• Treffer 1 von 18
Zurück zur Trefferliste

Adequate repair concepts for high-strength steel weld joints for offshore support structures considering design influences

  • The sustainable and resource-efficient production of wind energy plants requires the use of modern high-strength fine-grain structural steels. This applies to both foundation and erection structures. During the assembly of steel structures, unacceptable defects can occasionally be found in the weld area. In most cases, the economical solution would be local thermal gouging of the affected areas and re-welding. Due to the high shrinkage restraint of the joint groove in the overall structure, the superposition of global and local welding-induced stresses may lead to crack formation and component failure, particularly in interaction with the degradation of the microstructure and mechanical properties of high-strength steels during the repair process [1]. Corresponding standards hardly provide any information on adequate repair concepts, and there is no uniform scientific data on which to base such concepts. In this study, several relevant findings are discussed based on examples ofThe sustainable and resource-efficient production of wind energy plants requires the use of modern high-strength fine-grain structural steels. This applies to both foundation and erection structures. During the assembly of steel structures, unacceptable defects can occasionally be found in the weld area. In most cases, the economical solution would be local thermal gouging of the affected areas and re-welding. Due to the high shrinkage restraint of the joint groove in the overall structure, the superposition of global and local welding-induced stresses may lead to crack formation and component failure, particularly in interaction with the degradation of the microstructure and mechanical properties of high-strength steels during the repair process [1]. Corresponding standards hardly provide any information on adequate repair concepts, and there is no uniform scientific data on which to base such concepts. In this study, several relevant findings are discussed based on examples of structural engineering focusing on mechanical-technological properties and residual stresses, e.g. [1]. Further experimental and numerical work as conducted by [2] and weld tests under defined restraint conditions in special weld test-setups [3] show that an optimization of the welding-induced stresses of high-strength structural steels is achievable by means of an adapted heat control. The present research involves systematic investigations of influences of shrinkage restraint, the number of repair cycles and heat control during repair welding of a recently available high-strength offshore steel S500MLO (EN 10225-1). A quantification of the shrinkage restraint of repair weld joints is achievable by means of restraint intensity concept [4], analogous to previous studies [5]. Using structural mechanics calculations, geometries of self-restrained specimens are identified representing different defined rigidity conditions of repair welds considering actual high-strength steel components. Welding experiments with DIC analyses (digital image correlation) of the occurring strains during welding and XRD analyses (X-ray diffraction) of the resulting residual stresses after welding and cooling show increasing transient loads and significantly elevated residual stress profiles in the weld area with increasing restraint intensity. Especially in the heat affected zone, tensile residual stresses of up to 80 % of the nominal yield strength occur when welding under increased restraint conditions. In relation to the presented existing results, this indicates that a safe repair welding is primarily achievable by means of appropriate repair concepts and heat control taking into account the high welding stresses and special microstructures of high-strength steels. Finally, the aim of this research is to derive recommendations for repair concepts appropriate to the stresses and materials involved providing a basis for standards and guidelines, especially for SMEs, in order to avoid damage and, in most cases, expensive reworking and to improve the full utilization of the potential of high-strength steels.zeige mehrzeige weniger

Volltext Dateien herunterladen

  • iiw2021_C-II-A-394.pdf
    eng

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar Anzahl der Zugriffe auf dieses Dokument
Metadaten
Autor*innen:Amadeus Becker
Koautor*innen:Dirk Schröpfer, Arne Kromm, Thomas Kannengießer
Dokumenttyp:Vortrag
Veröffentlichungsform:Präsentation
Sprache:Englisch
Jahr der Erstveröffentlichung:2021
Organisationseinheit der BAM:9 Komponentensicherheit
9 Komponentensicherheit / 9.4 Integrität von Schweißverbindungen
DDC-Klassifikation:Technik, Medizin, angewandte Wissenschaften / Ingenieurwissenschaften / Ingenieurwissenschaften und zugeordnete Tätigkeiten
Technik, Medizin, angewandte Wissenschaften / Ingenieurwissenschaften / Angewandte Physik
Freie Schlagwörter:High-strength structural steels; Repair; Residual stresses; Restraint; Welding
Themenfelder/Aktivitätsfelder der BAM:Energie
Material
Material / Degradation von Werkstoffen
Veranstaltung:74th IIW Annual Assembly and International Conference, C II-A
Veranstaltungsort:Online meeting
Beginndatum der Veranstaltung:07.07.2021
Enddatum der Veranstaltung:14.07.2021
Verfügbarkeit des Dokuments:Datei im Netzwerk der BAM verfügbar ("Closed Access")
Datum der Freischaltung:21.09.2021
Referierte Publikation:Nein
Eingeladener Vortrag:Nein
Einverstanden
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.