9 Komponentensicherheit
Filtern
Dokumenttyp
- Vortrag (761)
- Zeitschriftenartikel (436)
- Beitrag zu einem Tagungsband (225)
- Posterpräsentation (75)
- Forschungsbericht (12)
- Buchkapitel (7)
- Dissertation (7)
- Sonstiges (6)
- Forschungsdatensatz (4)
- Monografie (3)
Sprache
- Englisch (1080)
- Deutsch (452)
- Russisch (5)
- Mehrsprachig (2)
- Spanisch (2)
Schlagworte
- Additive manufacturing (115)
- Additive Fertigung (99)
- Laser beam welding (99)
- Additive Manufacturing (93)
- Hydrogen (92)
- Welding (86)
- Eigenspannungen (66)
- Residual stress (58)
- Wear (54)
- Wasserstoff (52)
Organisationseinheit der BAM
- 9 Komponentensicherheit (1541)
- 9.4 Integrität von Schweißverbindungen (598)
- 9.3 Schweißtechnische Fertigungsverfahren (483)
- 9.2 Versuchsanlagen und Prüftechnik (236)
- 9.0 Abteilungsleitung und andere (230)
- 8 Zerstörungsfreie Prüfung (195)
- 9.5 Tribologie und Verschleißschutz (169)
- 9.6 Additive Fertigung metallischer Komponenten (166)
- 8.5 Röntgenbildgebung (115)
- 5 Werkstofftechnik (100)
Paper des Monats
- ja (11)
Components produced using additive manufacturing can be marked for unique identification and secure authentication [1,2]. Serial numbers and machine-readable codes can be used to identify the component, and link digital product-related data (i.e., a digital product passport) to the actual components. The most prevailing solution consists of local process manipulation, such as printing a quick response (QR) code [3] or a set of blind holes on the surface of the internal cavity of hollow components. However, local manipulation of components may alter the properties, and external tagging features can be altered or even removed by post-processing treatments. This work therefore aims to provide a new methodology for identification, authentication, and traceability of additively manufactured (AM) components using microstructural features that are unique to each part. X-ray computed tomography (XCT) was employed to image the microstructural features of AlSi10Mg parts. Based on size and geometry, the most prominent features were selected to create a unique digital authenticator. We implemented a framework in Python using open-access modules that can successfully create a digital object authenticator using the segmented microstructure information from XCT. The authenticator is stored as a QR code, along with the 3D information of the selected features.
Challenges for testing hydrogen-assisted cold cracking in weld seams of high-strength steel grades
(2024)
Hydrogen can cause weld cold cracking even days after fabrication. In this respect, higher strength steels present a challenge to established cold crack testing. In general, the tolerable hydrogen concentration for crack prevention decreases with increasing material strength. In addition, advanced welding processes require changes in weld geometry and heat input. This directly influences the formation of crack-critical microstructures, e.g. in hardened areas of the heat-affected zone. The limits of use and application of modern cold cracking tests are evaluated by (1) the externally loaded Implant-test and (2) the self-restraint Tekken-test. In particular, external mechanical stresses, which cause additional mechanical loads on the components during welding, must be considered due to the component-specific stiffness of high-strength steels. Accompanying test methods for
determining hydrogen concentration and diffusion in welds are presented, such as carrier gas hot extraction for determining hydrogen concentration (ISO 3690) or temperature-dependent diffusion coefficients. These values are of great importance for a holistic approach to the evaluation of the cold cracking sensitivity of high strength steels.
The integration of additive manufacturing with traditional processes, termed hybrid additive manufacturing, has expanded its application domain, particularly in the repair of gas turbine blade tips. However, process-related defects in additively manufactured materials, interface formation, and material property mismatches in dual-material structures can significantly impact the fatigue performance of components. This investigation examines the low cycle fatigue and fatigue crack growth behaviors in dual-material specimens of nickel-based alloys, specifically the additively manufactured STAL15 and the cast alloy 247DS, at elevated temperatures. Low cycle fatigue experiments were conducted at temperatures of 950 °C and 1000 °C under a range of strain levels (0.3%–0.8%) and fatigue crack growth tests were conducted at 950 °C with stress ratios of 0.1 and −1. Fractographic and microscopic analyses were performed to comprehend fatigue crack initiation and crack growth mechanisms in the dual-material structure. The results consistently indicated crack initiation and fatigue fracture in the additively manufactured STAL15 material. Notably, fatigue crack growth retardation was observed near the interface when the crack extended from the additively manufactured STAL15 material to the perpendicularly positioned interface. This study highlights the importance of considering yield strength mismatch, as well as the potential effects of residual stresses and grain structure differences, in the interpretation of fatigue crack growth behavior at the interface.
The energy transition towards hydrogen utilisation has increased the demand for reliable testing methods to evaluate the susceptibility of metallic materials to hydrogen degradation. However, traditional electrochemical pre-charging techniques have limitations in represent-ing realistic gaseous hydrogen exposure conditions. This study presents three comparative analyses of tensile testing methodologies, focusing on the differences between electrochem-ical pre-charging, gaseous pre-charging, and in-situ testing using hollow specimens for aus-tenitic steels AISI 304L and 316L type austenitic steels.
Based on the results obtained, the first comparison reveals that electrochemically pre-charged and gaseously pre-charged specimens exhibit different behaviours regarding the impact on the mechanical properties. This effect can be retraced to the varying distribution of hydrogen throughout the specimens. Although comparable embrittlement was observed for similar hydrogen concentrations, the relationship appears to be non-systematic.
The second comparison evaluates the performance of pre-charged hollow specimens (300°C, 100 bar, 21 days) in comparison to hollow specimens tested in-situ under 200 bar hydrogen during slow strain rate tensile tests (SSRT). While pre-charged specimens show a slight de-crease in elongation at fracture and a noticeable decrease in reduction of area (RA), in-situ tested specimens exhibit significantly more pronounced embrittlement. This is in accord-ance with the results of Michler et. al.
In the third comparison, geometry effects between pre-charged conventional and pre-charged hollow specimens are explored. In this case, the hydrogen effect appears to be of the same order of magnitude for both specimen types, although some differences are ob-served.
The study's findings underscore the importance of considering differences between test methods when assessing materials’ compatibility with hydrogen. It specifically emphasises the need for in-situ testing with gaseous hydrogen to better represent real conditions in ap-plications within the hydrogen sector. Furthermore, the study provides an initial compari-son between conventional and hollow specimens, demonstrating their capability to reveal hydrogen effects. However, additional research is essential to enhance the comparability of results yielded by these testing methods.
The transition to a decarbonised economy will require large amounts of hydrogen over a broad variety of applications. The use of hydrogen poses high safety requirements as hydrogen can be absorbed by metallic materials and result in hydrogen embrittlement under certain condi-tions. For this reason, interactions of gaseous hydrogen and metallic materials are of high sci-entific and industrial interest. Slow strain rate tensile (SSRT) tests are commonly used to evaluate the hydrogen-induced ductility loss of alloys. However, the current standardised test method describes a complex and expensive procedure with limited availability worldwide. The hollow specimen technique promises huge potential for scaling suitable in-situ testing infra-structure and is currently under intensive development in several institutes around the world. As this method has only gained significant attention in the last decade, there are varying interpretations, particularly when testing materials with vastly different mechanical properties. Most available literature focuses on common steels used in hydrogen and natural gas piping systems. The present work provides an overview of the widespread applicability of hollow specimens in evaluating the effect of high-pressure hydrogen on the tensile properties of vari-ous metallic materials. The research presented includes Near-Net shape produced additively manufactured (AM) AISI 316 L, ferritic X65 steel, its weld seam, and solution annealed and hardened 100Cr6 steel.
Microalloying elements such as Nb and Ti are essential to increase the strength of quenched and tempered high-strength low alloy (HSLA) structural steels with nominal yield strength ≥ 690 MPa and their welded joints. Standards such as EN 10025–6 only specify limits or ranges for chemical composition, which leads to variations in specific compositions between steel manufacturers. These standards do not address the mechanical properties of the material, and even small variations in alloy content can significantly affect these properties. This makes it difficult to predict the weldability and integrity of welded joints, with potential problems such as softening or excessive hardening of the heat-affected zone (HAZ). To understand these metallurgical effects, previous studies have investigated different microalloying routes with varying Ti and Nb contents using test alloys. The high-strength quenched and tempered fine-grained structural steel S690QL is the basic grade regarding chemical composition and heat treatment. To evaluate weldability, three-layer welds were made using high-performance MAG welding. HAZ formation was investigated, and critical microstructural areas were identified, focusing on phase transformations during cooling and metallurgical precipitation behavior. Isothermal thermodynamic calculations for different precipitations were also carried out. Mechanical properties, especially Charpy notch impact toughness, were evaluated to understand the influence of different microalloys on the microstructure of the HAZ and mechanical properties.
Safety and reliability are the major challenges to face for the development and acceptance of hydrogen technology. It is therefore crucial to deeply study material compatibility, in particular for tribological components that are directly in contact with hydrogen. Some of the most critical parts are sealing materials that need increased safety requirements. In this study, the fretting behavior of several elastomer materials were evaluated against 316L stainless steel in an air and hydrogen environment up to 10 MPa. Several grades of cross-linked hydrogenated acrylonitrile butadiene (HNBR), acrylonitrile butadiene (NBR) and ethylene propylene diene monomer rubbers (EPDM) were investigated. Furthermore, aging experiments were conducted for 7 days under static contions in 100 MPa of hydrogen followed by rapid gas decompression. Fretting tests revealed that the wear of these compounds is significantly affected by the hydrogen environment compared to air, especially with NBR grades. After the aging experiment, the friction response of the HBNR grades is characterized by increased adhesion due to elastic deformation, leading to partial slip.
The development of multi‐principal‐element alloys (MPEAs) with unique characteristics such as high work hardening capacity similar to well‐known alloy systems like Hadfield steel X120Mn12 (ASTM A128) is a promising approach. Hence, by exploiting the core effects of MPEAs, the application range of conventional alloy systems can be extended. In the present study, work‐hardening MPEAs based on the equimolar composition CoFeNi are developed. Mn and C are alloyed in the same ratio as for X120Mn12. The production route consists of cast manufacturing by an electric arc furnace and surface functionalization via mechanical finishing using ultrasonic‐assisted milling (USAM) to initiate work hardening. The microstructure evolution, the hardness as well as the resulting oscillating wear resistance are detected. A pronounced lattice strain and grain refinement due to the plastic deformation during the USAM is recorded for the MPEA CoFeNi‐Mn12C1.2. Consequently, hardness increases by ≈380 HV0.025 in combination with a higher oscillating wear resistance compared to the X120Mn12. This shows the promising approach for developing work‐hardening alloys based on novel alloy concepts such as MPEAs.
In the area of plant engineering, steel components are provided with a wear protection coating for efficient use to protect them against corrosive, tribological, thermal and mechanical stresses. The use of innovative ultrasound-assisted milling processes and plasma-welded nickel- and cobalt-based wear protection coatings are being investigated to determine how more favourable machinability can be achieved while retaining the same wear protection potential. The focus is on the NiCrSiFeB alloy, which is intended to replace CoCr alloys in the area of screw machines. The utilization of ultrasonic-assisted milling for the machining of coating materials is a novel approach. The modification of hard facing layers in terms of microstructure and precipitation morphology as well as suitability for machining is investigated and compared with the CoCr alloy. The alloy modifications are generated by a PTA process by systematically adjusting the preheating and interpass temperatures, a crack-free wear-resistant layer can be generated, which is subsequently machined by a milling process. In addition to the crack-free properties, the microstructure, the bonding as well as the mixing between the NiCrSiFeB alloy and a 1.8550 as well as between the CoCr alloy and a 1.4828 are analysed and compared in the joining areas. In addition, heating and cooling rates are determined and a chemical analysis of the weld metals is performed. Furthermore, it was found that the build-up layers of NiCrSiFeB alloy are more difficult to machine using the milling process than the CoCr alloy, as higher milling forces are required.
Die Beschaffung und Verarbeitung von Werkstoffen für hochbelastete Komponenten sind meist kostenintensiv. Bestrebungen zur Kosten- und Ressourceneffizienz führen zu komplexeren Strukturen bzw. Konturen, sodass additive Fertigungsschritte zur Bauteilreparatur und -fertigung deutliche ökonomische Vorteile bieten. Hierfür sind additive und abtragende Fertigungsschritte komplementär und gezielt aufeinander abzustimmen, um beanspruchungsgerechte Funktionsflächen herzustellen. Hinsichtlich Inhomogenität und Anisotropie der Gefüge und Eigenschaften sowie fertigungsbedingter Beanspruchungen sind für den wirtschaftlichen Einsatz bei KMU, gerade für drahtbasierte Fertigungsverfahren und Wechselwirkungen nachfolgender Zerspanung dieser schwer spanbaren Werkstoffe noch viele Kenntnisse notwendig. Deshalb sind Untersuchungen zu diesen Einflüssen und Wechselwirkungen unter Nutzung innovativer Ansätze durchgeführt worden. Mit typischen kostenintensiven Ni- und Co-Cr-Legierungen wurden additive Bauteile, Auftrag- und Reparaturschweißungen hergestellt und Schweißzusätze für das PTA-Verfahren modifiziert, um die Erstarrungsmorphologie und das Eigenschaftsprofil zu optimieren. Die Übertragung auf MSG-Verfahren sicherte einen breiten industriellen Einsatz für hohe Auftragraten ab. Dies geschah mithilfe von modifizierten Fülldrähten sowie beschichteten Massivdrähten. Die wirtschaftliche spanende Bearbeitbarkeit wurde mit Zerspanbarkeitsanalysen für Schlichtfräsen und vergleichend für ultraschallunterstütze Fräsprozesse sichergestellt. Instrumentierte Experimente und Werkstoffanalytik hinsichtlich der Einflüsse auf Schmelzbad, Gefüge und Ausscheidungen sowie auf Randzoneneigenschaften und Eigenspannungen ermöglichten umfassende Erkenntnisse zur kombinierten additiven und abtragenden Fertigung. Dabei hat sich herausgestellt, dass eine Modifikation der Schweißzusatzwerkstoffe eine Homogenisierung der Mikrostruktur bedingt, welche wiederum den Zerspanprozess stabilisiert und letztendlich zu reduzierten Zerspankräften führt. Ferner wurde festgestellt, dass der ultraschallunterstützte Fräsprozess im Vergleich zum konventionellen Fräsprozess eine signifikante Reduzierung der Zerspankraft sowie eine höhere Oberflächenintegrität bedingt. Insbesondere die Induzierung oberflächennaher Druckeigenspannungen ist dabei hervorzuheben. Durch Bauteilversuche und -prüfungen, erfolgreiche Übertragbarkeitsstudien weiterer innovativer Werkstoffe verbunden mit Handlungsempfehlungen und der Zusammenarbeit mit den jeweiligen Normungsgremien, profitieren KMU von einer hochwirtschaftlichen Herstellung und Reparatur kostenintensiver Komponenten.