Ingenieurwissenschaften und zugeordnete Tätigkeiten
Filtern
Erscheinungsjahr
Dokumenttyp
- Vortrag (3194)
- Zeitschriftenartikel (2460)
- Posterpräsentation (822)
- Beitrag zu einem Tagungsband (779)
- Forschungsbericht (248)
- Sonstiges (112)
- Dissertation (108)
- Forschungsdatensatz (108)
- Zeitschriftenheft (Herausgeberschaft für das komplette Heft) (81)
- Buchkapitel (68)
Sprache
- Englisch (6066)
- Deutsch (1968)
- Mehrsprachig (27)
- Russisch (8)
- Spanisch (5)
- Französisch (2)
- Italienisch (2)
- Portugiesisch (2)
- Chinesisch (2)
Schlagworte
- Additive manufacturing (265)
- Corrosion (224)
- Additive Manufacturing (193)
- Korrosion (188)
- Nanoparticles (159)
- Additive Fertigung (145)
- Mechanochemistry (130)
- Microstructure (130)
- Fluorescence (120)
- Laser beam welding (112)
Organisationseinheit der BAM
- 6 Materialchemie (1676)
- 9 Komponentensicherheit (1344)
- 5 Werkstofftechnik (1046)
- 7 Bauwerkssicherheit (742)
- 8 Zerstörungsfreie Prüfung (725)
- 9.4 Integrität von Schweißverbindungen (513)
- 9.3 Schweißtechnische Fertigungsverfahren (453)
- 6.3 Strukturanalytik (449)
- 6.1 Oberflächen- und Dünnschichtanalyse (415)
- 8.5 Röntgenbildgebung (401)
Paper des Monats
- ja (47)
The essence of dynamic failure is closely linked to dramatic shear deformations which often lead to the formation of adiabatic shear bands (ASB). Under high loading velocities and the subsequent rapid temperature increase, the localization of shear strain is crucial in view of safety issues of systems in mechanical and aircraft engineering, especially with respect to fast rotating components and diverse crash scenarios. In this research, we perform high speed impact tests at the split Hopkinson pressure bar (SHPB) setup and use particular hat-shaped specimen geometries that resemble the stresses and failure conditions at the component level.
In the first step, we specify a notched specimen geometry using finite element (FE) simulations to ensure pure shear. Further, quasi-static compressive tests and a series of impact tests at high strain rates of 10^3-10^4 s^-1 are conducted on specimens manufactured from a fine-grain structural steel with the properties of S355. Optical microscopy and electron backscatter diffraction (EBSD) of the sheared zones unveil significant localization to maximal shear strains of about 0.9 accompanied by grain refinement by factors 5 to 14. The displacements across the surface of the specimens are captured with subset-based local digital image correlation (DIC) during the impact time, and serve as an objective to validate a viscoplastic constitutive relationship. More precisely, the deformation distribution is accurately reproduced by the widely recognized Johnson-Cook (JC) model, which features an enhanced description of damage evolution. Thus, combining experimental and characterization techniques, continuum mechanics and reasonable optimization strategies for the identification of model parameters provides an efficient approach for comprehensive insights into the strain localization behaviour and its impact on the mechanical performance of S355 under extreme strain rates and deformations.
Offshore Wind Turbines (OWT) are a key factor in tomorrow's sustainable energy generation. The ever-increasing installation depth and weight of OWTs require suitable foundation concepts such as monopiles or tripods. Typically, mild steels such as S420ML are used with plate thicknesses of up to several hundred mm, resulting in high restraints in the welded joints. The large plate thickness requires high-efficiency welding processes such as submerged arc welding (SAW) with multiple wires. Due to the very high stiffness and plate thickness of the large-scale offshore structure, a susceptibility to time-delayed hydrogen assisted cracking (HAC) may occur. The evaluation of this crack susceptibility is very complex due to the component size and stiffness of real offshore structures. For this purpose, a near-component test geometry was developed to transfer the real stiffness conditions to laboratory (i.e. workshop) scale. The 350 kg mock-up studied consisted of heavy plates (thickness 50 mm, seam length 1,000 m) joined by a 22-pass submerged-arc weld. Additional stiffeners simulated the effect of high restraint or shrinkage restraint of the weld. Extreme scenarios of hydrogen absorption during welding were simulated by using flux in dry (HD < 5 ml/100g Fe) and wet (HD > 15 ml/100g Fe) conditions. Weld residual stresses were determined using a robotic X-ray diffractometer. Areas of critical tensile residual stress (at the level of the yield strength) were found in the weld metal and in the heat affected zone, suggesting that these weld sub-zones are the most critical in the case of hydrogen ingress. To identify possible delayed cracking, the welds were tested by phased array ultrasonic testing (PAUT) after welding, 6 h, 12 h, 24 h, and a maximum of 48 h. Summarized, no significant occurrence of HAC was detected, indicating the high crack resistance of the welded joint, i.e., a suitable combination of base material, welding consumable and parameters.
Knowledge representation is becoming increasingly important in view of the large amounts of data that are handled in the modern scientific landscape. Many of the domains that have most readily realised this problem and worked on potential solutions have been the domain of biochemistry. And although the developments sought here were not accompanied by philosophers, this process organically led to the development of formal and structured representations of certain domains. While the resulting structures were not the first formal ontologies, they are ones that are still in wide use to this day. These approaches have led to major advances in the organisation, structuring and communication of scientific results. Since then, a variety of other domains have tried to adapt a similar process and develop their own ontologies. However, the development of ontologies from the domain of biochemistry was the result of a years-long process that also involved a large number of errors and course corrections. One of the greatest challenges is also one of the greatest strengths of ontologies: Interoperability with other ontologies. To ensure this interoperability, ontologies must follow certain principles. In the field of biochemistry, the OBO Foundry has established itself, which offers functionalities for a rich network of ontologies from the domain, but at the same time also defines rules.
The purpose of this document is to define a similar set of rules for open ontology development, but which addresses a broader domain and at the same time lowers the barrier of entry for new ontology developers. To this end, we will outline a workflow that can be used to build new ontologies more efficiently. This workflow is based not only on our own years of experience in ontology development, but also on the rules of external experts such as the OBO Foundry.
There is consent that UV irradiance and temperature at the place of photodegradation are the most important environmental parameters in weathering, along with humidity. This contribution shows how an improvement in the measurement data situation can improve the significance and comparability of outdoor exposures.
Photooxidative ageing is calculated using sample polymers for which the corresponding modelling data (Exposure Response Functions, ERF) is available. The mean square deviations are estimated, which result from using different spectral irradiances and different spectral sensitivities, both of the sensors and the polymers. It will be shown here how the significance of the irradiance values increases with increasing approximation of the spectral sensitivities of the sensor and polymer. Also, the mean square deviations are estimated, which result from using different activation energies and surface temperatures. A selection of different variables to describe the weathering exposure is created. The potential of either individual values or data pairs is evaluated in terms of significance or correlation to the calculated photooxidative ageing.
Recording hourly data also enables subsequent evaluations of individual test specimens, adapted to the respective colour or to determine activation energies. An accumulated value, calculated from PIT-radiometer irradiance and a suited surface temperature, can provide a comparison of different outdoor exposures over different locations or years.
Thus, a characterisation of the weathering exposure would be related to a reference spectral sensitivity (much closer to a polymer than that of a common UV radiometer), one reference activation energy, and different surface temperature scenarios with, on the one hand, graded solar absorptions (white / grey / black) and, on the other hand, different thermal couplings (coated metal / thick plastic). This results in three values each for plastic samples and coated metals (light / grey / dark).
It will never be possible to accurately predict the weathering tests for individual samples (with their specific sensitivities), but the proposed approaches can go a long way towards the comparability of outdoor weathering exposures.
There is consent that UV irradiance and temperature at the place of photodegradation are the most important environmental parameters in weathering, along with humidity. This contribution shows how an improvement in the measurement data situation can improve the significance and comparability of outdoor exposures.
Photooxidative ageing is calculated using sample polymers for which the corresponding modelling data (Exposure Response Functions, ERF) is available. The mean square deviations are estimated, which result from using different spectral irradiances and different spectral sensitivities, both of the sensors and the polymers. It will be shown here how the significance of the irradiance values increases with increasing approximation of the spectral sensitivities of the sensor and polymer. Also, the mean square deviations are estimated, which result from using different activation energies and surface temperatures. A selection of different variables to describe the weathering exposure is created. The potential of either individual values or data pairs is evaluated in terms of significance or correlation to the calculated photooxidative ageing.
Recording hourly data also enables subsequent evaluations of individual test specimens, adapted to the respective colour or to determine activation energies. An accumulated value, calculated from PIT-radiometer irradiance and a suited surface temperature, can provide a comparison of different outdoor exposures over different locations or years.
Thus, a characterisation of the weathering exposure would be related to a reference spectral sensitivity (much closer to a polymer than that of a common UV radiometer), one reference activation energy, and different surface temperature scenarios with, on the one hand, graded solar absorptions (white / grey / black) and, on the other hand, different thermal couplings (coated metal / thick plastic). This results in three values each for plastic samples and coated metals (light / grey / dark).
It will never be possible to accurately predict the weathering tests for individual samples (with their specific sensitivities), but the proposed approaches can go a long way towards the comparability of outdoor weathering exposures.
Since laser powder bed fusion (PBF-LB/M) is prone to the formation of defects during the building process, a fundamental requirement for widespread application is to find ways to assure safety and reliability of the additively manufactured parts. A possible solution for this problem lies in the usage of in-situ thermographic monitoring for defect detection. In this contribution we investigate possibilities and limitations of the VIS/NIR wavelength range for defect detection. A VIS/NIR camera can be based on conventional silicon-based sensors which typically have much higher spatial and temporal resolution in the same price range but are more limited in the detectable temperature range than infrared sensors designed for longer wavelengths. To investigate the influence, we compared the thermographic signatures during the creation of artificially provoked defects by local parameter variations in test specimens made of a nickel alloy (UNS N07208) for two different wavelength
ranges (~980 nm and ~1600 nm).
Orientation dependence of stress-induced martensitic transformation under compression and the influence of a corrosion attack on superelastic properties were investigated for Fe42.7Mn34.7Al13.4Ni7.7Cr1.5 (at.−%) single crystals. The results of incremental strain tests show that the crystallographic orientation has a considerable impact on the superelastic performance, eventually resulting from the formation of twinned or detwinned martensite to accommodate strain as well martensite variant interaction. In order to investigate the effect of a corrosive environment on the mechanical performance and martensitic transformation, compression specimens were immersed in a 5.0 wt.−% NaCl solution for 24 h before tested in incremental strain tests. The immersion of the compression specimens revealed a partial surface corrosion attack including localized pitting corrosion. The localized corrosion attack increased the number of active martensite plates, most probably due to an induced multiaxial stress state. Further investigations on specimens subjected to −6% compressive strain revealed that areas with retransformed martensite serve as nucleation zones for corrosion damage. Stress-induced corrosion cracks developed, which eventually deteriorate functional response.
The lack of validation and standard procedures in microplastics studies has led to the inability to compare and harmonise data from different analytical methods, laboratories and time scales. To monitor and regulate exposure to microplastics in the environment and in food for human health, it is crucial to ensure their comparability and to validate the analytical methods used in microplastics studies.
Monitoring microplastics requires complex approaches for accurate determination otherwise it can lead to an over- or underestimation in environmental and food-relevant matrices. Moreover, to support the need of reliable measurement required by the European legislation directive on drinking water (EU 2020/2184) or the revision of the urban waste water directive, which will be finalised in 2024 the production and validation of polymeric reference materials with environmentally relevant concentrations, irregular shapes, defined aging status and different sizes is essential. The production of reference material with acceptable uncertainties in homogeneity need to be balanced, considering the low microplastics concentrations detected in the environment and in food.
The aim of the project PLASTICTRACE and of this study, is to propose a “easy-to-use PET tablet ” (PET particle size mainly 1-100 µm) for routine applications as a candidate general reference material for detection methods. Batches of water-soluble matrix containing different concentrations of PET powder were produced.
Results of imaging and counting methods (SEM, Laser diffraction), including production´s challenges; together with thermo-analytical methods (TED-GC/MS and Py-GC/MS) and vibrational spectroscopy (µ-Raman and µ-FTIR), will be presented. These data are useful to assess homogeneity and stability of the particles over time according to ISO 33405:2024.
In addition, we will show some insights on the application of the PET-tablets in complex matrices, as milk powder and suspended solid from surface water, that could be easily used for routine microplastics analysis.
Microplastics, ubiquitous as it is, could be released into food during production chain, through packaging and by consumer´s use. To determinate human exposure to microplastics is crucial to monitor microplastics in food matrices. The current absence of standard sample preparation procedures to identify and quantify different microplastics according to number and mass have generate time-consuming protocols and lack of comparability among different analytical methods, laboratories and time scales.
Monitoring microplastics in complex matrices as food, and in particular in baby milk powder, requires an accurate approach that need to be validate, to ensure the comparability of results. Bottled drinking water or surface waters, for example, can be measured with mass-based methods (TED-GC/MS or Py-GC/MS) directly after filtration. Baby milk powder, instead is more challenging, due to the proteins and fatty acid that clog the filters and contaminate the measuring devices with heavy carry over.
In this study, we characterize the baby milk powder by thermogravimetric analysis (TGA) and we tested different treatments for matrix reduction: water, H2O2, citric acids. In particular, the use of citric acid was tested for protein reduction before filtration. Our hypothesis was that citric acid will induce the precipitation of proteins and amino acids, leading to a strong matrix reduction. In fact, this sample pre treatment, allowed us to use a higher intake, necessary for representative quantification. Finally, the milk powder was spiked with reference material tablets containing polyethylene terephthalate (PET). The PET was not degraded by the citric acid and high recovery rate was achieved by TED-GC/MS and Py-GC/MS methods.
Considering the simplicity and accessibility of this sample preparation and its robust results, this procedure could be easily proposed as a simple sample preparation approach to monitor microplastics by mass-based methods.
In this proof-of-principle study, we present our contribution to single particle inductively coupled plasma mass spectrometry (spICP-MS) developments with a novel in-house built data acquisition system with nanosecond time resolution (nanoDAQ) and a matching data processing approach. The new system can continuously sample the secondary electron multiplier (SEM) detector signal and enables the detection of gold nanoparticles (AuNP) as small as 7.5 nm with the commercial single quadrupole ICP-MS instrument used in this study. Recording of the SEM signal by the nanoDAQ is performed with a dwell time of approximately 4 ns. A tailored method was developed to process this type of transient data, which is based on determining the temporal distance between detector events that is denoted as event gap (EG). We found that the inverse logarithm of EG is proportional to the particle size and that the number of detector events corresponding to a particle signal distribution can be used to calibrate and determine the particle number concentration (PNC) of a nanoparticle dispersion. Due to the high data acquisition frequency, a statistically significant number of data points can be obtained in 60 s or less and
the main time limitation for analyses is merely the sample uptake time and rinsing step between analyte solutions. At this stage, the data processing method provides average information on complete data sets only and will be adapted to enable particle-by-particle analysis with future hardware/software revision.