9.4 Integrität von Schweißverbindungen
Filtern
Dokumenttyp
- Vortrag (365)
- Zeitschriftenartikel (137)
- Beitrag zu einem Tagungsband (57)
- Posterpräsentation (23)
- Forschungsbericht (6)
- Dissertation (4)
- Monografie (3)
- Sonstiges (3)
- Buchkapitel (2)
Sprache
- Englisch (379)
- Deutsch (218)
- Spanisch (2)
- Mehrsprachig (1)
Schlagworte
- Welding (68)
- Eigenspannungen (63)
- Residual stress (55)
- Additive Fertigung (54)
- Additive manufacturing (51)
- Additive Manufacturing (41)
- Wasserstoff (40)
- Hochfester Stahl (39)
- MAG-Schweißen (35)
- Ultraschallunterstütztes Fräsen (35)
Organisationseinheit der BAM
- 9 Komponentensicherheit (600)
- 9.4 Integrität von Schweißverbindungen (600)
- 9.2 Versuchsanlagen und Prüftechnik (177)
- 9.0 Abteilungsleitung und andere (97)
- 8 Zerstörungsfreie Prüfung (84)
- 8.5 Röntgenbildgebung (73)
- 5 Werkstofftechnik (39)
- 5.1 Mikrostruktur Design und Degradation (24)
- 9.6 Additive Fertigung metallischer Komponenten (22)
- 5.0 Abteilungsleitung und andere (11)
Paper des Monats
- ja (7)
This presentation gives an overview on the importance of joining processes for component fabrication in hydrogen technologies. For that reason, the current need and future research and developement activites are highlighted for the three technological fields: hydrogen storage, transport and use (in terms of the emerging field of additive manufacturing). Finally, some remarks are given for necessary changes in the standardization.
Challenges for testing hydrogen-assisted cold cracking in weld seams of high-strength steel grades
(2024)
Hydrogen can cause weld cold cracking even days after fabrication. In this respect, higher strength steels present a challenge to established cold crack testing. In general, the tolerable hydrogen concentration for crack prevention decreases with increasing material strength. In addition, advanced welding processes require changes in weld geometry and heat input. This directly influences the formation of crack-critical microstructures, e.g. in hardened areas of the heat-affected zone. The limits of use and application of modern cold cracking tests are evaluated by (1) the externally loaded Implant-test and (2) the self-restraint Tekken-test. In particular, external mechanical stresses, which cause additional mechanical loads on the components during welding, must be considered due to the component-specific stiffness of high-strength steels. Accompanying test methods for
determining hydrogen concentration and diffusion in welds are presented, such as carrier gas hot extraction for determining hydrogen concentration (ISO 3690) or temperature-dependent diffusion coefficients. These values are of great importance for a holistic approach to the evaluation of the cold cracking sensitivity of high strength steels.
The integration of additive manufacturing with traditional processes, termed hybrid additive manufacturing, has expanded its application domain, particularly in the repair of gas turbine blade tips. However, process-related defects in additively manufactured materials, interface formation, and material property mismatches in dual-material structures can significantly impact the fatigue performance of components. This investigation examines the low cycle fatigue and fatigue crack growth behaviors in dual-material specimens of nickel-based alloys, specifically the additively manufactured STAL15 and the cast alloy 247DS, at elevated temperatures. Low cycle fatigue experiments were conducted at temperatures of 950 °C and 1000 °C under a range of strain levels (0.3%–0.8%) and fatigue crack growth tests were conducted at 950 °C with stress ratios of 0.1 and −1. Fractographic and microscopic analyses were performed to comprehend fatigue crack initiation and crack growth mechanisms in the dual-material structure. The results consistently indicated crack initiation and fatigue fracture in the additively manufactured STAL15 material. Notably, fatigue crack growth retardation was observed near the interface when the crack extended from the additively manufactured STAL15 material to the perpendicularly positioned interface. This study highlights the importance of considering yield strength mismatch, as well as the potential effects of residual stresses and grain structure differences, in the interpretation of fatigue crack growth behavior at the interface.
Microalloying elements such as Nb and Ti are essential to increase the strength of quenched and tempered high-strength low alloy (HSLA) structural steels with nominal yield strength ≥ 690 MPa and their welded joints. Standards such as EN 10025–6 only specify limits or ranges for chemical composition, which leads to variations in specific compositions between steel manufacturers. These standards do not address the mechanical properties of the material, and even small variations in alloy content can significantly affect these properties. This makes it difficult to predict the weldability and integrity of welded joints, with potential problems such as softening or excessive hardening of the heat-affected zone (HAZ). To understand these metallurgical effects, previous studies have investigated different microalloying routes with varying Ti and Nb contents using test alloys. The high-strength quenched and tempered fine-grained structural steel S690QL is the basic grade regarding chemical composition and heat treatment. To evaluate weldability, three-layer welds were made using high-performance MAG welding. HAZ formation was investigated, and critical microstructural areas were identified, focusing on phase transformations during cooling and metallurgical precipitation behavior. Isothermal thermodynamic calculations for different precipitations were also carried out. Mechanical properties, especially Charpy notch impact toughness, were evaluated to understand the influence of different microalloys on the microstructure of the HAZ and mechanical properties.
Low Transformation Temperature (LTT) welding consumables represent an innovative approach to realize compressive residual stress in weld and HAZ. LTT welding consumables use the volume-expanding martensitic phase transformation near room temperature to generate compressive residual stress during cooling. This article focusses on the weld geometry of LTT welding consumables and their influence on residual stress reduction. For this purpose, LTT layers were additionally applied to the front sides of conventionally welded longitudinal stiffeners. By varying parameters such as offset and welding speed, different weld geometries could be realized. These were analyzed for geometric parameters, chemical composition and residual stress using X-ray diffraction and fatigue testing. While the chemical composition was only slightly influenced by parameters changes, a clear influence was observed regarding to weld geometry and residual stress. The conventionally weld was characterized by tensile residual stress of ≈350 MPa at the weld toe, the additional LTT weld bead exhibits compressive and tensile residual stress of ≈-150MPa to ≈+150MPa depending to the parameter variation.
The development of multi‐principal‐element alloys (MPEAs) with unique characteristics such as high work hardening capacity similar to well‐known alloy systems like Hadfield steel X120Mn12 (ASTM A128) is a promising approach. Hence, by exploiting the core effects of MPEAs, the application range of conventional alloy systems can be extended. In the present study, work‐hardening MPEAs based on the equimolar composition CoFeNi are developed. Mn and C are alloyed in the same ratio as for X120Mn12. The production route consists of cast manufacturing by an electric arc furnace and surface functionalization via mechanical finishing using ultrasonic‐assisted milling (USAM) to initiate work hardening. The microstructure evolution, the hardness as well as the resulting oscillating wear resistance are detected. A pronounced lattice strain and grain refinement due to the plastic deformation during the USAM is recorded for the MPEA CoFeNi‐Mn12C1.2. Consequently, hardness increases by ≈380 HV0.025 in combination with a higher oscillating wear resistance compared to the X120Mn12. This shows the promising approach for developing work‐hardening alloys based on novel alloy concepts such as MPEAs.
In the area of plant engineering, steel components are provided with a wear protection coating for efficient use to protect them against corrosive, tribological, thermal and mechanical stresses. The use of innovative ultrasound-assisted milling processes and plasma-welded nickel- and cobalt-based wear protection coatings are being investigated to determine how more favourable machinability can be achieved while retaining the same wear protection potential. The focus is on the NiCrSiFeB alloy, which is intended to replace CoCr alloys in the area of screw machines. The utilization of ultrasonic-assisted milling for the machining of coating materials is a novel approach. The modification of hard facing layers in terms of microstructure and precipitation morphology as well as suitability for machining is investigated and compared with the CoCr alloy. The alloy modifications are generated by a PTA process by systematically adjusting the preheating and interpass temperatures, a crack-free wear-resistant layer can be generated, which is subsequently machined by a milling process. In addition to the crack-free properties, the microstructure, the bonding as well as the mixing between the NiCrSiFeB alloy and a 1.8550 as well as between the CoCr alloy and a 1.4828 are analysed and compared in the joining areas. In addition, heating and cooling rates are determined and a chemical analysis of the weld metals is performed. Furthermore, it was found that the build-up layers of NiCrSiFeB alloy are more difficult to machine using the milling process than the CoCr alloy, as higher milling forces are required.
Die Beschaffung und Verarbeitung von Werkstoffen für hochbelastete Komponenten sind meist kostenintensiv. Bestrebungen zur Kosten- und Ressourceneffizienz führen zu komplexeren Strukturen bzw. Konturen, sodass additive Fertigungsschritte zur Bauteilreparatur und -fertigung deutliche ökonomische Vorteile bieten. Hierfür sind additive und abtragende Fertigungsschritte komplementär und gezielt aufeinander abzustimmen, um beanspruchungsgerechte Funktionsflächen herzustellen. Hinsichtlich Inhomogenität und Anisotropie der Gefüge und Eigenschaften sowie fertigungsbedingter Beanspruchungen sind für den wirtschaftlichen Einsatz bei KMU, gerade für drahtbasierte Fertigungsverfahren und Wechselwirkungen nachfolgender Zerspanung dieser schwer spanbaren Werkstoffe noch viele Kenntnisse notwendig. Deshalb sind Untersuchungen zu diesen Einflüssen und Wechselwirkungen unter Nutzung innovativer Ansätze durchgeführt worden. Mit typischen kostenintensiven Ni- und Co-Cr-Legierungen wurden additive Bauteile, Auftrag- und Reparaturschweißungen hergestellt und Schweißzusätze für das PTA-Verfahren modifiziert, um die Erstarrungsmorphologie und das Eigenschaftsprofil zu optimieren. Die Übertragung auf MSG-Verfahren sicherte einen breiten industriellen Einsatz für hohe Auftragraten ab. Dies geschah mithilfe von modifizierten Fülldrähten sowie beschichteten Massivdrähten. Die wirtschaftliche spanende Bearbeitbarkeit wurde mit Zerspanbarkeitsanalysen für Schlichtfräsen und vergleichend für ultraschallunterstütze Fräsprozesse sichergestellt. Instrumentierte Experimente und Werkstoffanalytik hinsichtlich der Einflüsse auf Schmelzbad, Gefüge und Ausscheidungen sowie auf Randzoneneigenschaften und Eigenspannungen ermöglichten umfassende Erkenntnisse zur kombinierten additiven und abtragenden Fertigung. Dabei hat sich herausgestellt, dass eine Modifikation der Schweißzusatzwerkstoffe eine Homogenisierung der Mikrostruktur bedingt, welche wiederum den Zerspanprozess stabilisiert und letztendlich zu reduzierten Zerspankräften führt. Ferner wurde festgestellt, dass der ultraschallunterstützte Fräsprozess im Vergleich zum konventionellen Fräsprozess eine signifikante Reduzierung der Zerspankraft sowie eine höhere Oberflächenintegrität bedingt. Insbesondere die Induzierung oberflächennaher Druckeigenspannungen ist dabei hervorzuheben. Durch Bauteilversuche und -prüfungen, erfolgreiche Übertragbarkeitsstudien weiterer innovativer Werkstoffe verbunden mit Handlungsempfehlungen und der Zusammenarbeit mit den jeweiligen Normungsgremien, profitieren KMU von einer hochwirtschaftlichen Herstellung und Reparatur kostenintensiver Komponenten.
Microalloying elements such as Nb and Ti play a decisive function in achieving the desired mechanical strength of quenched and tempered, high-strength fine-grain structural steels with a nominal yield strength ≥ 690 MPa. The current specifications for the chemical composition only provide manufacturers with upper limits. However, even minor deviations in the alloy concept can have a significant impact on the mechanical properties. Consequently, accurate prediction of weldability and the integrity of welded joints becomes difficult or even impossible due to differences in composition and the resulting microstructures. Undesirable consequences include a possible softening of the heat-affected zone (HAZ) or, conversely, hardening effects. In view of these challenges, various microalloying strategies with different Ti and Nb contents are being systematically investigated for the first time using specially developed laboratory casting alloys. Each alloying route is based on the common S690QL, maintaining both the chemical composition and the heat treatment parameters.
To analyse the weldability, three-layer welds were performed using gas metal arc welding (GMAW) and critical microstructures, such as areas of the heat-affected zone (HAZ) that exhibit significant softening or hardening, were identified. The effect of the softened HAZ region on failure was evaluated using transverse tensile specimens. Digital image correlation (DIC) is used to image changes in local strains in different HAZ regions in situ. Using a specially developed mirror system, the local strains of the microstructure zones on the top and bottom of the weld are recorded simultaneously. This makes it possible to analyse how the weld seam geometry (e.g., V-seam) influences the strain gradients. In addition, the analysis of the local deformation helps to understand the effects of the softened HAZ on the global strain, the fracture constriction, the fracture position, and the overall fracture behavior
The weldability of stainless steels is largely controlled by the chemical composition, and alloys with ferritic or ferritic-austenitic solidification show the highest resistance to hot cracking. As the resulting phase balance also affects the final properties, it may be beneficial to both foresee and measure the weld metal ferrite content. The WRC ’92 constitution diagram is currently the most accurate prediction tool available, but it does not take the cooling rate into consideration and the precision may be less accurate for stainless steels with high ferrite numbers (FN). This study aims to assess the reliability of the WRC ’92 diagram for weld metals with FN > 50. The chemical composition was altered through gas tungsten arc welding (GTAW) of UNS S32205 with ER347 filler wire that had been PVD-coated with either niobium (Nb), copper (Cu), nickel (Ni), manganese (Mn), carbon (C), or silicon (Si). The actual ferrite content was evaluated using image analysis, FERITSCOPE® and X-ray diffraction (XRD). While predictions from the WRC ’92 diagram were deemed acceptable for Ni, Si, and Mn, notable deviations were observed for Nb, Cu, and C. The FeriteScope exhibited a consistent trend with image analysis, albeit with slightly higher FN values, wider scatter, and the conversion factor from FN to vol.-% is open for discussion. The lowest accuracy and largest spread were obtained using non-contact XRD, rendering it unsuitable for ferrite measurements of welds. These findings underscore the need for improved prediction tools and appropriate measurement methods for assessing ferrite content in duplex weld metals.