• Deutsch
Login

Open Access

  • Home
  • Search
  • Browse
  • Publish
  • FAQ
  • Institutes
  • Fakultät Informatik und Mathematik

Regensburg Medical Image Computing (ReMIC)

Refine

Author

  • Palm, Christoph (124)
  • Mendel, Robert (30)
  • Ebigbo, Alanna (29)
  • Messmann, Helmut (29)
  • Pietrzyk, Uwe (24)
  • Probst, Andreas (23)
  • Lehmann, Thomas M. (19)
  • Papa, João Paulo (17)
  • Souza Jr., Luis Antonio de (17)
  • Spitzer, Klaus (16)
+ more

Year of publication

  • 2022 (17)
  • 2021 (14)
  • 2020 (13)
  • 2019 (12)
  • 2018 (9)
  • 2017 (6)
  • 2016 (2)
  • 2015 (4)
  • 2014 (1)
  • 2013 (3)
+ more

Document Type

  • Article (55)
  • conference proceeding (article) (49)
  • conference proceeding (presentation, abstract) (21)
  • conference proceeding (volume) (6)
  • Doctoral Thesis (2)
  • Preprint (2)
  • Book (1)

Language

  • English (107)
  • German (29)

Has Fulltext

  • no (128)
  • yes (8)

Is part of the Bibliography

  • no (136)

Keywords

  • Bildgebendes Verfahren (20)
  • Deep Learning (15)
  • Diagnose (14)
  • Maschinelles Lernen (12)
  • Gehirn (11)
  • Artificial Intelligence (10)
  • Kernspintomografie (9)
  • Künstliche Intelligenz (9)
  • Bildverarbeitung (8)
  • Dreidimensionale Bildverarbeitung (8)
+ more

Institute

  • Fakultät Informatik und Mathematik (136)
  • Regensburg Medical Image Computing (ReMIC) (136)
  • Regensburg Center of Biomedical Engineering - RCBE (39)
  • Regensburg Center of Health Sciences and Technology - RCHST (19)
  • Fakultät Angewandte Sozial- und Gesundheitswissenschaften (1)
  • Fakultät Maschinenbau (1)
  • Institut für Sozialforschung und Technikfolgenabschätzung (1)
  • Institut für Sozialforschung und Technikfolgenabschätzung (IST) (1)
  • Labor Biomechanik (LBM) (1)
  • Labor Empirische Sozialforschung (1)
+ more

Begutachtungsstatus

  • peer-reviewed (57)

136 search hits

  • 1 to 10
  • BibTeX
  • CSV
  • RIS
  • XML
  • 10
  • 20
  • 50
  • 100

Sort by

  • Year
  • Year
  • Title
  • Title
  • Author
  • Author
Towards a Reliable and Rapid Automated Grading System in Facial Palsy Patients: Facial Palsy Surgery Meets Computer Science (2022)
Knoedler, Leonard ; Baecher, Helena ; Kauke-Navarro, Martin ; Prantl, Lukas ; Machens, Hans-Günther ; Scheuermann, Philipp ; Palm, Christoph ; Baumann, Raphael ; Kehrer, Andreas ; Panayi, Adriana C. ; Knoedler, Samuel
Background: Reliable, time- and cost-effective, and clinician-friendly diagnostic tools are cornerstones in facial palsy (FP) patient management. Different automated FP grading systems have been developed but revealed persisting downsides such as insufficient accuracy and cost-intensive hardware. We aimed to overcome these barriers and programmed an automated grading system for FP patients utilizing the House and Brackmann scale (HBS). Methods: Image datasets of 86 patients seen at the Department of Plastic, Hand, and Reconstructive Surgery at the University Hospital Regensburg, Germany, between June 2017 and May 2021, were used to train the neural network and evaluate its accuracy. Nine facial poses per patient were analyzed by the algorithm. Results: The algorithm showed an accuracy of 100%. Oversampling did not result in altered outcomes, while the direct form displayed superior accuracy levels when compared to the modular classification form (n = 86; 100% vs. 99%). The Early Fusion technique was linked to improved accuracy outcomes in comparison to the Late Fusion and sequential method (n = 86; 100% vs. 96% vs. 97%). Conclusions: Our automated FP grading system combines high-level accuracy with cost- and time-effectiveness. Our algorithm may accelerate the grading process in FP patients and facilitate the FP surgeon’s workflow.
Artificial Intelligence (AI) – assisted vessel and tissue recognition during third space endoscopy (Smart ESD) (2022)
Scheppach, Markus W. ; Mendel, Robert ; Probst, Andreas ; Meinikheim, Michael ; Palm, Christoph ; Messmann, Helmut ; Ebigbo, Alanna
Clinical setting  Third space procedures such as endoscopic submucosal dissection (ESD) and peroral endoscopic myotomy (POEM) are complex minimally invasive techniques with an elevated risk for operator-dependent adverse events such as bleeding and perforation. This risk arises from accidental dissection into the muscle layer or through submucosal blood vessels as the submucosal cutting plane within the expanding resection site is not always apparent. Deep learning algorithms have shown considerable potential for the detection and characterization of gastrointestinal lesions. So-called AI – clinical decision support solutions (AI-CDSS) are commercially available for polyp detection during colonoscopy. Until now, these computer programs have concentrated on diagnostics whereas an AI-CDSS for interventional endoscopy has not yet been introduced. We aimed to develop an AI-CDSS („Smart ESD“) for real-time intra-procedural detection and delineation of blood vessels, tissue structures and endoscopic instruments during third-space endoscopic procedures. Characteristics of Smart ESD  An AI-CDSS was invented that delineates blood vessels, tissue structures and endoscopic instruments during third-space endoscopy in real-time. The output can be displayed by an overlay over the endoscopic image with different modes of visualization, such as a color-coded semitransparent area overlay, or border tracing (demonstration video). Hereby the optimal layer for dissection can be visualized, which is close above or directly at the muscle layer, depending on the applied technique (ESD or POEM). Furthermore, relevant blood vessels (thickness> 1mm) are delineated. Spatial proximity between the electrosurgical knife and a blood vessel triggers a warning signal. By this guidance system, inadvertent dissection through blood vessels could be averted. Technical specifications  A DeepLabv3+ neural network architecture with KSAC and a 101-layer ResNeSt backbone was used for the development of Smart ESD. It was trained and validated with 2565 annotated still images from 27 full length third-space endoscopic videos. The annotation classes were blood vessel, submucosal layer, muscle layer, electrosurgical knife and endoscopic instrument shaft. A test on a separate data set yielded an intersection over union (IoU) of 68%, a Dice Score of 80% and a pixel accuracy of 87%, demonstrating a high overlap between expert and AI segmentation. Further experiments on standardized video clips showed a mean vessel detection rate (VDR) of 85% with values of 92%, 70% and 95% for POEM, rectal ESD and esophageal ESD respectively. False positive measurements occurred 0.75 times per minute. 7 out of 9 vessels which caused intraprocedural bleeding were caught by the algorithm, as well as both vessels which required hemostasis via hemostatic forceps. Future perspectives  Smart ESD performed well for vessel and tissue detection and delineation on still images, as well as on video clips. During a live demonstration in the endoscopy suite, clinical applicability of the innovation was examined. The lag time for processing of the live endoscopic image was too short to be visually detectable for the interventionist. Even though the algorithm could not be applied during actual dissection by the interventionist, Smart ESD appeared readily deployable during visual assessment by ESD experts. Therefore, we plan to conduct a clinical trial in order to obtain CE-certification of the algorithm. This new technology may improve procedural safety and speed, as well as training of modern minimally invasive endoscopic resection techniques.
Barrett-Ampel (2022)
Meinikheim, Michael ; Mendel, Robert ; Probst, Andreas ; Scheppach, Markus W. ; Messmann, Helmut ; Palm, Christoph ; Ebigbo, Alanna
Hintergrund  Adenokarzinome des Ösophagus sind bis heute mit einer infausten Prognose vergesellschaftet (1). Obwohl Endoskopiker mit Barrett-Ösophagus als Präkanzerose konfrontiert werden, ist vor allem für nicht-Experten die Differenzierung zwischen Barrett-Ösophagus ohne Dysplasie und assoziierten Neoplasien mitunter schwierig. Existierende Biopsieprotokolle (z.B. Seattle Protokoll) sind oftmals unzuverlässig (2). Eine frühzeitige Diagnose des Adenokarzinoms ist allerdings von fundamentaler Bedeutung für die Prognose des Patienten. Forschungsansatz  Auf der Grundlage dieser Problematik, entwickelten wir in Kooperation mit dem Forschungslabor „Regensburg Medical Image Computing (ReMIC)“ der OTH Regensburg ein auf künstlicher Intelligenz (KI) basiertes Entscheidungsunterstützungssystem (CDSS). Das auf einer DeepLabv3+ neuronalen Netzwerkarchitektur basierende CDSS differenziert mittels Mustererkennung Barrett- Ösophagus ohne Dysplasie von Barrett-Ösophagus mit Dysplasie bzw. Neoplasie („Klassifizierung“). Hierbei werden gemittelte Ausgabewahrscheinlichkeiten mit einem vom Benutzer definierten Schwellenwert verglichen. Für Vorhersagen, die den Schwellenwert überschreiten, berechnen wir die Kontur der Region und die Fläche. Sobald die vorhergesagte Läsion eine bestimmte Größe in der Eingabe überschreitet, heben wir sie und ihren Umriss hervor. So ermöglicht eine farbkodierte Visualisierung eine Abgrenzung zwischen Dysplasie bzw. Neoplasie und normalem Barrett-Epithel („Segmentierung“). In einer Studie an Bildern in „Weißlicht“ (WL) und „Narrow Band Imaging“ (NBI) demonstrierten wir eine Sensitivität von mehr als 90% und eine Spezifität von mehr als 80% (3). In einem nächsten Schritt, differenzierte unser KI-Algorithmus Barrett- Metaplasien von assoziierten Neoplasien anhand von zufällig abgegriffenen Bildern in Echtzeit mit einer Accuracy von 89.9% (4). Darauf folgend, entwickelten wir unser System dahingehend weiter, dass unser Algorithmus nun auch dazu in der Lage ist, Untersuchungsvideos in WL, NBI und „Texture and Color Enhancement Imaging“ (TXI) in Echtzeit zu analysieren (5). Aktuell führen wir eine Studie in einem randomisiert-kontrollierten Ansatz an unveränderten Untersuchungsvideos in WL, NBI und TXI durch. Ausblick  Um Patienten mit aus Barrett-Metaplasien resultierenden Neoplasien frühestmöglich an „High-Volume“-Zentren überweisen zu können, soll unser KI-Algorithmus zukünftig vor allem Endoskopiker ohne extensive Erfahrung bei der Beurteilung von Barrett- Ösophagus in der Krebsfrüherkennung unterstützen.
Optical Flow als Methode zur Qualitätssicherung KI-unterstützter Untersuchungen von Barrett-Ösophagus und Barrett-Ösophagus assoziierten Neoplasien (2022)
Meinikheim, Michael ; Mendel, Robert ; Probst, Andreas ; Scheppach, Markus W. ; Messmann, Helmut ; Palm, Christoph ; Ebigbo, Alanna
Einleitung  Übermäßige Bewegung im Bild kann die Performance von auf künstlicher Intelligenz (KI) basierenden klinischen Entscheidungsunterstützungssystemen (CDSS) reduzieren. Optical Flow (OF) ist eine Methode zur Lokalisierung und Quantifizierung von Bewegungen zwischen aufeinanderfolgenden Bildern. Ziel  Ziel ist es, die Mensch-Computer-Interaktion (HCI) zu verbessern und Endoskopiker die unser KI-System „Barrett-Ampel“ zur Unterstützung bei der Beurteilung von Barrett-Ösophagus (BE) verwenden, ein Echtzeit-Feedback zur aktuellen Datenqualität anzubieten. Methodik  Dazu wurden unveränderte Videos in „Weißlicht“ (WL), „Narrow Band Imaging“ (NBI) und „Texture and Color Enhancement Imaging“ (TXI) von acht endoskopischen Untersuchungen von histologisch gesichertem BE und mit Barrett-Ösophagus assoziierten Neoplasien (BERN) durch unseren KI-Algorithmus analysiert. Der zur Bewertung der Bildqualität verwendete OF beinhaltete die mittlere Magnitude und die Entropie des Histogramms der Winkel. Frames wurden automatisch extrahiert, wenn die vordefinierten Schwellenwerte von 3,0 für die mittlere Magnitude und 9,0 für die Entropie des Histogramms der Winkel überschritten wurden. Experten sahen sich zunächst die Videos ohne KI-Unterstützung an und bewerteten, ob Störfaktoren die Sicherheit mit der eine Diagnose im vorliegenden Fall gestellt werden kann negativ beeinflussen. Anschließend überprüften sie die extrahierten Frames. Ergebnis  Gleichmäßige Bewegung in eine Richtung, wie etwa beim Vorschieben des Endoskops, spiegelte sich, bei insignifikant veränderter Entropie, in einer Erhöhung der Magnitude wider. Chaotische Bewegung, zum Beispiel während dem Spülen, war mit erhöhter Entropie assoziiert. Insgesamt war eine unruhige endoskopische Darstellung, Flüssigkeit sowie übermäßige Ösophagusmotilität mit erhöhtem OF assoziiert und korrelierte mit der Meinung der Experten über die Qualität der Videos. Der OF und die subjektive Wahrnehmung der Experten über die Verwertbarkeit der vorliegenden Bildsequenzen korrelierten direkt proportional. Wenn die vordefinierten Schwellenwerte des OF überschritten wurden, war die damit verbundene Bildqualität in 94% der Fälle für eine definitive Interpretation auch für Experten unzureichend. Schlussfolgerung  OF hat das Potenzial Endoskopiker ein Echtzeit-Feedback über die Qualität des Dateninputs zu bieten und so nicht nur die HCI zu verbessern, sondern auch die optimale Performance von KI-Algorithmen zu ermöglichen.
Vessel and tissue recognition during third-space endoscopy using a deep learning algorithm (2022)
Ebigbo, Alanna ; Mendel, Robert ; Scheppach, Markus W. ; Probst, Andreas ; Shahidi, Neal ; Prinz, Friederike ; Fleischmann, Carola ; Römmele, Christoph ; Gölder, Stefan Karl ; Braun, Georg ; Rauber, David ; Rückert, Tobias ; Souza Jr., Luis Antonio de ; Papa, João Paulo ; Byrne, Michael ; Palm, Christoph ; Messmann, Helmut
In this study, we aimed to develop an artificial intelligence clinical decision support solution to mitigate operator-dependent limitations during complex endoscopic procedures such as endoscopic submucosal dissection and peroral endoscopic myotomy, for example, bleeding and perforation. A DeepLabv3-based model was trained to delineate vessels, tissue structures and instruments on endoscopic still images from such procedures. The mean cross-validated Intersection over Union and Dice Score were 63% and 76%, respectively. Applied to standardised video clips from third-space endoscopic procedures, the algorithm showed a mean vessel detection rate of 85% with a false-positive rate of 0.75/min. These performance statistics suggest a potential clinical benefit for procedure safety, time and also training.
Bildbasierte Unterstützungsmethoden für die zukünftige Anwendung in der Chirurgie (2022)
Hartwig, Regine ; Berlet, Maximilian ; Czempiel, Tobias ; Fuchtmann, Jonas ; Rückert, Tobias ; Feussner, Hubertus ; Wilhelm, Dirk
Hintergrund: Die Entwicklung assistiver Technologien wird in den kommenden Jahren nicht nur in der Chirurgie von zunehmender Bedeutung sein. Die Wahrnehmung der Istsituation stellt hierbei die Grundlage jeder autonomen Handlung dar. Hierfür können unterschiedliche Sensorsysteme genutzt werden, wobei videobasierte Systeme ein besonderes Potenzial aufweisen. Methode: Anhand von Literaturangaben und auf Basis eigener Forschungsarbeiten werden zentrale Aspekte bildbasierter Unterstützungssysteme für die Chirurgie dargestellt. Hierbei wird deren Potenzial, aber auch die Limitationen der Methoden erläutert. Ergebnisse: Eine etablierte Anwendung stellt die Phasendetektion chirurgischer Eingriffe dar, für die Operationsvideos mittels neuronaler Netzwerke analysiert werden. Durch eine zeitlich gestützte und transformative Analyse konnten die Ergebnisse der Prädiktion jüngst deutlich verbessert werden. Aber auch robotische Kameraführungssysteme nutzen Bilddaten, um das Laparoskop zukünftig autonom zu navigieren. Um die Zuverlässigkeit an die hohen Anforderungen in der Chirurgie anzugleichen, müssen diese jedoch durch zusätzliche Informationen ergänzt werden. Ein vergleichbarer multimodaler Ansatz wurde bereits für die Navigation und Lokalisation bei laparoskopischen Eingriffen umgesetzt. Hierzu werden Videodaten mittels verschiedener Methoden analysiert und diese Ergebnisse mit anderen Sensormodalitäten fusioniert. Diskussion: Bildbasierte Unterstützungsmethoden sind bereits für diverse Aufgaben verfügbar und stellen einen wichtigen Aspekt für die Chirurgie der Zukunft dar. Um hier jedoch zuverlässig und für autonome Funktionen eingesetzt werden zu können, müssen sie zukünftig in multimodale Ansätze eingebettet werden, um die erforderliche Sicherheit bieten zu können.
2018 Robotic Scene Segmentation Challenge (2020)
Allan, Max ; Kondo, Satoshi ; Bodenstedt, Sebastian ; Leger, Stefan ; Kadkhodamohammadi, Rahim ; Luengo, Imanol ; Fuentes, Felix ; Flouty, Evangello ; Mohammed, Ahmed ; Pedersen, Marius ; Kori, Avinash ; Alex, Varghese ; Krishnamurthi, Ganapathy ; Rauber, David ; Mendel, Robert ; Palm, Christoph ; Bano, Sophia ; Saibro, Guinther ; Shih, Chi-Sheng ; Chiang, Hsun-An ; Zhuang, Juntang ; Yang, Junlin ; Iglovikov, Vladimir ; Dobrenkii, Anton ; Reddiboina, Madhu ; Reddy, Anubhav ; Liu, Xingtong ; Gao, Cong ; Unberath, Mathias ; Kim, Myeonghyeon ; Kim, Chanho ; Kim, Chaewon ; Kim, Hyejin ; Lee, Gyeongmin ; Ullah, Ihsan ; Luna, Miguel ; Park, Sang Hyun ; Azizian, Mahdi ; Stoyanov, Danail ; Maier-Hein, Lena ; Speidel, Stefanie
In 2015 we began a sub-challenge at the EndoVis workshop at MICCAI in Munich using endoscope images of exvivo tissue with automatically generated annotations from robot forward kinematics and instrument CAD models. However, the limited background variation and simple motion rendered the dataset uninformative in learning about which techniques would be suitable for segmentation in real surgery. In 2017, at the same workshop in Quebec we introduced the robotic instrument segmentation dataset with 10 teams participating in the challenge to perform binary, articulating parts and type segmentation of da Vinci instruments. This challenge included realistic instrument motion and more complex porcine tissue as background and was widely addressed with modfications on U-Nets and other popular CNN architectures [1]. In 2018 we added to the complexity by introducing a set of anatomical objects and medical devices to the segmented classes. To avoid over-complicating the challenge, we continued with porcine data which is dramatically simpler than human tissue due to the lack of fatty tissue occluding many organs.
An artificial intelligence algorithm is highly accurate for detecting endoscopic features of eosinophilic esophagitis (2022)
Römmele, Christoph ; Mendel, Robert ; Barrett, Caroline ; Kiesl, Hans ; Rauber, David ; Rückert, Tobias ; Kraus, Lisa ; Heinkele, Jakob ; Dhillon, Christine ; Grosser, Bianca ; Prinz, Friederike ; Wanzl, Julia ; Fleischmann, Carola ; Nagl, Sandra ; Schnoy, Elisabeth ; Schlottmann, Jakob ; Dellon, Evan S. ; Messmann, Helmut ; Palm, Christoph ; Ebigbo, Alanna
The endoscopic features associated with eosinophilic esophagitis (EoE) may be missed during routine endoscopy. We aimed to develop and evaluate an Artificial Intelligence (AI) algorithm for detecting and quantifying the endoscopic features of EoE in white light images, supplemented by the EoE Endoscopic Reference Score (EREFS). An AI algorithm (AI-EoE) was constructed and trained to differentiate between EoE and normal esophagus using endoscopic white light images extracted from the database of the University Hospital Augsburg. In addition to binary classification, a second algorithm was trained with specific auxiliary branches for each EREFS feature (AI-EoE-EREFS). The AI algorithms were evaluated on an external data set from the University of North Carolina, Chapel Hill (UNC), and compared with the performance of human endoscopists with varying levels of experience. The overall sensitivity, specificity, and accuracy of AI-EoE were 0.93 for all measures, while the AUC was 0.986. With additional auxiliary branches for the EREFS categories, the AI algorithm (AI-EoEEREFS) performance improved to 0.96, 0.94, 0.95, and 0.992 for sensitivity, specificity, accuracy, and AUC, respectively. AI-EoE and AI-EoE-EREFS performed significantly better than endoscopy beginners and senior fellows on the same set of images. An AI algorithm can be trained to detect and quantify endoscopic features of EoE with excellent performance scores. The addition of the EREFS criteria improved the performance of the AI algorithm, which performed significantly better than endoscopists with a lower or medium experience level.
Real-Time Diagnosis of an Early Barrett's Carcinoma using Artificial Intelligence (AI) - Video Case Demonstration (2020)
Ebigbo, Alanna ; Mendel, Robert ; Tziatzios, Georgios ; Probst, Andreas ; Palm, Christoph ; Messmann, Helmut
Introduction We present a clinical case showing the real-time detection, characterization and delineation of an early Barrett’s cancer using AI. Patients and methods A 70-year old patient with a long-segment Barrett’s esophagus (C5M7) was assessed with an AI algorithm. Results The AI system detected a 10 mm focal lesion and AI characterization predicted cancer with a probability of >90%. After ESD resection, histopathology showed mucosal adenocarcinoma (T1a (m), R0) confirming AI diagnosis. Conclusion We demonstrate the real-time AI detection, characterization and delineation of a small and early mucosal Barrett’s cancer.
ARTIFICIAL INTELLIGENCE (AI) – ASSISTED VESSEL AND TISSUE RECOGNITION IN THIRD-SPACE ENDOSCOPY (2022)
Scheppach, Markus W. ; Mendel, Robert ; Probst, Andreas ; Meinikheim, Michael ; Palm, Christoph ; Messmann, Helmut ; Ebigbo, Alanna
Aims Third-space endoscopy procedures such as endoscopic submucosal dissection (ESD) and peroral endoscopic myotomy (POEM) are complex interventions with elevated risk of operator-dependent adverse events, such as intra-procedural bleeding and perforation. We aimed to design an artificial intelligence clinical decision support solution (AI-CDSS, “Smart ESD”) for the detection and delineation of vessels, tissue structures, and instruments during third-space endoscopy procedures. Methods Twelve full-length third-space endoscopy videos were extracted from the Augsburg University Hospital database. 1686 frames were annotated for the following categories: Submucosal layer, blood vessels, electrosurgical knife and endoscopic instrument. A DeepLabv3+neural network with a 101-layer ResNet backbone was trained and validated internally. Finally, the ability of the AI system to detect visible vessels during ESD and POEM was determined on 24 separate video clips of 7 to 46 seconds duration and showing 33 predefined vessels. These video clips were also assessed by an expert in third-space endoscopy. Results Smart ESD showed a vessel detection rate (VDR) of 93.94%, while an average of 1.87 false positive signals were recorded per minute. VDR of the expert endoscopist was 90.1% with no false positive findings. On the internal validation data set using still images, the AI system demonstrated an Intersection over Union (IoU), mean Dice score and pixel accuracy of 63.47%, 76.18% and 86.61%, respectively. Conclusions This is the first AI-CDSS aiming to mitigate operator-dependent limitations during third-space endoscopy. Further clinical trials are underway to better understand the role of AI in such procedures.
  • 1 to 10

OPUS4 Logo

  • Contact
  • Imprint and Datasecure
  • Sitelinks