Optical Flow als Methode zur Qualitätssicherung KI-unterstützter Untersuchungen von Barrett-Ösophagus und Barrett-Ösophagus assoziierten Neoplasien
- Einleitung Übermäßige Bewegung im Bild kann die Performance von auf künstlicher Intelligenz (KI) basierenden klinischen Entscheidungsunterstützungssystemen (CDSS) reduzieren. Optical Flow (OF) ist eine Methode zur Lokalisierung und Quantifizierung von Bewegungen zwischen aufeinanderfolgenden Bildern. Ziel Ziel ist es, die Mensch-Computer-Interaktion (HCI) zu verbessern und Endoskopiker die unser KI-System „Barrett-Ampel“ zur Unterstützung bei der Beurteilung von Barrett-Ösophagus (BE) verwenden, ein Echtzeit-Feedback zur aktuellen Datenqualität anzubieten. Methodik Dazu wurden unveränderte Videos in „Weißlicht“ (WL), „Narrow Band Imaging“ (NBI) und „Texture and Color Enhancement Imaging“ (TXI) von acht endoskopischen Untersuchungen von histologisch gesichertem BE und mit Barrett-Ösophagus assoziierten Neoplasien (BERN) durch unseren KI-Algorithmus analysiert. Der zur Bewertung der Bildqualität verwendete OF beinhaltete die mittlere Magnitude und die Entropie des Histogramms der Winkel. Frames wurden automatisch extrahiert, wenn die vordefinierten Schwellenwerte von 3,0 für die mittlere Magnitude und 9,0 für die Entropie des Histogramms der Winkel überschritten wurden. Experten sahen sich zunächst die Videos ohne KI-Unterstützung an und bewerteten, ob Störfaktoren die Sicherheit mit der eine Diagnose im vorliegenden Fall gestellt werden kann negativ beeinflussen. Anschließend überprüften sie die extrahierten Frames. Ergebnis Gleichmäßige Bewegung in eine Richtung, wie etwa beim Vorschieben des Endoskops, spiegelte sich, bei insignifikant veränderter Entropie, in einer Erhöhung der Magnitude wider. Chaotische Bewegung, zum Beispiel während dem Spülen, war mit erhöhter Entropie assoziiert. Insgesamt war eine unruhige endoskopische Darstellung, Flüssigkeit sowie übermäßige Ösophagusmotilität mit erhöhtem OF assoziiert und korrelierte mit der Meinung der Experten über die Qualität der Videos. Der OF und die subjektive Wahrnehmung der Experten über die Verwertbarkeit der vorliegenden Bildsequenzen korrelierten direkt proportional. Wenn die vordefinierten Schwellenwerte des OF überschritten wurden, war die damit verbundene Bildqualität in 94% der Fälle für eine definitive Interpretation auch für Experten unzureichend. Schlussfolgerung OF hat das Potenzial Endoskopiker ein Echtzeit-Feedback über die Qualität des Dateninputs zu bieten und so nicht nur die HCI zu verbessern, sondern auch die optimale Performance von KI-Algorithmen zu ermöglichen.
Author: | Michael Meinikheim, Robert MendelORCiD, Andreas Probst, Markus W. ScheppachORCiD, Helmut Messmann, Christoph PalmORCiDGND, Alanna EbigboORCiD |
---|---|
DOI: | https://doi.org/10.1055/s-0042-1754997 |
Parent Title (German): | Zeitschrift für Gastroenterologie |
Publisher: | Georg Thieme Verlag |
Place of publication: | Stuttgart |
Document Type: | conference proceeding (presentation, abstract) |
Language: | German |
Year of first Publication: | 2022 |
Release Date: | 2022/09/16 |
Tag: | Optical Flow |
Volume: | 60 |
Issue: | 08 |
Article Number: | e598 |
Konferenzangabe: | Jahrestagung der Deutschen Gesellschaft für Gastroenterologie, Verdauungs- und Stoffwechselkrankheiten mit Sektion Endoskopie, 76, 2022, Hamburg |
Institutes: | Fakultät Informatik und Mathematik |
Fakultät Informatik und Mathematik / Regensburg Medical Image Computing (ReMIC) | |
Begutachtungsstatus: | peer-reviewed |
research focus: | Lebenswissenschaften und Ethik |
Licence (German): | Keine Lizenz - Es gilt das deutsche Urheberrecht: § 53 UrhG |