, classification, segmentation, and temporal constraints, to decide when and how the prediction is highlighted to the observer. In our current study, ninety-six video cases of patients with BE and BERN were prospectively collected and assessed by Barrett's specialists and non-specialists. All video cases were evaluated twice – with and without AI assistance. The order of appearance, either with or without AI support, was assigned randomly. Participants were asked to detect and characterize regions of dysplasia or early neoplasia within the video sequences.
Results
Standalone sensitivity, specificity, and accuracy of the AI system were 92.16%, 68.89%, and 81.25%, respectively. Mean sensitivity, specificity, and accuracy of expert endoscopists without AI support were 83,33%, 58,20%, and 71,48 %, respectively. Gastroenterologists without Barrett's expertise but with AI support had a comparable performance with a mean sensitivity, specificity, and accuracy of 76,63%, 65,35%, and 71,36%, respectively.
Conclusions
Non-Barrett's experts with AI support had a similar performance as experts in a video-based study.
Aims
AI has proven great potential in assisting endoscopists in diagnostics, however its role in therapeutic endoscopy remains unclear. Endoscopic submucosal dissection (ESD) is a technically demanding intervention with a slow learning curve and relevant risks like bleeding and perforation. Therefore, we aimed to develop an algorithm for the real-time detection and delineation of relevant structures during third-space endoscopy.
Methods
5470 still images from 59 full length videos (47 ESD, 12 POEM) were annotated. 179681 additional unlabeled images were added to the training dataset. Consequently, a DeepLabv3+ neural network architecture was trained with the ECMT semi-supervised algorithm (under review elsewhere). Evaluation of vessel detection was performed on a dataset of 101 standardized video clips from 15 separate third-space endoscopy videos with 200 predefined blood vessels.
Results
Internal validation yielded an overall mean Dice score of 85% (68% for blood vessels, 86% for submucosal layer, 88% for muscle layer). On the video test data, the overall vessel detection rate (VDR) was 94% (96% for ESD, 74% for POEM). The median overall vessel detection time (VDT) was 0.32 sec (0.3 sec for ESD, 0.62 sec for POEM).
Conclusions
Evaluation of the developed algorithm on a video test dataset showed high VDR and quick VDT, especially for ESD. Further research will focus on a possible clinical benefit of the AI application for VDR and VDT during third-space endoscopy.
In the field of computer- and robot-assisted minimally invasive surgery, enormous progress has been made in recent years based on the recognition of surgical instruments in endoscopic images. Especially the determination of the position and type of the instruments is of great interest here. Current work involves both spatial and temporal information with the idea, that the prediction of movement of surgical tools over time may improve the quality of final segmentations. The provision of publicly available datasets has recently encouraged the development of new methods, mainly based on deep learning. In this review, we identify datasets used for method development and evaluation, as well as quantify their frequency of use in the literature. We further present an overview of the current state of research regarding the segmentation and tracking of minimally invasive surgical instruments in endoscopic images. The paper focuses on methods that work purely visually without attached markers of any kind on the instruments, taking into account both single-frame segmentation approaches as well as those involving temporal information. A discussion of the reviewed literature is provided, highlighting existing shortcomings and emphasizing available potential for future developments. The publications considered were identified through the platforms Google Scholar, Web of Science, and PubMed. The search terms used were "instrument segmentation", "instrument tracking", "surgical tool segmentation", and "surgical tool tracking" and result in 408 articles published between 2015 and 2022 from which 109 were included using systematic selection criteria.