• Treffer 1 von 129
Zurück zur Trefferliste

Prozessüberwachung mittels Thermografie im Laser-Pulverbettschweißen zur Vorhersage von Fehlstellen im Bauteilvolumen

  • Metallbasierte additive Fertigungsverfahren werden zunehmend industriell zur Anfertigung von komplex geformten Komponenten eingesetzt. In diesem Zusammenhang ist das Laser-Pulverbettschweißen von Metall (PBF-LB/M) ist ein weitläufig genutztes Verfahren. Im PBF-LB/M-Prozess werden lagenweise aufgetragene Metallpulverschichten selektiv mittels eines Lasers aufgeschmolzen. Die Entstehung von internen Fehlstellen (bspw. Porosität, Lunker oder Risse) während des Fertigungsvorgangs stellt ein ernstzunehmendes Risiko für die Bauteilsicherheit und somit für die weitere industrielle Etablierung des Verfahrens dar. Die Entstehung von Fehlstellen hängt eng mit lokalen Änderungen der thermischen Historie des Bauteils zusammen. Mit Hilfe von thermografischen Kameras zur Prozessüberwachung kann die thermische Historie bereits während der Fertigung erfasst werden. Damit eröffnet sich die Möglichkeit, die Entstehung von Fehlstellen anhand der thermografischen Daten vorherzusagen und somit potenziellMetallbasierte additive Fertigungsverfahren werden zunehmend industriell zur Anfertigung von komplex geformten Komponenten eingesetzt. In diesem Zusammenhang ist das Laser-Pulverbettschweißen von Metall (PBF-LB/M) ist ein weitläufig genutztes Verfahren. Im PBF-LB/M-Prozess werden lagenweise aufgetragene Metallpulverschichten selektiv mittels eines Lasers aufgeschmolzen. Die Entstehung von internen Fehlstellen (bspw. Porosität, Lunker oder Risse) während des Fertigungsvorgangs stellt ein ernstzunehmendes Risiko für die Bauteilsicherheit und somit für die weitere industrielle Etablierung des Verfahrens dar. Die Entstehung von Fehlstellen hängt eng mit lokalen Änderungen der thermischen Historie des Bauteils zusammen. Mit Hilfe von thermografischen Kameras zur Prozessüberwachung kann die thermische Historie bereits während der Fertigung erfasst werden. Damit eröffnet sich die Möglichkeit, die Entstehung von Fehlstellen anhand der thermografischen Daten vorherzusagen und somit potenziell Kosten für eine nachgelagerte Qualitätssicherung einzusparen. In diesem Beitrag soll die Modellierung der Fehlstellenvorhersage anhand thermografischer Prozessdaten diskutiert werden. Hierbei liegt ein Schwerpunkt auf der Fragestellung, mit welcher Genauigkeit unterschiedliche Formen von Fehlstellen, im speziellen Anbindungsfehler und Keyhole-Porosität, auf lokaler Bauteilebene vorhergesagt werden können. Weiterhin werden verschiedenen Modelltypen aus dem Bereich des Maschinellen Lernens auf ihre Eignung für die Fehlstellenvorhersage verglichen. Ein weiterer zentraler Aspekt in diesem Zusammenhang ist die Untersuchung der Eingangsdaten des Modells auf ihre Relevanz für das Vorhersageergebnis. Als Datengrundlage für die durchgeführten Untersuchungen dienen die Fertigungsprozesse von zwei identischen Haynes-282-Bauteilen (Nickel-Basislegierung), welche mit Hilfe einer im kurzwelligen Infrarotbereich arbeitenden Thermografiekamera überwacht wurden. Das Bauteildesign umfasste lokale Bereiche, in denen mit Hilfe einer Parametervariation die Entstehung von Fehlstellen forciert wurde. Um die Position und Größe der entstandenen Defekte zu quantifizieren, wurden beide Bauteile nach erfolgter Fertigung mittels Computertomografie (CT) geprüft. Im Rahmen der Datenvorbereitung für die Modellierung erfolgte eine Reduzierung der erhobenen Thermogramme zu physikalisch-interpretierbaren Merkmalen (bspw. Schmelzbadfläche oder Zeit-über-Schwellwert). Weiterhin erfolgte eine Registrierung der thermografischen Daten mit den Fehlstellen-Referenzdaten der CT, um eine exakte örtliche Überlagerung von thermischer Information und lokalem Fehlstellenbild zu erzielen. Zur Ermöglichung einer lokalen Fehlstellenvorhersage wurden die thermografischen Daten schichtweise in kleinteiligen Volumina angeordnet, welche als Eingangsgröße für die genutzten ML-Algorithmen dienten. Die Ergebnisse der Untersuchungen zeigen, dass sich die Porosität auf Bauteilschichtebene mit einer hohen Genauigkeit vorhersagen lässt. Eine Vorhersage der Porosität auf lokaler Bauteilebene erweist sich noch als herausfordernd. Die erprobten ML-Algorithmen zeigen vergleichbare Ergebnisse, obwohl ihnen unterschiedliche Modellierungsannahmen zugrunde liegen und sie variierende Komplexität aufweisen. Mit Hilfe der erzielten Erkenntnisse eröffnet sich die Möglichkeit, Rückschlüsse auf die gewählte Prozessüberwachungshardware und Datenvorverarbeitung zu ziehen und somit langfristig die Leistungsfähigkeit von Modellen zur Fehlstellenvorhersage zu verbessern.zeige mehrzeige weniger

Volltext Dateien herunterladen

  • Oster_Prozessueberwachung_mittels_Thermografie_final.pdf
    deu

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar Anzahl der Zugriffe auf dieses Dokument
Metadaten
Autor*innen:Simon OsterORCiD
Koautor*innen:Philipp P. Breese, Tina Becker, Simon J. Altenburg
Dokumenttyp:Posterpräsentation
Veröffentlichungsform:Präsentation
Sprache:Deutsch
Jahr der Erstveröffentlichung:2024
Organisationseinheit der BAM:8 Zerstörungsfreie Prüfung
8 Zerstörungsfreie Prüfung / 8.3 Thermografische Verfahren
DDC-Klassifikation:Technik, Medizin, angewandte Wissenschaften / Ingenieurwissenschaften / Ingenieurwissenschaften und zugeordnete Tätigkeiten
Freie Schlagwörter:Laser-Pulverbettschweißen; Machine Learning; Porositätsvorhersage; Qualitätsüberwachung; Thermografie
Themenfelder/Aktivitätsfelder der BAM:Material
Material / Additive Fertigung
Veranstaltung:Temperatur 2024
Veranstaltungsort:Berlin, Germany
Beginndatum der Veranstaltung:05.06.2024
Enddatum der Veranstaltung:06.06.2024
Verfügbarkeit des Dokuments:Datei im Netzwerk der BAM verfügbar ("Closed Access")
Datum der Freischaltung:18.06.2024
Referierte Publikation:Nein
Einverstanden
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.