Infrastruktur
Filtern
Erscheinungsjahr
Dokumenttyp
- Vortrag (1066)
- Zeitschriftenartikel (600)
- Beitrag zu einem Tagungsband (442)
- Posterpräsentation (152)
- Buchkapitel (44)
- Sonstiges (30)
- Forschungsbericht (25)
- Beitrag zu einem Sammelband (17)
- Dissertation (16)
- Forschungsdatensatz (15)
Sprache
- Englisch (1596)
- Deutsch (821)
- Mehrsprachig (11)
- Tschechisch (2)
- Französisch (1)
- Polnisch (1)
- Spanisch (1)
Schlagworte
- Korrosion (134)
- Concrete (109)
- Corrosion (106)
- Structural health monitoring (57)
- Ultrasound (54)
- Monitoring (48)
- Spannungsrisskorrosion (42)
- Beton (38)
- Alkali-activated materials (36)
- Flame retardancy (36)
Organisationseinheit der BAM
- 7 Bauwerkssicherheit (1398)
- 8 Zerstörungsfreie Prüfung (624)
- 7.2 Ingenieurbau (315)
- 2 Prozess- und Anlagensicherheit (296)
- 8.2 Zerstörungsfreie Prüfmethoden für das Bauwesen (286)
- 7.6 Korrosion und Korrosionsschutz (272)
- 7.5 Technische Eigenschaften von Polymerwerkstoffen (231)
- 7.4 Baustofftechnologie (214)
- 2.1 Sicherheit von Energieträgern (207)
- 3 Gefahrgutumschließungen; Energiespeicher (206)
Paper des Monats
- ja (36)
The simulation of concrete under impact and blast loads often relies on local constitutive models, typically formulated as plasticity models that incorporate softening through a scalar damage field. However, these local damage models frequently exhibit mesh-dependent results that fail to converge with mesh refinement.
In earlier work, the mesh-dependency of a modified Johnson-Holmquist (JH2) model was effectively mitigated through a gradient-enhanced plasticity formulation in explicit dynamics [1]. The gradient-enhancement method for explicit dynamics, originally introduced in [3], involves modifying Peerlings' additional partial differential equation [2] for nonlocal equivalent plastic strain by incorporating inertia. This modification enables the use of explicit solvers, such as the central difference method. Despite these advancements, the model continues to face challenges, particularly slow convergence rates with mesh refinement, which are difficult to analyze due to the JH2 model's complexity.
To address these challenges, this study investigates simpler plasticity models, such as von Mises plasticity and Drucker-Prager plasticity, combined with a nonlocal softening term. By systematically incorporating key characteristics of the JH2 model—namely, pressure-dependent yield surfaces, softening, residual yield strength at full damage and a nonlinear volumetric stress responses via an equation of state (EOS)—this work aims to further refine the gradient-enhanced JH2 model and extend these improvements to more complex plasticity models like the RHT model.
Concrete structures subjected to impact and blast loads experience complex failure mechanisms that are challenging to simulate accurately. Local constitutive models formulated using plasticity with softening are commonly used for this purpose. The softening behavior is typically represented by a scalar damage field, which scales the yield surface to capture the degradation of material strength. However, these local models often exhibit meshdependent results with localization of damage into a few cells. To address this limitation, this study combines a modified version of the Johnson-Holmquist (JH2) model with a gradientenhancement approach. The introduction of an inertia term into the additional PDE for the determination of the nonlocal equivalent plastic strain transforms it into a hyperbolic equation, enabling an efficient solution with an explicit dynamics solver.
A one-dimensional benchmark simulation demonstrates the differences between the local and gradient-enhanced models. The local model shows severe damage localization and diminishing plastic energy dissipation with finer meshes. In contrast, the gradient-enhanced model distributes damage over multiple elements, though the plastic strain still localizes within a single element. Introducing strain hardening with respect to the local equivalent plastic strain resolves this issue, ensuring convergence of plastic energy and non-localizing plastic strain. These findings are extended and validated with two-dimensional simulations, showcasing the model’s practical relevance.
Additionally, the impact of the added inertia term is analyzed in the context of dynamic strength enhancement, a critical characteristic of concrete under high strain rates. The proposed gradient-enhancement approach demonstrates improved numerical stability and mesh-independence compared to local models, making it a suitable tool for simulating concrete behavior under extreme loading conditions.
Blast testing finds its implementation in several applications, e.g. for the purpose of investigation into accidental or intentional explosions, or for an assessment of the level of protection provided by a certain structural configuration. Analytical and/or semi-empirical methods are generally limited to preliminary assessments prior to blast testing. Applications of numerical simulations with hydrocodes coupled with finite element methods (FEM) can only reduce the amount of blast testing required, as these necessitate fulfillment of the fundamental prerequisites of model verification and that of model validation.
Field tests are implemented for contact detonations as well as near-field blast scenarios and shock tube tests for far-field blast scenarios. However, these can be extremely resource intensive. Reliable small-scale experiments are a promising alternative.
The concepts of dimensional analysis and similarity based on Buckingham’s Π-theorem (1914) have been applied in different fields. For applications to the phenomenon of shock wave propagation, Hopkinson-Cranz or cube-root scaling is a well-established concept. When it comes to scaling the structural response, research has predominantly focused on structures made of metallic materials. Scaled investigations with concrete or reinforced concrete (RC) structures remain limited. The lack of even the most basic guidelines (far from any ‘standardized scaling methods’ for blast tests) show that scaling as a method is not yet established in blast effects analysis.
In this preliminary study, we present a systematic approach and evaluation of scaling of blast effects analysis for RC slabs in order to develop guidelines for resource efficient testing methods. We study the blast scenario at two different scales. The focus of these investigations has been on evaluation of scaling of dynamics using pressure sensors, acceleration sensors and fiber optic sensing cables for distributed acoustic sensing (DAS). Further, the resulting plastic behavior upon blast is characterized by distributed strain sensing (DSS) along the same cables.
Blast experiments on reinforced concrete structures are often limited to small structures and therefore simple shock waves. Such experiments are carried out at the Bundesanstalt für Materialforschung und -prüfung (BAM) and the structural response is investigated using several measuring methods. Complex load scenarios that occur as a result of reflection of the shock wave in larger structures are harder to realize in practice. Numerical simulations for the propagation of the shock wave and the structural response can therefore be an alternative method for the investigation of blast loads on complex structures. For the simulation of concrete under impact and blast loads, several local constitutive models exist that are formulated as plasticity models with softening taken into account by introducing a scalar damage field. Local damage models however often lead to mesh-dependent results which do not converge with mesh refinement. In order to achieve meaningful predictions from numerical experiments, independence from the mesh is needed. In this contribution, the Johnson-Holmquist model (JH2) for brittle damage [2] has been implemented for the free open source software FEniCSx and is investigated in a high strain rate benchmark simulation. Mesh-convergence analyses show that displacements as well as the dissipated plastic energy do not converge with mesh-refinement. Following the gradient-enhancement approach by [1], a gradient-enhanced JH2 model which can be efficiently solved with explicit solvers is introduced and its advantages over the local models are discussed. Since many damage models for concrete share the damage mechanism of the JH2 model, the application of the regularization methods to more complex material models, like the RHT model [3], is also discussed. Advantages of a gradient-enhanced formulation to simulate dynamic strength increase of concrete, as suggested in [1], is discussed as well.
Application of the substructure method to assess the fire resistance of thermally restrained columns
(2025)
Usually, the fire resistance of load-bearing structural elements is determined by single members testing. A mechanical load is applied to the member in a force-controlled manner and is maintained constant throughout the fire test. After applying the mechanical load, the thermal exposure starts according to the ISO 834 fire curve. In this conventional test method, no interaction between the tested member and the entire building structure is considered. In buildings, the surrounding structure can restrain the thermal expansion of a member in case of fire. This may have both positive and negative effects on the fire resistance of this structural element.
Several years ago, the Institute for Sustainability and Innovation in Structural Engineering (ISISE) at the University of Coimbra in Portugal and the Bundesanstalt für Materialforschung und prüfung (BAM) in Germany carried out fire tests on circular and square steel-reinforced concrete columns with restrained thermal expansion. BAM´s column test furnace allows the specimen to be subjected to thermal exposure and mechanical loading simultaneously. In addition, this device has a substructure test module, which can also provide restrained test conditions. In an ongoing research project at BAM and Technische Universität Braunschweig, the effect of restrained test conditions on the behaviour of steel-reinforced columns under fire exposure is further investigated.
Das Tragwerk eines Gebäudes ist aus einzelnen Bauteilen zusammengesetzt. Insbesondere bei lokalen Brandereignissen bauen sich durch die Ausdehnung der vom Brand betroffenen Bauteile gegen das umgebende kältere Gesamttragwerk Zwangsbeanspruchungen auf. Bei konventionellen Brandprüfungen werden diese Zwangsbeanspruchungen in der Regel nicht berücksichtigt, da die Prüfsystematik auf Einzelbauteilprüfungen bei konstanter mechanischer Last ausgelegt ist. Die Prüfung komplexer, realmaßstäblicher Tragwerke ist oftmals nicht möglich. Die Interaktion des Einzelbauteils mit dem umgebenden Tragwerk kann sich sowohl positiv als auch negativ auf den Feuerwiderstand auswirken. Als nachteilig ist der thermische Zwang und die daraus resultierende Lasterhöhung zu nennen. Gleichzeitig kann eine Stauchung der Stütze zu einer Umlagerung von Kräften in das umgebende Tragwerk führen und damit den Versagenszeitpunkt der Stütze verzögern.
Mit Hilfe der Substrukturtechnik kann das Verhalten einer Stütze im Brandfall unter Berücksichtigung der Interaktion mit dem umgebenden Tragwerk analysiert werden. In einem gemeinsamen DFG-Vorhaben der Bundesanstalt für Materialforschung und -prüfung (BAM) und dem Institut für Baustoffe, Massivbau und Brandschutz (iBMB) der TU Braunschweig werden 14 Stahlbetonstützen mit freier und behinderter axialer Ausdehnung untersucht. Auf Basis eines realen Gebäudes werden unter anderem die Steifigkeit, welche das umgebende Tragwerk repräsentiert, der Lastausnutzungsgrad und die Brandeinwirkung variiert. Mit dem Ziel das Stützenverhalten unter thermischem Zwang im Detail zu analysieren, erfolgen Brandversuche und numerische Simulationsberechnungen. Dabei werden die erforderlichen mechanischen Materialeigenschaften des Betons bei erhöhten Temperaturen aus experimentellen Daten abgeleitet.
Der Beitrag liefert einen Einblick in die experimentellen und numerischen Ergebnisse. Es zeigt sich, dass die behinderte axiale Ausdehnung und die Möglichkeit einer Lastumlagerung bei Stauchung der Stütze einen erheblichen Einfluss auf das Versagen im Brandfall haben. Die mittels Substrukturtechnik erzeugte Zwängung des umgebenden Tagwerks führt zu einem Anstieg der Axialkraft in der Stütze sowie einer Abnahme der maximalen Stützenausdehnung. Gleichzeitig setzt die Stauchung der Stütze früher ein. Wird eine Stütze-Tragwerk-Interaktion auch für den Stauchungsbereich der Stütze angesetzt, kann der Vorteil einer Lastumlagerung genutzt werden. Somit kann trotz einer höheren mechanischen Belastung während der Ausdehnungsphase der Stütze ein späterer Versagenszeitpunkt als bei einer konventionell geprüften Stütze erreicht werden.
Application of the substructure method to assess the fire resistance of thermally restrained columns
(2025)
Usually, the fire resistance of load-bearing structural elements is determined by single members testing. A mechanical load is applied to the member in a force-controlled manner and is maintained constant throughout the fire test. After applying the mechanical load, the thermal exposure starts according to the ISO 834 fire curve. In this conventional test method, no interaction between the tested member and the entire building structure is considered. In buildings, the surrounding structure can restrain the thermal expansion of a member in case of fire. This may have both positive and negative effects on the fire resistance of this structural element.
Several years ago, the Institute for Sustainability and Innovation in Structural Engineering (ISISE) at the University of Coimbra in Portugal and the Bundesanstalt für Materialforschung und prüfung (BAM) in Germany carried out fire tests on circular and square steel-reinforced concrete columns with restrained thermal expansion. BAM´s column test furnace allows the specimen to be subjected to thermal exposure and mechanical loading simultaneously. In addition, this device has a substructure test module, which can also provide restrained test conditions. In an ongoing research project at BAM and Technische Universität Braunschweig, the effect of restrained test conditions on the behaviour of steel-reinforced columns under fire exposure is further investigated.
Das Tragwerk eines Gebäudes ist aus einzelnen Bauteilen zusammengesetzt. Insbesondere bei lokalen Brandereignissen bauen sich durch die Ausdehnung der vom Brand betroffenen Bauteile gegen das umgebende kältere Gesamttragwerk Zwangsbeanspruchungen auf. Bei konventionellen Brandprüfungen werden diese Zwangsbeanspruchungen in der Regel nicht berücksichtigt, da die Prüfsystematik auf Einzelbauteilprüfungen bei konstanter mechanischer Last ausgelegt ist. Die Prüfung komplexer, realmaßstäblicher Tragwerke ist oftmals nicht möglich. Die Interaktion des Einzelbauteils mit dem umgebenden Tragwerk kann sich sowohl positiv als auch negativ auf den Feuerwiderstand auswirken. Als nachteilig ist der thermische Zwang und die daraus resultierende Lasterhöhung zu nennen. Gleichzeitig kann eine Stauchung der Stütze zu einer Umlagerung von Kräften in das umgebende Tragwerk führen und damit den Versagenszeitpunkt der Stütze verzögern.
Mit Hilfe der Substrukturtechnik kann das Verhalten einer Stütze im Brandfall unter Berücksichtigung der Interaktion mit dem umgebenden Tragwerk analysiert werden. In einem gemeinsamen DFG-Vorhaben der Bundesanstalt für Materialforschung und -prüfung (BAM) und dem Institut für Baustoffe, Massivbau und Brandschutz (iBMB) der TU Braunschweig werden 14 Stahlbetonstützen mit freier und behinderter axialer Ausdehnung untersucht. Auf Basis eines realen Gebäudes werden unter anderem die Steifigkeit, welche das umgebende Tragwerk repräsentiert, der Lastausnutzungsgrad und die Brandeinwirkung variiert. Mit dem Ziel das Stützenverhalten unter thermischem Zwang im Detail zu analysieren, erfolgen Brandversuche und numerische Simulationsberechnungen. Dabei werden die erforderlichen mechanischen Materialeigenschaften des Betons bei erhöhten Temperaturen aus experimentellen Daten abgeleitet.
Der Beitrag liefert einen Einblick in die experimentellen und numerischen Ergebnisse. Es zeigt sich, dass die behinderte axiale Ausdehnung und die Möglichkeit einer Lastumlagerung bei Stauchung der Stütze einen erheblichen Einfluss auf das Versagen im Brandfall haben. Die mittels Substrukturtechnik erzeugte Zwängung des umgebenden Tagwerks führt zu einem Anstieg der Axialkraft in der Stütze sowie einer Abnahme der maximalen Stützenausdehnung. Gleichzeitig setzt die Stauchung der Stütze früher ein. Wird eine Stütze-Tragwerk-Interaktion auch für den Stauchungsbereich der Stütze angesetzt, kann der Vorteil einer Lastumlagerung genutzt werden. Somit kann trotz einer höheren mechanischen Belastung während der Ausdehnungsphase der Stütze ein späterer Versagenszeitpunkt als bei einer konventionell geprüften Stütze erreicht werden.
Infrared thermography is a widely recognized non-destructive testing (NDT) method used in material research and defect detection across various industrial applications. Moreover, thermography plays a crucial role in preserving cultural heritage, including historical paintings and buildings. This study focuses on the application of thermography in inspecting the historic Bücker Bü 181 aircraft, which was used in Germany during World War II. Over time, the original appearance of aircraft has often been altered as part of preservation efforts, either before or during their time in museums, leading to deviations from their historically original state. Additionally, the operational history of such objects is frequently undocumented or entirely lost, making it difficult to understand the presence of artifacts and historically significant data. These factors present major challenges in cultural heritage preservation, and destructive methods cannot be used to investigate such invaluable objects.
Therefore, thermography is implemented as a non-destructive and contactless examination method. Active flash thermography combined with phase analysis is a powerful tool for evaluating multilayer systems. In this study, multiple layers of old paint on the object posed a challenge in assessing defect conditions and retrieving other critical information beneath the surface coatings. Nevertheless, pulse thermography not only demonstrated its capability to identify defects and markings in multilayered coatings but also provided insights into the internal structure and subsections of the investigated aircraft.