Additive Fertigung
Filtern
Dokumenttyp
- Vortrag (332)
- Zeitschriftenartikel (211)
- Posterpräsentation (78)
- Beitrag zu einem Tagungsband (73)
- Forschungsdatensatz (9)
- Buchkapitel (4)
- Dissertation (4)
- Sonstiges (3)
- Forschungsbericht (3)
- Preprint (1)
Sprache
- Englisch (576)
- Deutsch (135)
- Mehrsprachig (6)
- Spanisch (1)
Schlagworte
- Additive manufacturing (219)
- Additive Manufacturing (178)
- Additive Fertigung (106)
- Laser powder bed fusion (53)
- Residual stress (52)
- Thermography (52)
- Laser Powder Bed Fusion (35)
- Hochfester Stahl (31)
- 316L (30)
- Computed tomography (28)
Organisationseinheit der BAM
- 9 Komponentensicherheit (368)
- 8 Zerstörungsfreie Prüfung (330)
- 8.5 Röntgenbildgebung (222)
- 5 Werkstofftechnik (185)
- 9.3 Schweißtechnische Fertigungsverfahren (149)
- 9.4 Integrität von Schweißverbindungen (129)
- 9.6 Additive Fertigung metallischer Komponenten (107)
- 8.3 Thermografische Verfahren (104)
- 5.4 Multimateriale Fertigungsprozesse (90)
- 5.2 Metallische Hochtemperaturwerkstoffe (55)
Paper des Monats
- ja (7)
The laser-based powder bed fusion (PBF-LB/M) processing of high-density copper components is mainly performed with high laser powers due to the low laser absorption of copper powders [1-2]. Metal coating the copper particles has been investigated in this research as an approach for increasing the laser absorption of the feedstock and processing of highly dense copper alloys with low-power lasers. CuNi3SiCr powders were coated with the thin and uniform metallic shells of Nb (60 ± 10 nm) using a rotating Direct Current Magnetron Sputtering Physical Vapor Deposition (DCMS-PVD) reactor. Using such metal-coated particles, copper parts of 98.14% relative density were printed with the PBF-LB/M parameters of 200 W laser powers, 800 mm/s scanning speed, 55 µm hatch distance, and 25 µm layer thickness. The X-ray computed tomography (XCT), scanning electron microscope (SEM), and energy dispersive spectroscopy (EDS) investigations show that partial oxidation of Nb-coated particles is responsible for the development of lack-of-fusion holes between the printed layers. An approach based on the nanoindentation and electron backscattered diffraction (EBSD) measurements was utilized to evaluate the correlation between the crystallographic orientations and mechanical properties of the produced samples. In this approach, arrays of indentations (Fig. 1a) were applied on four planes of the samples trimmed in different directions. The EBSD images of these indentation regions reveal the location of each indent in colored grains of different orientations. Here, a microstructure with columnar grains and a high texture intensity of 9.2 has been observed in the plane perpendicular to the building direction. This plane comprises a mixture of red-, green-, and blue-colored grains, while the measured average hardness (H) and indentation modulus (Er) were increased from red grains to green and blue ones, respectively (Fig. 1b). Eventually, the nanoindentation load-displacement curves of [001], [101], and [111] grains (Fig. 1c) were utilized for modeling the elastoplastic features of the produced samples.
Der Vortrag gibt einen Überblick über die Aktivitäten im QI-Digital Use Case Additive Fertigung, den aktuellen Stand und nächste Schritte.
Es wurde eine digitale Prozesskette für den PBF-LB/M Prozess aufgebaut. Hier werden Daten entlang der gesamten Fertigungsstrecke gesammelt, ausgewertet und zur Qualitätssicherung weiterverarbeitet. Die grundlegende Datenstruktur wurde in die Normung überführt.
The layerwise geometry build-up of additive manufacturing (AM) enables the possibility of in-situ process monitoring. The objective is the detection of irregularities during the build cycle, ensuring component quality and process stability. Focus of this work is the visual in-situ monitoring of the process of powder bed fusion with laser beam of metals (PBF-LB/M). Current state of the art visual monitoring systems for PBF-LB/M are limited by low resolution, allowing the detection of gross flaws. In this work a 65 Mpixel high-resolution monochrome camera is integrated into a commercial PBF-LB/M machine enabling a spatial resolution of approx. 17.2 µm/Pixel. The observed inhomogeneities are clustered into directly detectable irregularities, and indirectly detectable irregularities that can be inferred from the surface. In parallel, two different illumination techniques are realized in the process chamber and compared. The impact of the distinct illumination technique, direct light and dark field, on the identification of irregularities is evaluated.
The layerwise geometry build-up of additive manufacturing (AM) enables the possibility of in-situ process monitoring. The objective is the detection of irregularities during the build cycle, ensuring component quality and process stability. Focus of this work is the visual in-situ monitoring of the process of powder bed fusion with laser beam of metals (PBF-LB/M). Current state of the art visual monitoring systems for PBF-LB/M are limited by low resolution, allowing the detection of gross flaws. In this work a 65 Mpixel high-resolution monochrome camera is integrated into a commercial PBF-LB/M machine enabling a spatial resolution of approx. 17.2 µm/Pixel. The observed inhomogeneities are clustered into directly detectable irregularities, and indirectly detectable irregularities that can be inferred from the surface. In parallel, two different illumination techniques are realized in the process chamber and compared. The impact of the distinct illumination technique, direct light and dark field, on the identification of irregularities is evaluated.
UFP-Emission beim 3D-Druck
(2024)
Desktop-3D-Drucker haben in der letzten Dekade große Popularität in Bildungseinrichtungen, kleinen Unternehmen und Privathaushalten erlangt. Weit verbreitet ist mittlerweile die „Fused Filament Fabrication (FFF)“ Technologie. Hier wird ein thermoplastisches Filament geschmolzen, durch eine Metalldüse extrudiert und anschließend schichtweise so auf ein Druckbett aufgetragen, dass ein 3D-Objekt entsteht. Das Filamentmaterial wird dabei thermisch stark belastet, was zur Emission von Aerosolen sowie flüchtigen organischen Verbindungen (VOC) führt. Dabei werden hauptsächlich ultrafeine Partikel (UFP, dP < 100 nm) freigesetzt werden, die sogar in manchen Fällen im sub-4nm Größenbereich einen signifikanten Anteil ausmachen können (Tang und Seeger 2024).
Die gesundheitliche Relevanz eingeatmeter UFP ist durch sehr viele Studien gut belegt. Während eines i.d.R. mehrstündigen FFF-Druckvorgangs wird ein Anwender mit diesen Luftschadstoffen im Innenraum exponiert, häufig ohne eine Einschätzung des damit verbundenen Risikos zu haben. Die Exposition kann durch technische Faktoren (z.B. Druckerausstattung und -einstellung, Innenraumventilation), aber auch erheblich durch die Filamentauswahl beeinflusst werden. Unser Vorschlag zur Risikominderung besteht in der Auszeichnung emissionsarmer Filamentprodukte mit dem Umweltzeichen „Blauer Engel“, um so den Verbrauchern eine fundierte Auswahl zu ermöglichen. In unserem Projekt entwickeln wir dafür ein kammerbasiertes, standardisierbares und robustes Prüfverfahren zur vergleichenden Messung der Emission aus Filamenten. Mit dem Strangdruck-Verfahren (engl. Strand Printing Method, SPM) wird eine festgelegte Filamentlänge mit konstanter Rate extrudiert und auf dem Druckbett abgelegt, ohne dabei ein 3D-Objekt aufzubauen. Diese Vorgehensweise reduziert den Einfluss experimentell schlecht zu kontrollierender Faktoren sowie die Ausfallquote. Eine detaillierte Beschreibung und die Vorteile von SPM werden in Tang und Seeger (2022) erläutert. SPM wurde bereits für 44 Filamentprodukte aus unterschiedlichen Polymeren und Additiven als Vergleichstest angewendet. Alle Messungen wurden in einer klimatisierten 1 m³-Emissionsprüfkammer durchgeführt. Die Gesamtanzahl der emittierten Partikel (TP) dient als Beurteilungsmaß, in Anlehnung an die Vergabegrundlage DE-UZ-219 des Umweltzeichens Blauer Engel für Laserdrucker. Unter den getesteten Filamentprodukten variiert TP um ca. vier Größenordnungen (1E+9 ≤ TP ≤ 1E+13). Auch innerhalb jeder der untersuchten Polymergruppen variierte TP signifikant. Die Partikelemission kann daher nicht allein nach dem Basispolymer kategorisiert werden. Unsere Resultate belegen, dass die Stärke der Partikelemission eher eine charakteristische und individuelle Eigenschaft eines Filamentproduktes ist. Die Herkunft der Polymere, die herstellerspezifischen Additive sowie die nicht deklarierte Verunreinigungen können einen starken Einfluss auf die Emission haben. Die Auszeichnung von emissionsarmen Filament-produkten verspricht somit eine einfache, aber effektive Maßnahme zu sein, um Verbrauchern eine Minderung des Expositionsrisikos beim FFF-3D-Druck zu ermöglichen.
The control of stress development in cast ceramics during drying is usually one of critical steps in ceramic processes, which is important also for additive manufacturing technologies using a suspension as feedstock. This work introduces a method based on the cantilever deflection method, to simultaneously quantify the kinetics of solvent evaporation, the shrinkage and the intensity of in-plane stresses developed during drying. Particular attention is given here to the experimental limits of the method and to the optimization of the experimental conditions to suitably measure the intensity of in-planar stress in the coating. The optimized method is applied to
four alumina slurries for the water-based additive manufacturing technology LSD-print. Four stages of drying are identified and discussed in relation with the granulometry and morphology of the alumina ceramic particles.
Since laser powder bed fusion (PBF-LB/M) is prone to the formation of defects during the building process, a fundamental requirement for widespread application is to find ways to assure safety and reliability of the additively manufactured parts. A possible solution for this problem lies in the usage of in-situ thermographic monitoring for defect detection. In this contribution we investigate possibilities and limitations of the VIS/NIR wavelength range for defect detection. A VIS/NIR camera can be based on conventional silicon-based sensors which typically have much higher spatial and temporal resolution in the same price range but are more limited in the detectable temperature range than infrared sensors designed for longer wavelengths. To investigate the influence, we compared the thermographic signatures during the creation of artificially provoked defects by local parameter variations in test specimens made of a nickel alloy (UNS N07208) for two different wavelength ranges (~980 nm and ~1600 nm).
Powder bed technologies are amongst the most successful Additive Manufacturing (AM) techniques. The application of these techniques to most ceramics has been difficult so far, because of the challenges related to the deposition of homogeneous powder layers when using fine powders.
In this context, the "layerwise slurry deposition" (LSD) has been developed as a layer deposition method enabling the use of powder bed AM technologies also for advanced ceramic materials. The layerwise slurry deposition consists of the layer-by-layer deposition of a ceramic slurry by means of a doctor blade, in which the slurry is deposited and dried to achieve a highly packed powder. Not only very fine, submicron powders can be processed with low organics, but also the dense powder bed provides excellent support to the parts built.
The latest development of this technology shows that it is possible to print ceramic parts in a continuous process by depositing a layer onto a rotating platform, growing a powder bed following a spiral motion. The unique mechanical stability of the layers in LSD-print allows to grow a powder bed several centimeters thick without any lateral support. The continuous layer deposition allows to achieve a productivity more than 10X higher compared to the linear deposition, approaching a build volume of 1 liter/hour.
Hybrid additive manufacturing plays a crucial role in the restoration of gas turbine blades, where e.g., the damaged blade tip is reconstructed by the additive manufacturing process on the existing blade made of a parent nickel-based alloy. However, inherent process-related defects in additively manufactured material, along with the interface created between the additively manufactured and the cast base material, impact the fatigue crack growth behavior in bi-material components. This study investigates the fatigue crack growth behavior in bi-material specimens of nickel-based alloys, specifically, additively manufactured STAL15 and cast alloy 247DS. The tests were conducted at 950 °C with stress ratios of 0.1 and -1. Metallographic and fractographic investigations were carried out to understand crack growth mechanisms. The results revealed significant retardation in crack growth at the interface. This study highlights the potential contributions of residual stresses and microstructural differences to the observed crack growth retardation phenomenon, along with the conclusion from an earlier study on the effect of yield strength mismatch on crack growth behavior at a perpendicular interface in bi-material specimens.
Components produced using additive manufacturing can be marked for unique identification and secure authentication [1,2]. Serial numbers and machine-readable codes can be used to identify the component, and link digital product-related data (i.e., a digital product passport) to the actual components. The most prevailing solution consists of local process manipulation, such as printing a quick response (QR) code [3] or a set of blind holes on the surface of the internal cavity of hollow components. However, local manipulation of components may alter the properties, and external tagging features can be altered or even removed by post-processing treatments. This work therefore aims to provide a new methodology for identification, authentication, and traceability of additively manufactured (AM) components using microstructural features that are unique to each part. X-ray computed tomography (XCT) was employed to image the microstructural features of AlSi10Mg parts. Based on size and geometry, the most prominent features were selected to create a unique digital authenticator. We implemented a framework in Python using open-access modules that can successfully create a digital object authenticator using the segmented microstructure information from XCT. The authenticator is stored as a QR code, along with the 3D information of the selected features.