9 Komponentensicherheit
Filtern
Dokumenttyp
- Vortrag (560)
- Zeitschriftenartikel (330)
- Beitrag zu einem Tagungsband (235)
- Posterpräsentation (81)
- Forschungsbericht (12)
- Beitrag zu einem Sammelband (9)
- Dissertation (9)
- Buchkapitel (8)
- Sonstiges (3)
- Monografie (2)
Sprache
- Englisch (832)
- Deutsch (412)
- Russisch (5)
- Mehrsprachig (3)
- Italienisch (1)
Schlagworte
- Wear (70)
- Welding (67)
- Friction (65)
- Hydrogen (55)
- Laser beam welding (50)
- Additive manufacturing (48)
- Residual stress (46)
- Eigenspannungen (42)
- Additive Manufacturing (40)
- Microstructure (37)
Organisationseinheit der BAM
- 9 Komponentensicherheit (1253)
- 9.3 Schweißtechnische Fertigungsverfahren (460)
- 9.4 Integrität von Schweißverbindungen (341)
- 9.5 Tribologie und Verschleißschutz (257)
- 8 Zerstörungsfreie Prüfung (138)
- 9.1 Betriebsfestigkeit und Bauteilsicherheit (119)
- 5 Werkstofftechnik (92)
- 9.0 Abteilungsleitung und andere (87)
- 8.5 Mikro-ZfP (71)
- 9.2 Versuchsanlagen und Prüftechnik (67)
The stability of the keyhole decreases for deep penetrated high-power laser beam welding. The keyhole tends to collapse with increasing laser power and e.g. keyhole induced porosity can occur. This study deals with the observation of the keyhole during high-power laser beam welding in partial penetration mode by means of a high-speed camera. A butt configuration of 25 mm thick structural steel and transparent quartz glass was used for the experiments. An oscillating magnetic field was applied perpendicular to the welding direction on the root side of the steel plate. The keyhole was highlighted with a coaxial diode laser. It was ascertained that the stability of the keyhole and the weld penetration depth were increased by applying an oscillating magnetic field with an oscillating frequency of 1.2 kHz and a magnetic flux density of 50 mT.
In order to shorten time to market of products and to support new developments, the European Community is funding a HORIZON 2020 project called i-TRIBOMAT. In the field of tribology, renowned institutions combine their testing and analytical capabilities to provide the respective services. The later will be offered in Europe via a Single-Entry Point (SEP). Due to this combination of services, a testbed is created consisting of more than 100 tribometers. Thus, a large variety of testers exists, either commercially available or in-house built. Each tester is optimised to simulate a specific tribological contact situation. Currently, there is no standard available for the design of such testers. Especially, the way forces (normal load, friction force) and distances (e.g. stroke, linear wear) are measured, recorded and pre-processed differs from type to type. These forces and distances are essential for the determination of wear/ wear rates and coefficients of friction (COF), the core results of tribo-tests. This matter is complicated by the fact that e.g. for reciprocating motion, there are at least four different ways to determine COF. Depending on the testing conditions, these ways can lead to considerably different results. Currently, it is not obligatory to specify the method used for determining the COF.
In order to make data comparable, there is a need for measures which ensure that each tribometer is delivering similar, at best the same results under the same test conditions, irrespective of its manufacturer, design, location, determination method and even operator. The way forward are improved Round-Robin tests. First results and other challenges faced by creating comparable tribological data will be considered in the present contribution.
Online quality control of security relevant parts manufactured by Laser Powder Bed Fusion (LPBF) remains to be a challenge due to the highly complex process conditions. Furthermore, the influence of characteristic scan strategy parameters is not sufficiently clarified yet due to the commonly used method of single-track investigations. In this contribution, this topic is addressed by observing large 316L volume sections using in-situ melt pool monitoring by thermography in high temporal and spatial resolution. In detail, the influence of the scan angle on the melt pool geometry is investigated on. Characteristic melt pool features are extracted from the image data and analyzed using statistical methods data for altering scan angles. The results show significant changes in the melt pool dimensions and temperature distribution over the scan angle rotation. A first explanation approach is presented that connects the observed changes to phenomena of beam attenuation by metal vapor plume.
The relationship between residual stresses and microstructure associated with a laser powder bed fusion (LPBF) IN718 alloy has been investigated on specimens produced with three different scanning strategies (unidirectional Y-scan, 90° XY-scan, and 67° Rot-scan). Synchrotron X-ray energy-dispersive diffraction (EDXRD) combined with optical profilometry was used to study residual stress (RS) distribution and distortion upon removal of the specimens from the baseplate. The microstructural characterization of both the bulk and the nearsurface regions was conducted using scanning electron microscopy (SEM) and electron backscatter diffraction (EBSD). On the top surfaces of the specimens, the highest RS values are observed in the Y-scan specimen and the lowest in the Rot-scan specimen, while the tendency is inversed on the side lateral surfaces. A considerable amount of RS remains in the specimens after their removal from the baseplate, especially in the Y- and Z-direction (short specimen Dimension and building direction (BD), respectively). The distortion measured on the top surface following baseplate thinning and subsequent removal is mainly attributed to the amount of RS released in the build direction. Importantly, it is observed that the additive manufacturing microstructures challenge the use of classic theoretical models for the calculation of diffraction elastic constants (DEC) required for diffraction-based RS analysis. It is found that when the Reuß model is used for the calculation of RS for different crystal planes, as opposed to the conventionally used Kröner model, the results exhibit lower scatter. This is discussed in context of experimental measurements of DEC available in the literature for conventional and additively manufactured Ni-base alloys.
Laser based powder bed fusion additive manufacturing offers the flexibility to incorporate standard and userdefined scan strategies in a layer or in between the layers for the customized fabrication of metallic components. In the present study, four different scan strategies and their impact on the development of microstructure, texture, and residual stresses in laser powder bed fusion additive manufacturing of a nickel-based superalloy Inconel 718 was investigated. Light microscopy, scanning electron microscopy combined with electron backscatter diffraction, and neutron diffraction were used as the characterization tools. Strong textures with epitaxially grown columnar grains were observed along the build direction for the two individual scan strategies. Patterns depicting the respective scan strategies were visible in the build plane, which dictated the microstructure development in the other planes. An alternating strategy combining the individual strategies in the successive layers and a 67◦ rotational strategy weakened the texture by forming finer microstructural features. Von Mises equivalent stress plots revealed lower stress values and gradients, which translates as lower distortions for the alternating and rotational strategies. Overall results confirmed the scope for manipulating the microstructure, texture, and residual stresses during laser powder bed fusion additive manufacturing by effectively controlling the scan strategies.
To increase the competitiveness of jacket substructures compared to monopiles a changeover from an individual towards a serial jacket production based on automated manufactured tubular joints com-bined with standardized pipes has to be achieved. Therefore, this paper addresses fatigue tests of automatical-ly welded tubular X-joints focusing on the location of the technical fatigue crack. For this X-joint, the detect-ed location of the technical crack is then compared to numerical investigations predicting the most fatigue prone notch considering the structural stress approach as well as the notch stress approach. Additionally, the fatigue prone hot spot according to both approaches is compared for a typical offshore jacket double-K-joint to emphasize the significance of the presented outcomes for the existing offshore structures. Besides, the welding process of the automated manufactured tubular X-joints is presented.
The development within the offshore wind sector towards more powerful turbines combined with increasing water depth for new wind parks is challenging both the designer as well as the manufacturer of bottom fixed support structures. Besides XL-monopiles, the market developed an innovative and economic jacket support structure which is based on automatically manufactured tubular joints combined with standardized pipes. Besides the improvements for a serial manufacturing process the automatically welded tubular joints show a great potential in terms of fatigue resistance e.g. due to a smooth weld geometry without sharp notches. However, these benefits are not considered yet within the fatigue design process of automatically manufactured jacket substructures according to current standards due to the lack of suitable S-N curves. Therefore, 32 axial fatigue tests on single and double-sided automatically welded tubular X-joints have been performed to determine a new hot spot stress related S-N curve. Based on these constant amplitude fatigue tests a new S-N curve equal to a FAT 126 curve was computed which implicitly includes the benefits of the automatically welding procedure.
To increase the competitiveness of jacket substructures compared to monopiles a changeover from an individual towards a serial jacket production based on automated manufactured tubular joints com-bined with standardized pipes has to be achieved. Therefore, this paper addresses fatigue tests of automatical-ly welded tubular X-joints focusing on the location of the technical fatigue crack. For this X-joint, the detect-ed location of the technical crack is then compared to numerical investigations predicting the most fatigue prone notch considering the structural stress approach as well as the notch stress approach. Additionally, the fatigue prone hot spot according to both approaches is compared for a typical offshore jacket double-K-joint to emphasize the significance of the presented outcomes for the existing offshore structures. Besides, the welding process of the automated manufactured tubular X-joints is presented.
To increase the competitiveness of jacket substructures compared to monopiles a changeover from an individual towards a serial jacket production based on automated manufactured tubular joints combined with standardized pipes has to be achieved. Therefore, this paper addresses fatigue tests of automatically welded tubular X-joints focusing on the location of the technical fatigue crack. The detected location of the technical crack is compared to numerical investigations predicting the most fatigue prone notch considering the structural stress approach as well as the notch stress approach. Besides, the welding process of the automated manufactured tubular X-joints is presented.