TY - CONF A1 - Stargardt, Patrick A1 - Junge, P. A1 - Greinacher, M. A1 - Kober, D. A1 - Mieller, Björn T1 - Dielectric properties of plasma sprayed coatings for insulation application N2 - Thermal spraying provides a rapid method for additive deposition of various ceramics as electrical insulation in applications where polymers are not suitable. New applications in complex shaped additive manufactured metal parts are emerging for example in large scale electrical devices. Microstructural and dielectric evaluation of coatings is crucial to the employment of such free-form processes. The properties and microstructure of the plasma sprayed alumina coatings are compared with dense reference samples of the same powder produced by spark plasma sintering (SPS). To obtain dense bulk samples from the coarse alumina powder for spray coating, SPS is used. Samples are fabricated by atmospheric plasma spraying (APS) of commercially available alumina powder (d50 = 33 µm) on copper substrates and by SPS of the same powder. Microstructure and porosity were analyzed by optical microscopy and scanning electron microscopy (SEM). Phase compositions were determined by X-ray diffraction (XRD). Dielectric properties such as DC resistance, dielectric strength, dielectric loss, and relative permittivity were determined according to the standards. The microstructure and dielectric properties of the coating and bulk material are compared to assess whether the coating is suitable for use in electrical insulation application. T2 - Ceramics in Europe 2022 CY - Krakow, Poland DA - 10.07.2022 KW - Dielectric characterization KW - Atmospheric plasma spraying KW - Spark plasma sintering KW - Electrical insulation PY - 2022 AN - OPUS4-55328 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Roveda, Ilaria A1 - Serrano Munoz, Itziar A1 - Madia, Mauro T1 - Investigation of residual stresses and microstructure effects on the fatigue behaviour of a L-PBF AlSi10Mg alloy N2 - Laser Powder Bed Fusion (L-PBF) allow the fabrication of lightweight near net shape AlSi10Mg components attractive to the aerospace, automotive, biomedical and military industries. During the build-up process, high cooling rates occur. Thus, L-PBF AlSi10Mg alloys exhibit a Si-nanostructure in the as-built condition, which leads to superior mechanical properties compared to conventional cast materials. At the same time, such high thermal gradients generally involve a deleterious residual stress (RS) state that needs to be assessed during the design process, before placing a component in service. To this purpose post-process heat treatments are commonly performed to relieve detrimental RS. In this contribution two low-temperature stress-relief heat treatments (SRHT) are studied and compared with the as-built state: a SRHT at 265°C for 1 hour and a SRHT at 300°C for 2 hours. At these temperatures microstructural changes occur. In the as-built state, Si atoms are supersaturated in the α-aluminium matrix, which is enveloped by a eutectic Si-network. At 265°C the Si precipitation from the matrix to the pre-existing network is triggered. Thereafter, above 295°C the fragmentation and spheroidization of the Si branches takes place, presumably by Al–Si interdiffusion. After 2 hours the original eutectic network is completely replaced by uniformly distributed blocky particles. The effect of the heat and the microstructure modification on the RS state and the fatigue properties is investigated. Energy dispersive x-ray and neutron diffraction are combined to investigate the near-surface and bulk RS state of a L-PBF AlSi10Mg material. Differences in the endurance limit are evaluated experimentally by high cycle fatigue (HCF) tests and cyclic R-curve determination. T2 - 43rd Materials Mechanics Seminar CY - Sani, Chalkidiki, Greece DA - 05.06.2022 KW - AlSi10Mg KW - Fatigue KW - Neutron diffraction KW - X-ray diffraction PY - 2022 AN - OPUS4-55090 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mishurova, Tatiana T1 - 3D imaging and residual stress analysis of AM materials at BAM N2 - The overview of the activity of group 8.5 Micro-NDT (BAM, Belin, Germany) in the field of additively manufacturing material characterization will be presented. The research of our group is focused on the 3D imaging of AM materials by means of X-ray Computed Tomography at the lab and at synchrotron, and the residual stress characterization by diffraction (nondestructive technique). T2 - Seminar at Chalmers University and Centre for Additive Manufacture (CAM2) CY - Gothenburg, Sweden DA - 19.05.2022 KW - Additive manufacturing KW - Laser powder bed fusion KW - Residual stress KW - Computed tomography KW - Synchrotron X-ray diffraction KW - X-ray refraction PY - 2022 AN - OPUS4-55019 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mishurova, Tatiana A1 - Serrano Munoz, Itziar T1 - Multiscale residual stress analysis and synchrotron X-ray refraction of additively manufactured parts N2 - The overview of the activity of group 8.5 Micro-NDT (BAM, Belin, Germany) in the field of additively manufacturing material characterization will be presented. The challenges in the residual stress analysis of AM components are discussed on the basis on the show studies performed in BAM. Also, the synchrotron X-ray refraction technique, available in BAM, is presented, showing example of in-situ heating test of Al10SiMg AM material. T2 - Seminar at Grenoble INP, Science et Ingénierie des Matériaux et Procédés (SIMaP) CY - Grenoble, France DA - 01.07.2022 KW - Additive manufacturing KW - Residual stress KW - X-ray refraction KW - Computed tomography PY - 2022 AN - OPUS4-55232 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gupta, P. A1 - Karnaushenko, D. D. A1 - Becker, C. A1 - Okur, I. E. A1 - Melzer, M. A1 - Özer, B. A1 - Schmidt, O. G. A1 - Karnaushenko, D. T1 - Large Scale Exchange Coupled Metallic Multilayers by Roll-to-Roll (R2R) Process for Advanced Printed Magnetoelectronics N2 - Till now application of printed magnetoelectronics is hindered by lack of large area exchange coupled metallic multilayers required to produce printable magneto-sensory inks. Large-scale roll-to-roll (R2R) fabrication process is an attractive approach owing to its capabilities for high volume, high throughput, and large area manufacturing. Precise and high performance R2R sputtering technology is developed to fabricate large area giant magnetoresistive (GMR) thin-films stacks that contain 30 metallic bilayers prepared by continuous R2R sputtering of Co and Cu sequential on a hundred meters long polyethylene terephthalate (PET) web. The R2R sputtered Co/Cu multilayer on a 0.2 × 100 m2 PET web exhibits a GMR ratio of ≈40% achieving the largest area exchange coupled room temperature magneto-sensitive system demonstrated to date. The prepared GMR thin-film is converted to magnetosensitive ink that enables printing of magnetic sensors with high performance in a cost-efficient way, which promotes integration with printed electronics. An average GMR ratio of ≈18% is obtained for 370 printed magnetic sensors. The realized precise R2R sputtering approach can also be extended to a wide range of hybrid thin-film material systems opening up a path for new functional inks applied with printing technologies. KW - Printed Electronics KW - Flexible Magnetic Sensors KW - Roll-to-Roll Processing KW - Functional Materials KW - Upscaling PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-552344 SN - 2365-709X SP - 1 EP - 11 PB - Wiley-VCH CY - Weinheim, Deutschland AN - OPUS4-55234 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Blasón Gonzalez, Sergio A1 - Chaudry, M. A1 - Elorriaga, A. A1 - Madia, Mauro A1 - Zerbst, Uwe A1 - Llavori, I. A1 - Hilgenberg, Kai T1 - Design methodology of vessel produced by L PBF stainless steel using representative specimens N2 - This work presents the preliminary results of an ongoing project with a double objective: on the one hand, the characterisation of the mechanical properties against fatigue damage of an additively manufactured 316 stainless steel produced by laser powder bed-based (L-PBF) technology; on the other hand, the implementation of numerical simulation techniques able to predict the mechanical behaviour of the material in order to optimise and reduce the design costs of vessels used in the chemical sector. The current state of the work developed in this research framework allows showing the first batch of experimental results of crack propagation rate (FCGR) and high cycle fatigue (HCF) tests. The geometry of the vessels studied presents three clearly differentiated regions, either in terms of thickness (11-15 mm) or concerning the inclination of the walls to the direction of manufacturing (0º - 45º). The experimental campaign carried out so far allows identifying the differences in behaviour when comparing different extraction locations around the vessel. This is due to the variations in thermal cycles that the deposited material undergoes during the manufacturing process. Therefore, this causes variations in the microstructure which lead to changes in the response of the material. In this work, these differences are analysed qualitatively and quantitatively from the results of FCGR and HCF, thus allowing to locate the regions with the highest risk in terms of structural integrity against fatigue. This preliminary phase together with the numerical simulation of the additive manufacturing process are key to achieving a reliable description and modelling of the material. The latter will make it possible to address the priority aim of this project, involving the manufacture of independent samples whose properties are representative of the original material extracted from the reference vessels. It is, therefore, a comprehensive methodology for the design of additively manufactured components based on the localised fatigue mechanical properties of representative specimens. T2 - ECF23, European Conference on Fracture 2022 CY - Funchal, Portugal DA - 27.06.2022 KW - Additive manufacturing KW - Steel 316L KW - Fracture Mechanics PY - 2022 AN - OPUS4-55240 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Blasón Gonzalez, Sergio A1 - Chaudry, M. A1 - Elorriaga, A. A1 - Madia, Mauro A1 - Llavori, I. A1 - Hilgenberg, Kai T1 - Diseño de componentes fabricados aditivamente basado en propiedades locales del material T1 - Design of additively manufactured components based on locally representative material fatigue properties N2 - La tecnología de fabricación aditiva (AM) continúan progresando y permitiendo alcanzar diseños cada vez más complejos y optimizados. La industria química es uno de los sectores donde componentes AM han adquirido un gran interés. La falta hasta la fecha de una directiva europea que regule la inspección, certificación y aceptación de equipos sometidos a presión hace necesario progresar en esta línea. El objetivo que se persigue en este trabajo es el de desarrollar una metodología de diseño sobre componentes fabricados aditivamente basada en la estimación de vida a fatiga de las zonas más susceptibles de sufrir dicho tipo de fallo. El estudio comprende diversas facetas de análisis, simulaciones numéricas, análisis de la microestructura del material y una extensa campaña experimental. La evaluación de la integridad estructural se realiza aplicando mecánica de fractura. La historia térmica a lo largo del proceso de fabricación determina la microestructura del componente en cada región y, por ende, influye en las propiedades mecánicas en cada una. Se presentan los resultados preliminares de un proyecto de investigación en curso dirigido a la caracterización de propiedades mecánicas en recipientes de presión producidos por fusión láser en lecho de polvo (L-PBF, por sus siglas en inglés) de acero inoxidable 316L. Se detallan los resultados preliminares en términos de velocidad de crecimiento de grietas por fatiga (FCGR), y se comparan los resultados de probetas extraídas de diferentes regiones de los depósitos. N2 - Additive manufacturing (AM) technology continues to make progress and allows for reaching increasingly complex and optimised designs. The chemical industry is one of the sectors where AM components have acquired relevance. There is a lack of any European directive in order to regulate the inspection, certification as well as acceptance of additively manufactured (AM) equipment subjected to pressure loads, so progression in this line becomes necessary. This work aimed to develop a design methodology for AM components based on the estimation of fatigue lifetime on those regions with a higher risk of failure. Diverse facets are involved in this study, including numerical simulations, microstructure analysis and an extensive experimental campaign. The fatigue assessment is performed based on fracture mechanics. The microstructure characteristics are dependent on the thermal history along the manufacturing process for each region and, accordingly, the mechanical properties are likewise influenced. Preliminary results of an ongoing research project for characterizing the mechanical properties in demonstrator pressure vessels produced by laser powder bed fusion (L-PBF) on stainless steel 316L are presented. The preliminary findings obtained in terms of fatigue crack growth rate (FCGR) and are detailed. Results from specimens extracted from different regions of the vessel are compared. T2 - 5th Iberian Conference on Structural Integrity IbCSI 2022 CY - Coimbra, Portugal DA - 30.03.2022 KW - Fabricación Aditiva KW - Additive Manufacturing KW - Acero 316L KW - Mecánica de Fractura KW - Predicción vida a fatiga KW - Fit4AM KW - Steel 316L KW - Fracture Mechanics KW - Fatigue lifetime prediction PY - 2022 AN - OPUS4-55241 LA - spa AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Üstündag, Ömer A1 - Bakir, Nasim A1 - Gook, S. A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - Hybrid laser‑arc welding of laser‑ and plasma‑cut 20‑mm‑thick structural steels N2 - It is already known that the laser beam welding (LBW) or hybrid laser-arc welding (HLAW) processes are sensitive to manufacturing tolerances such as gaps and misalignment of the edges, especially at welding of thick-walled steels due to its narrow beam diameter. Therefore, the joining parts preferably have to be milled. The study deals with the influence of the edge quality, the gap and the misalignment of edges on the weld seam quality of hybrid laser-arc welded 20-mm-thick structural steel plates which were prepared by laser and plasma cutting. Single-pass welds were conducted in butt joint configuration. An AC magnet was used as a contactless backing. It was positioned under the workpiece during the welding process to prevent sagging. The profile of the edges and the gap between the workpieces were measured before welding by a profile scanner or a digital camera, respectively. With a laser beam power of just 13.7 kW, the single-pass welds could be performed. A gap bridgeability up to 1 mm at laser-cut and 2 mm at plasma-cut samples could be reached respectively. Furthermore, a misalignment of the edges up to 2 mm could be welded in a single pass. The new findings may eliminate the need for cost and time-consuming preparation of the edges. KW - Hybrid laser-arc welding KW - Thick-walled steel KW - Edge quality KW - Gap bridgeability KW - Laser cutting KW - Plasma cutting PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-552013 SN - 0043-2288 VL - 66 SP - 507 EP - 514 PB - Springer AN - OPUS4-55201 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Fabry, Cagtay A1 - Hirthammer, Volker A1 - Scherer, Martin K. T1 - weldx - welding data exchange format N2 - Scientific welding data covers a wide range of physical domains and timescales and are measured using various different sensors. Complex and highly specialized experimental setups at different welding institutes complicate the exchange of welding research data further. The WelDX research project aims to foster the exchange of scientific data inside the welding community by developing and establishing a new open source file format suitable for the documentation of experimental welding data and upholding associated quality standards. In addition to fostering scientific collaboration inside the national and international welding community an associated advisory committee will be established to oversee the future development of the file format. The proposed file format will be developed with regard to current needs of the community regarding interoperability, data quality and performance and will be published under an appropriate open source license. By using the file format objectivity, comparability and reproducibility across different experimental setups can be improved. KW - Welding KW - Research data management KW - Open science KW - Open Data KW - WelDX PY - 2021 U6 - https://doi.org/10.5281/zenodo.6563282 PB - Zenodo CY - Geneva AN - OPUS4-55226 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mishurova, Tatiana A1 - Evsevleev, Sergei A1 - Mehta, Bharat A1 - Nyborg, L. A1 - Virtanen, E. A1 - Markötter, Henning A1 - Hryda, E. A1 - Bruno, Giovanni T1 - Failure Mechanisms Investigation by Means of in-situ Synchrotron Computed Tomography in Aluminum MMC-based Alloy Tailored for Additive Manufacturing (AM) N2 - Most of the Al alloys used in additive manufacturing (AM), in particular Laser Powder Bed Fusion (LPBF), do not exceed a strength of 200 MPa, whereas conventionally high-performance alloys exhibit strengths exceeding 400 MPa. The availability of such Al alloys in AM is limited due to difficulties in printability, requiring synergetic material and AM process development to satisfy harsh processing conditions during LPBF [1]. One approach is the addition of reinforcement to the based powder, allowing tailoring composition and properties of a Metal Matrix Composite (MMC) by AM. Still, the effect of the reinforcement on the resulting mechanical properties must be studied to understand the performance and limits of the newly developed material. The goal of this work was to investigate the failure mechanism of LPBF Al-based MMC material using in-situ Synchrotron X-ray Computed Tomography (SXCT) during mechanical testing. T2 - International conference on tomography of material and structures CY - Grenoble, France DA - 27.06.2022 KW - Additive manufacturing KW - Laser powder bed fusion KW - Al alloy KW - MMC PY - 2022 AN - OPUS4-55228 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bruno, Giovanni A1 - Mishurova, Tatiana A1 - Evlevleev, Sergei A1 - Khrapov, D. A1 - Meinel, Dietmar A1 - Surmenev, R. A1 - Surmeneva, M. A1 - Koptyug, A. T1 - Procedures to Quantitatively Characterize Morphological Features of Triply Periodic Minimal Surface Structures N2 - Additively manufactured (AM) metallic sheet-based Triply Periodic Minimal Surface Structures (TPMSS) meet several requirements in both bio-medical and engineering fields: Tunable mechanical properties, low sensitivity to manufacturing defects, mechanical stability, and high energy absorption. However, they also present some challenges related to quality control. In fact, the optimization of both the AM process and the properties of TPMSS is impossible without considering structural characteristics as manufacturing accuracy, internal defects, and as well as surface topography and roughness. In this study, the quantitative non-destructive analysis of TPMSS manufactured from Ti-6Al-4V alloy by electron beam melting was performed by means of laboratory X-ray computed tomography (XCT). T2 - International conference on tomography of material and structures 2022 CY - Grenoble, France DA - 27.06.2022 KW - Additive manufacturing KW - Scaffold KW - Lightweight structures KW - Computed tomography PY - 2022 AN - OPUS4-55229 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Tamsen, Erik A1 - Unger, Jörg F. T1 - Towards an automatic optimization framework for performance oriented precast concrete design N2 - Concrete has a long history in the construction industry and is currently one of the most widely used building materials. Especially precast concrete elements are frequently utilized in construction projects for standardized applications, increasing the quality of the composite material, as well as reducing the required building time. Despite the accumulated knowledge, continuous research and development in this field is essential due to the complexity of the composite combined with the ever-growing number of applications and requirements. Especially in view of global climate change, design aspects as CO2 emissions and resource efficiency require new mix designs and optimization strategies. A result of the material’s high complexity and heterogeneity on multiple scales is that utilizing the full potential with changing demands is highly challenging, even for the established industry. We propose a framework based on an ontology, which automatically combines experimental data with numerical simulations. This not only simplifies experimental knowledge transfer, but allows the model calibration and the resulting simulation predictions to be reproducible and interpretable. This research shows a way towards a more performance oriented material design. Within this talk we present our workflow for an automated simulation of a precast element, demonstrating the interaction of the ontology and the finite element simulation. We show the automatic calibration of our early-age concrete model [1, 2], to improve the prediction of the optimal time for the removal of the form work. T2 - The 8th European Congress on Computational Methods in Applied Sciences and Engineering (ECCOMAS) 2022 CY - Oslo, Norway DA - 05.06.2022 KW - Performance oriented concrete design KW - Early-age concrete KW - Precast concrete KW - Ontology KW - Optimization workflow PY - 2022 AN - OPUS4-55302 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Franchin, G. A1 - Zocca, Andrea A1 - Karl, D. A1 - Yun, H. A1 - Tian, X. T1 - Editorial: Advances in additive manufacturing of ceramics N2 - Recently, additive manufacturing of ceramics has achieved the maturity to be transferred from scientific laboratories to industrial applications. At the same time, research is progressing to expand the boundaries of this field into the territory of novel materials and applications. This feature issue addresses current progress in all aspects of additive manufacturing of ceramics, from parts design to feedstock selection, from technological development to characterization of printed components. KW - Additive manufacturing KW - Ceramic PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-549361 SN - 2666-5395 VL - 10 SP - 1 EP - 2 PB - Elsevier CY - Amsterdam AN - OPUS4-54936 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Oster, Simon A1 - Fritsch, Tobias A1 - Ulbricht, Alexander A1 - Mohr, Gunther A1 - Bruno, Giovanni A1 - Maierhofer, Christiane A1 - Altenburg, Simon T1 - On the Registration of Thermographic In Situ Monitoring Data and Computed Tomography Reference Data in the Scope of Defect Prediction in Laser Powder Bed Fusion N2 - The detection of internal irregularities is crucial for quality assessment in metal-based additive manufacturing (AM) technologies such as laser powder bed fusion (L-PBF). The utilization of in-process thermography as an in situ monitoring tool in combination with post-process X-ray micro computed tomography (XCT) as a reference technique has shown great potential for this aim. Due to the small irregularity dimensions, a precise registration of the datasets is necessary as a requirement for correlation. In this study, the registration of thermography and XCT reference datasets of a cylindric specimen containing keyhole pores is carried out for the development of a porosity prediction model. The considered datasets show variations in shape, data type and dimensionality, especially due to shrinkage and material elevation effects present in the manufactured part. Since the resulting deformations are challenging for registration, a novel preprocessing methodology is introduced that involves an adaptive volume adjustment algorithm which is based on the porosity distribution in the specimen. Thus, the implementation of a simple three-dimensional image-to-image registration is enabled. The results demonstrate the influence of the part deformation on the resulting porosity location and the importance of registration in terms of irregularity prediction. KW - Selective laser melting (SLM) KW - Laser powder bed fusion (L-PBF) KW - Additive manufacturing (AM) KW - Process monitoring KW - Infrared thermography KW - X-ray computed tomography (XCT) KW - Defect detection KW - Image registration PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-549412 VL - 12 IS - 6 SP - 1 EP - 21 PB - MDPI AN - OPUS4-54941 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Serrano Munoz, Itziar A1 - Roveda, Ilaria A1 - Kupsch, Andreas A1 - Müller, Bernd R. A1 - Bruno, Giovanni T1 - Synchrotron x ray refraction detects microstructure and porosity evolution during in situ heat treatments in an LPBF ALSI10MG alloy N2 - The complexity of any microstructural characterization significantly increases when there is a need to evaluate the icrostructural evolution as a function of temperature. To date, this characterization is primarily performed by undertaking elaborative ex-situ experiments where the material’s heating procedure is interrupted at different temperatures or times. Moreover, these studies are often limited to a region smaller than the representative elementary volume, which can lead to partial or even biased interpretations of the collected data. This limitation can be greatly overcome by using in-situ synchrotron X-ray refraction (SXRR). T2 - ICTMS 2022 CY - Grenoble, France DA - 27.06.2022 KW - Synchrotron refraction KW - In situ heating KW - AlSi10Mg alloy KW - Additive manufacturing KW - Microstructural evolution PY - 2022 AN - OPUS4-55199 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Altenburg, Simon A1 - Becker, Tina A1 - Breese, Philipp Peter A1 - Maierhofer, Christiane T1 - Towards hyperspectral in-situ temperature measurement in metal additive manufacturing N2 - The industrial use of additive manufacturing for the production of metallic parts with high geometrical complexity and lot sizes close to one is rapidly increasing as a result of mass individualisation and applied safety relevant constructions. However, due to the high complexity of the production process, it is not yet fully understood and controlled, especially for changing (lot size one) part geometries. Due to the thermal nature of the Laser-powder bed fusion (L-PBF) process – where parts are built up layer-wise by melting metal powder via laser - the properties of the produced part are strongly governed by its thermal history. Thus, a promising route for process monitoring is the use of thermography. However, the reconstruction of temperature information from thermographic data relies on the knowledge of the surface emissivity at each position on the part. Since the emissivity is strongly changing during the process due to phase changes, great temperature gradients, possible oxidation, and other potential influencing factors, the extraction of real temperature data from thermographic images is challenging. While the temperature development in and around the melt pool, where melting and solidification occur is most important for the development of the part properties. Also, the emissivity changes are most severe in this area, rendering the temperature deduction most challenging. A possible route to overcome the entanglement of temperature and emissivity in the thermal radiation is the use of hyperspectral imaging in combination with temperature emissivity separation (TES) algorithms. As a first step towards the combined temperature and emissivity determination in the L-PBF process, here, we use a hyperspectral line camera system operating in the short-wave infrared region (0.9 µm to 1.7 µm) to measure the spectral radiance emitted. In this setup, the melt pool of the L-PBF process migrates through the camera’s 1D field of view, so that the radiation intensities are recorded simultaneously for multiple different wavelength ranges in a spatially resolved manner. At sufficiently high acquisition frame rate, an effective melt pool image can be reconstructed. Using the grey body approximation (emissivity is independent of the wavelength), a first, simple TES is performed, and the resulting emissivity and temperature values are compared to literature values. Subsequent work will include reference measurements of the spectral emissivity in different states allowing its analytical parametrisation as well as the adaption and optimisation of the TES algorithms. An illustration of the proposed method is shown in Fig.1. The investigated method will allow to gain a deeper understanding of the L-PBF process, e.g., by quantitative validation of simulation results. Additionally, the results will provide a data basis for the development of less complex and cheaper sensor technologies for L-PBF in-process monitoring (or for related process), e.g., by using machine learning. T2 - 21st International Conference on Photoacoustic and Photothermal Phenomena CY - Bled, Slovenia DA - 19.06.2022 KW - Thermography KW - Additive manufacturing KW - L-PBF KW - Hyperspectral PY - 2022 AN - OPUS4-55152 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Epperlein, Martin T1 - Eine digital gestützte Qualitätssicherung für die additive Fertigung N2 - Die additive Fertigung (ugs. „3D-Druck“) ist bei der Herstellung von hochkomplexen metallischen Bauteilen, bionisch inspiriertem Leichtbau oder Prototypen nicht mehr wegzudenken. Für die konventionelle Fertigung hat sich das bestehende System der Qualitätsinfrastruktur (QI) bewährt. Die additive Fertigung vergrößert den gestalterischen Spielraum von möglichen Bauteilgeometrien und Prozessfehlern jedoch erheblich. Hier gerät die QI an ihre Grenzen, sodass die Fertigung und Zulassung sicherheitsrelevanter Bauteile sehr zeit- und kostenintensive Versuche erfordern. Eine moderne digitale QI erlaubt eine effizientere Qualitätssicherung für additiv gefertigte Bauteile. Dies erfordert eine durchgängig digitale Abbildung des physischen Materialflusses. T2 - Werner-von-Siemens Centre for Industry and Science - AM Querschnittstreffen CY - Online meeting DA - 21.06.2022 KW - Additive Fertigung KW - Qualitätssicherung KW - Digitalisierung PY - 2022 AN - OPUS4-55127 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Fabry, Cagtay A1 - Hirthammer, Volker A1 - Pittner, Andreas A1 - Rethmeier, Michael T1 - WelDX - a file format for processing and archiving welding research data N2 - The talk gives an introduction into gas metal arc welding and its relation to plasma science as well as current challenges in welding research concerning research data management and the application of the FAIR principles. The WelDX project is introduced and the main goals are discussed and contrasted with the current features of the weldx API. Different internal and public facing use cases focusing on research data management and their implementation using weldx are presented. The interactive part of the presentation displays some advanced multi layer use cases and data analysis using the weldx API as well as the integration of materials properties into weldx. T2 - International Workshop on FAIR Data in Plasma Science CY - Online meeting DA - 16.05.2022 KW - WelDX KW - Open science KW - Research data management KW - Arc welding KW - Digital transformation PY - 2022 AN - OPUS4-55153 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ávila Calderón, Luis Alexander A1 - Rehmer, Birgit A1 - Graf, B. A1 - Ulbricht, Alexander A1 - Skrotzki, Birgit A1 - Rethmeier, Michael T1 - Low cycle fatigue behavior of DED-L Ti-6AL-4V N2 - Laser powder-based directed energy deposition (DED-L) is a technology that offers the possibility for 3D material deposition over hundreds of layers and has thus the potential for application in additive manufacturing (AM). However, to achieve broad industrial application as AM technology, more data and knowledge about the fabricated materials regarding the achieved properties and their relationship to the manufacturing process and the resulting microstructure is still needed. In this work, we present data regarding the low-cycle fatigue (LCF) behavior of Ti-6Al-4V. The material was fabricated using an optimized DED-L process. It features a low defect population and excellent tensile properties. To assess its LCF behavior two conventionally manufactured variants of the same alloy featuring different microstructures were additionally tested. The strain-controlled LCF tests were carried out in fully reversed mode with 0.3 % to 1.0 % axial strain amplitude from room temperature up to 400°C. The LCF behavior and failure mechanisms are described. For characterization, optical microscopy (OM), scanning electron microscopy (SEM), and micro-computed tomography (µCT) were used. The low defect population allows for a better understanding of the intrinsic material’s properties and enables a fairer comparison against the conventional variants. The fatigue lifetimes of the DED-L material are nearly independent of the test temperature. At elevated test temperatures, they are similar or higher than the lifetimes of the conventional counterparts. At room temperature, they are only surpassed by the lifetimes of one of them. The principal failure mechanism involves multiple crack initiation sites. T2 - Ninth International Conference on Low Cycle Fatigue (LCF9) CY - Berlin, Germany DA - 21.06.2022 KW - AGIL KW - Additive Manufacturing KW - Ti-6Al-4V KW - Low-Cycle-Fatigue KW - Microstructure PY - 2022 AN - OPUS4-55123 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Breese, Philipp Peter A1 - Becker, Tina A1 - Oster, Simon A1 - Altenburg, Simon A1 - Metz, C. A1 - Maierhofer, Christiane T1 - Aktive Laserthermografie im L-PBF-Prozess zur in-situ Detektion von Defekten N2 - Die zerstörungsfreie Prüfung von metallischen Bauteilen hergestellt mit additiver Fertigung (Additive Manufacturing - AM) gewinnt zunehmend an industrieller Bedeutung. Grund dafür ist die Feststellung von Qualität, Reproduzierbarkeit und damit auch Sicherheit für Bauteile, die mittels AM gefertigt wurden. Jedoch wird noch immer ex-situ geprüft, wobei Defekte (z.B. Poren, Risse etc.) erst nach Prozessabschluss entdeckt werden. Übersteigen Anzahl und/oder Abmessung die vorgegebenen Grenzwerte für diese Defekte, so kommt es zu Ausschuss, was angesichts sehr langer Bauprozessdauern äußerst unrentabel ist. Eine Schwierigkeit ist dabei, dass manche Defekte sich erst zeitverzögert zum eigentlichen Materialauftrag bilden, z.B. durch thermische Spannungen oder Schmelzbadaktivitäten. Dementsprechend sind reine Monitoringansätze zur Detektion ggf. nicht ausreichend. Daher wird in dieser Arbeit ein Verfahren zur aktiven Thermografie an dem AM-Prozess Laser Powder Bed Fusion (L-PBF) untersucht. Das Bauteil wird mit Hilfe des defokussierten Prozesslasers bei geringer Laserleistung zwischen den einzelnen gefertigten Lagen unabhängig vom eigentlichen Bauprozess erwärmt. Die entstehende Wärmesignatur wird ort- und zeitaufgelöst durch eine Infrarotkamera erfasst. Durch diese der Lagenfertigung nachgelagerte Prüfung werden auch zum Bauprozess zeitversetzte Defektbildungen nachweisbar. In dieser Arbeit finden die Untersuchungen als Proof-of-Concept, losgelöst vom AM-Prozess, an einem typischen metallischen Testkörper statt. Dieser besitzt eine Nut als oberflächlichen Defekt. Die durchgeführten Messungen finden an einer eigens entwickelten L-PBF-Forschungsanlage innerhalb der Prozesskammer statt. Damit wird ein neuartiger Ansatz zur aktiven Thermografie für L-PBF erforscht, der eine größere Bandbreite an Defektarten auffindbar macht. Der Ansatz wird validiert und Genauigkeit sowie Auflösungsvermögen geprüft. Eine Anwendung am AM-Prozess wird damit direkt forciert und die dafür benötigten Zusammenhänge werden präsentiert. T2 - DGZfP-Jahrestagung 2022 CY - Kassel, Germany DA - 23.05.2022 KW - Additive Manufacturing KW - Laser Powder Bed Fusion KW - Thermografie KW - Zerstörungsfreie Prüfung KW - Aktive Laserthermografie PY - 2022 AN - OPUS4-55040 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Breese, Philipp Peter A1 - Becker, Tina A1 - Oster, Simon A1 - Altenburg, Simon A1 - Metz, C. A1 - Maierhofer, Christiane T1 - Aktive Laserthermografie im L-PBF-Prozess zur in-situ Detektion von Defekten N2 - Die zerstörungsfreie Prüfung von metallischen Bauteilen hergestellt mit additiver Fertigung (Additive Manufacturing - AM) gewinnt zunehmend an industrieller Bedeutung. Grund dafür ist die Feststellung von Qualität, Reproduzierbarkeit und damit auch Sicherheit für Bauteile, die mittels AM gefertigt wurden. Jedoch wird noch immer ex-situ geprüft, wobei Defekte (z.B. Poren, Risse etc.) erst nach Prozessabschluss entdeckt werden. Übersteigen Anzahl und/oder Abmessung die vorgegebenen Grenzwerte für diese Defekte, so kommt es zu Ausschuss, was angesichts sehr langer Bauprozessdauern äußerst unrentabel ist. Eine Schwierigkeit ist dabei, dass manche Defekte sich erst zeitverzögert zum eigentlichen Materialauftrag bilden, z.B. durch thermische Spannungen oder Schmelzbadaktivitäten. Dementsprechend sind reine Monitoringansätze zur Detektion ggf. nicht ausreichend. Daher wird in dieser Arbeit ein Verfahren zur aktiven Thermografie an dem AM-Prozess Laser Powder Bed Fusion (L-PBF) untersucht. Das Bauteil wird mit Hilfe des defokussierten Prozesslasers bei geringer Laserleistung zwischen den einzelnen gefertigten Lagen unabhängig vom eigentlichen Bauprozess erwärmt. Die entstehende Wärmesignatur wird ort- und zeitaufgelöst durch eine Infrarotkamera erfasst. Durch diese der Lagenfertigung nachgelagerte Prüfung werden auch zum Bauprozess zeitversetzte Defektbildungen nachweisbar. In dieser Arbeit finden die Untersuchungen als Proof-of-Concept, losgelöst vom AM-Prozess, an einem typischen metallischen Testkörper statt. Dieser besitzt eine Nut als oberflächlichen Defekt. Die durchgeführten Messungen finden an einer eigens entwickelten L-PBF-Forschungsanlage innerhalb der Prozesskammer statt. Damit wird ein neuartiger Ansatz zur aktiven Thermografie für L-PBF erforscht, der eine größere Bandbreite an Defektarten auffindbar macht. Der Ansatz wird validiert und Genauigkeit sowie Auflösungsvermögen geprüft. Eine Anwendung am AM-Prozess wird damit direkt forciert und die dafür benötigten Zusammenhänge werden präsentiert. T2 - DGZfP-Jahrestagung 2022 CY - Kassel, Germany DA - 23.05.2022 KW - Additive Manufacturing KW - Laser Powder Bed Fusion KW - Thermografie KW - Zerstörungsfreie Prüfung KW - Aktive Laserthermografie PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-550353 SN - 978-3-947971-25-1 VL - 177 SP - 1 EP - 9 PB - Deutsche Gesellschaft für Zerstörungsfreie Prüfung e.V. AN - OPUS4-55035 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ehlers, Henrik A1 - Pelkner, Matthias A1 - Thewes, R. A1 - Jutkuhn, D. T1 - Hochauflösende Online Wirbelstromprüfung von PBF LB/M Bauteilen mit GMR Arrays N2 - In den letzten Jahren haben additive Fertigungstechnologien an Bedeutung gewonnen. Für komplexe Funktionsbauteile oder die Produktion von Werkstücken in kleinen Stückzahlen kann das Laser-Pulverbettschmelzen eingesetzt werden. Hohe Sicherheitsanforderungen, z. B. in der Luft- und Raumfahrt, erfordern eine umfassende Qualitätskontrolle. Daher werden nach der Fertigung zerstörungsfreie Offline-Prüfverfahren wie die Computertomographie eingesetzt. In jüngster Zeit wurden zur Verbesserung der Rentabilität und Praktikabilität zerstörungsfreie Online-Prüfverfahren wie die optische Tomographie entwickelt. In diesem Beitrag wird die Anwendbarkeit der Wirbelstromprüfung mit GMR Sensoren für die online Prüfung von PBF-LB/M Teilen demonstriert. Die Ergebnisse einer online Wirbelstromprüfung mit GMR Sensoren und einer Ein-Draht-Anregung werden gezeigt. Während des Produktionsprozesses wird für jede Lage eine Wirbelstromprüfung durchgeführt. Trotz hochauflösender Arrays mit 128 Elementen wird durch eine angepasste Hardware die Prüfdauer geringgehalten. So kann die Messung während des Beschichtungsvorgangs durchgeführt werden, ohne den Fertigungsprozess signifikant zu verlangsamen. Eine online Wirbelstromprüfung eines stufenförmigen Testkörpers aus Haynes282 über 184 Lagen zeigt, dass die Kanten nicht nur in der aktuellen Lage detektiert werden können, sondern auch in einer Tiefe von 400 µm, wenn eine Anregungsfrequenz von 1,2 MHz gewählt wird. T2 - DGZfP Jahrestagung 2022 CY - Kassel, Germany DA - 23.05.2022 KW - Wirbelstrom KW - Additive Fertigung KW - GMR KW - PBF PY - 2022 AN - OPUS4-54899 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mishurova, Tatiana A1 - Serrano Munoz, Itziar A1 - Markötter, Henning A1 - Mehta, Bharat A1 - Hryha, Eduard A1 - Bruno, Giovanni T1 - In-situ imaging of additively manufactured alloys at the BAMline N2 - In this work, we present the recent in-situ imaging developments at the BAMline (of synchrotron BESSY II, HZB), focused on the in-situ characterization and understanding of microstructural evolution of additively manufactured materials subjected to different environments. Two show cases are presented. In the first, X-ray refraction radiography (SXRR) was combined with in-situ heat treatment to monitor the microstructural evolution as a function of temperature in a laser powder bed fusion (LPBF) manufactured AlSi10Mg alloy. We show that SXRR allows detecting the changes in the Si-phase morphology upon heating using statistically relevant volumes. SXRR also allows observing the growth of pores (i.e., thermally induced porosity), usually studied via X-ray computed tomography (XCT), but using much smaller fields-of-view. In the second case study, XCT was combined with in-situ tensile test to investigate the damage mechanism in a LPBF Aluminum Metal Matrix Composite (MMC). In-situ SXCT test disclosed the critical role of the defects in the failure mechanism along with pre-cracks in the reinforcement phase of MMC. We found that cracks were initiated from lack-of-fusion defects and propagated through coalescence with other defects. T2 - New Frontiers in Materials Design for Laser Additive Manufacturing CY - Montabaur, Germany DA - 22.05.22 KW - Additive manufacturing KW - Laser powder bed fusion KW - Synchrotron X-ray computed tomography KW - Synchrotron X-ray Refraction PY - 2022 AN - OPUS4-54900 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Evans, Alexander A1 - Bruno, Giovanni A1 - Mishurova, Tatiana A1 - Serrano Munoz, Itziar A1 - Roveda, Ilaria A1 - Fritsch, Tobias A1 - Ulbricht, Alexander A1 - Sprengel, Maximilian A1 - Schröder, Jakob T1 - Residual stresses and micromechanical properties of additively manufactured metals: why do we need a paradigm shift? N2 - An overview of the challenges and successes in the methodology to characherise residual stresses and micromechnical properties in additively manufactured metals T2 - CAM2 Annual Seminar 2022 - 5-year journey CY - Gothenburg, Sweden DA - 24.10.2022 KW - Additive Manufacturing KW - Residual stress KW - AGIL KW - MANUFACT KW - Micromechnical properties PY - 2022 AN - OPUS4-56466 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Raute, J. A1 - Marquardt, R. A1 - Biegler, M. A1 - Rethmeier, Michael T1 - Untersuchung zum Elektronenstrahlschweißen additiv gefertigter Ni-Basis-Bauteile N2 - Die vorliegende Untersuchung befasst sich mit dem Einfluss des Additive Manufacturing auf die Schweißeignung von Bauteilen aus Inconel 718. Hierfür wurden Proben mittels DED und L-PBF hergestellt und ihr Verhalten in Blindschweißversuchen anhand eines Vergleichs mit konventionellen Gussblechen untersucht. Im zweiten Schritt wurden die verschiedenen additiv hergestellten Proben mit dem Gussmaterial im I-Stoß sowie untereinander verschweißt. Als Schweißverfahren wurde für alle Proben das Elektronenstrahlschweißen angewandt. Zur Auswertung wurde anhand von Schliffen das Nahtprofil vermessen und die Proben auf Poren und Risse untersucht. Zusätzlich wurde die Dichte vermessen und eine Prüfung auf Oberflächenrisse durchgeführt. Das AM-Material zeigte dabei Unterschiede in Nahtform und Defektneigung im Vergleich zum Gusswerkstoff. Insbesondere die DED-proben neigten unter bestimmten Parameterkonstellationen verstärkt zu Porenbildung. Risse konnten nicht beobachtet werden. Trotz auftretender Nahtunregelmäßigkeiten wurde in den kombinierten AM-Schweißproben die Bewertungsgruppe C erreicht. Eine Prüfung der bestehenden Regelwerke zur Schweißnahtbewertung anhand der gewonnenen Erkenntnisse zu additiv gefertigten Proben im Elektronenstrahlschweißprozess zeigte keinen Ergänzungsbedarf. T2 - #additivefertigung: Metall in bestForm CY - Essen, Germany DA - 26.10.2022 KW - Elektronenstrahlschweißen KW - Additive Fertigung KW - Schweißnahtbewertung PY - 2022 SN - 978-3-96144-202-7 VL - 383 SP - 81 EP - 92 PB - DVS-Media GmbH AN - OPUS4-56173 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael A1 - Nietzke, Jonathan A1 - Sobol, Oded T1 - Additive manufacturing for components in hydrogen technologies N2 - With the introduction of a hydrogen-based energy and national economy, safety-relevant components for hydrogen technologies are becoming increasingly important. Characteristic of hydrogen technologies are, for example, harsh environmental conditions such as cryogenic or high-pressure storage, corrosion issues in fuel cells and electrolyzers, turbines, and many more. Additive manufacturing of components is becoming increasingly important and irreplaceable for the production of complex technical systems. Using the case studies of burners for gas turbines and electrodes and membranes for polymer (PEMFC) and solid oxide (SOFC) fuel cells, this article shows the potential of additive manufacturing of components. At the same time, however, the challenge of considering divergent mechanical properties depending on the direction of assembly in a "hydrogen-compatible" manner is also highlighted. Finally, the challenges posed by additive manufacturing and hydrogen for materials testing are highlighted under scenarios that are as realistic as possible. T2 - MPA-Workshop Hydrogen CY - Online meeting DA - 10.11.2022 KW - Additive manufacturing KW - Hydrogen KW - Technologies KW - Overview KW - Component PY - 2022 AN - OPUS4-56233 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Marko, A. A1 - Bähring, S. A1 - Raute, J. A1 - Biegler, M. A1 - Rethmeier, Michael T1 - Transferability of ANN-generated parameter sets from welding tracks to 3D-geometries in Directed Energy Deposition N2 - Directed energy deposition (DED) has been in industrial use as a coating process for many years. Modern applications include the repair of existing components and additive manufacturing. The main advantages of DED are high deposition rates and low energy input. However, the process is influenced by a variety of parameters affecting the component quality. Artificial neural networks (ANNs) offer the possibility of mapping complex processes such as DED. They can serve as a tool for predicting optimal process parameters and quality characteristics. Previous research only refers to weld beads: a transferability to additively manufactured three-dimensional components has not been investigated. In the context of this work, an ANN is generated based on 86 weld beads. Quality categories (poor, medium, and good) are chosen as target variables to combine several quality features. The applicability of this categorization compared to conventional characteristics is discussed in detail. The ANN predicts the quality category of weld beads with an average accuracy of 81.5%. Two randomly generated parameter sets predicted as “good” by the network are then used to build tracks, coatings,walls, and cubes. It is shown that ANN trained with weld beads are suitable for complex parameter predictions in a limited way. KW - Welding parameter KW - Quality assurance KW - DED KW - Artificial neural network KW - Additive manufacturing PY - 2022 U6 - https://doi.org/10.1515/mt-2022-0054 SN - 0025-5300 VL - 64 IS - 11 SP - 1586 EP - 1596 PB - De Gruyter AN - OPUS4-56278 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Simón Muzás, Juan A1 - Brunner-Schwer, C. A1 - Rethmeier, Michael A1 - Hilgenberg, Kai T1 - Mitigation of liquation cracking in laser welding of pairs of L-PBF processed and wrought plates of Inconel 718 N2 - Laser welding is an appropriate technique for joining Laser Powder Bed Fusion (L-PBF) parts together and to conventional wrought ones. The potential consists of profiting from synergies between additive and conventional manufacturing methods and overcoming the existing limitations of both. On the one hand, L-PBF is a widely spread metal-based additive manufacturing technique suitable for generating complex parts which can present intrinsic designed cavities, conformal cooling channels, and filigree structures contributing to sustainable manufacturing and efficiency-oriented designs. On the other hand, chamber sizes for producing L-PBF parts are limited, and the process is time-consuming. Thus, its employment is not for every geometry justified. Additionally, they are in most cases individual elements of a larger assembly and need to be joined together to conventionally fabricated parts. The present research suggests laser welding parameters to adequately bond pairs of wrought and L-PBF processed plates and two L-PBF plates of Inconel 718 in butt position. L-PBF samples are printed in three different build-up orientations. Additionally, the influence of as-built L-PBF roughness qualities and usual pre-weld preparations such as edge milling are examined. The effect of normed pre-weld heat treatments is also contemplated. Identified cracks are analyzed by means of EDS in order to confirm the present phases on the areas of interest. EBSD is also employed to obtain a clear depiction of the crystallographic texture and distribution of the hot cracks. The quality of the weldment was examined according to existing standards. Substantial differences in seam geometry and microstructure across different edge’s surface qualities and build directions of stress relieved L-PBF parts have not been detected. Nevertheless, even if no other irregularities are present in the seam, variability in liquation cracking susceptibility has been confirmed. This defect is prone to happen when parts made of this nickel-based superalloy are welded together when not enough precautions are taken. It has been determined that grain size and ductility of the material before welding play a crucial role and mitigating or intensifying these imperfections. Moreover, recommendations are presented to avoid this potential welding defect. T2 - IIW 2022 International Conference on Welding and Joining CY - Tokyo, Japan DA - 17.07.2022 KW - Hybrid Part KW - Liquation Cracking KW - Build-up Orientation KW - Pre-weld Preparation KW - Heat treatment KW - Inconel 718 KW - Laser Welding KW - Laser Powder Bed Fusion KW - Selective Laser Melting KW - SLM KW - L-PBF KW - PBF-LB/M KW - LW PY - 2022 UR - www.iiw2022.com SP - 372 EP - 375 PB - The International Institute of Welding (IIW) CY - Tokyo, Japan AN - OPUS4-56066 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Epperlein, Martin T1 - Eine digital gestützte Qualitätssicherung für die additive Fertigung N2 - Die Digitalisierung der Qualitätsinfrastruktur (QI) am Beispiel der Additiven Fertigung. Der Vortrag erörtert, wie die Elemente einer digitalen QI zur Qualitätssicherung und Zertifizierung in der Additiven Fertigung beitragen können. T2 - Treffen der Arbeitsgemeinschaft Additive Fertigung des VDMA CY - Coburg, Germany DA - 27.10.2022 KW - Qualitätsinfrastruktur KW - Additive Fertigung KW - Digitalisierung PY - 2022 AN - OPUS4-56165 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Braun, T. A1 - Jäger, M. A1 - Rauch, H. A1 - Brach, K. A1 - Singh, R. A1 - Kondas, J. A1 - Uhlmann, E. A1 - Häcker, Ralf T1 - Evaluation of electric conductivity and mechanical load capacity of copper deposits for application in large winding components for electrical high-voltage machines made with cold spray additive manufacturing N2 - In line with the industrial trend of additive manufacturing, cold spray as a non-laser-based process is becoming increasingly important for many fields of application. For the evaluation of additive manufacturing of winding components made of copper for large electrical high-voltage machines, material and component properties such as electrical conductivity, mechanical load capacity and the component size that can be produced are of particular importance. In this context, the cold spray process offers advantages over laser-based additive manufacturing processes such as laser powder bed fusion (LPBF) or laser cladding by using the kinetic energy of the copper powder particles to generate particle cohesion. To investigate the electrical conductivity as well as the mechanical load capacity of cold spray parts, specimens were machined out of cold sprayed bulk copper deposits. The characteristic values were obtained with regard to the direction of deposition, which is defined by the direction of the robot’s movement. Thus, for the investigation of the component properties, specimens were provided that had been produced both longitudinally and transversely as well as orthogonally to the direction of deposition. The results of the investigations show that both the electrical conductivity and the mechanical load capacity of the specimen have a strong preferential direction of the specimen orientation with respect to the direction of deposition. Furthermore, it could be shown that by increasing the deposition height, there is an increasing oxygen content in the sample material, combined with increasingly significant defect networks. These effects have a negative impact on the electrical conductivity as well as on the mechanical load capacity. As a conclusion, further need for investigation is identified in the optimization of the process parameters as well as in the deposition strategy for the additive manufacturing of large-volume components with cold spray. T2 - ITSC 2022 CY - Vienna, Austria DA - 04.05.2022 KW - Cold Spray KW - Copper powder particles KW - Electrical conductivity KW - Large electrical high-voltage machine PY - 2022 AN - OPUS4-56127 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Becker, Tina A1 - Altenburg, Simon A1 - Scheuschner, Nils A1 - Breese, Philipp Peter A1 - Metz, C. A1 - Hilgenberg, Kai A1 - Maierhofer, Christiane T1 - In-situ monitoring of the Laser Powder Bed Fusion build process via bi- chromatic optical tomography N2 - As metal additive manufacturing (AM) is entering industrial serial production of safety relevant components, the need for reliable process qualification is growing continuously. Especially in strictly regulated industries, such as aviation, the use of AM is strongly dependent on ensuring consistent quality of components. Because of its numerous influencing factors, up to now, the metal AM process is not fully controllable. Today, expensive part qualification processes for each single component are common in industry. This contribution focusses on bi-chromatic optical tomography as a new approach for AM in-situ quality control. In contrast to classical optical tomography, the emitted process radiation is monitored simultaneously with two temperature calibrated cameras at two separate wavelength bands. This approach allows one to estimate the local maximum temperatures during the manufacturing process, thus increases the comparability of monitoring data of different processes. A new process information level at low investment cost is reachable, compared to, e.g., infrared thermography. T2 - LANE 2022 CY - Fürth, Germany DA - 04.08.2022 KW - Optical tomography KW - Additive Manufacturing KW - L-PBF KW - In-process monitoring PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-560270 SN - 2212-8271 VL - 111 SP - 340 EP - 344 PB - Elsevier B.V. CY - Amsterdam AN - OPUS4-56027 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Raute, J. A1 - Biegler, M. A1 - Rethmeier, Michael T1 - Untersuchung zur Herstellung von Cu-Strukturen mittels Wire Electron Beam Additive Manufacturing N2 - Das Additive Manufacturing gewinnt zunehmend an Bedeutung für die Fertigung metallischer Bauteile im industriellen Umfeld. Hierbei wird zunehmend auch auf drahtförmige Ausgangswerkstoffe gesetzt, da diese Vorteile im Handling bieten, bereits in der Industrie etabliert sind und sich in der Regel durch geringere Beschaffungskosten auszeichnen. In den letzten Jahren entwickelte sich neben den bereits im großen Umfeld untersuchten Wire-DED-Verfahren auch eine Prozessvariante unter Nutzung des Elektronenstrahls zur industriellen Marktreife. Dabei zeigt die als Wire Electron Beam Additive Manufacturing bezeichnete Technologie besondere Vorteile gegenüber anderen, zumeist Laser- oder Lichtbogen-basierten DED-Prozessen. Das Verfahren bietet vor allem Potenzial für die Verarbeitung von hochleitfähigen, reflektierenden oder oxidationsgefährdeten Werkstoffen. Insbesondere für die Herstellung von Bauteilen aus Kupferlegierungen zeigt sich der Elektronenstrahl als besonders geeignet. Um das Verfahren einem breiten Anwenderkreis in der Industrie zugänglich zu machen, fehlen jedoch übergreifende Daten zu Leistungsfähigkeit, Prozessgrenzen und Anwendungsmöglichkeiten. Die vorliegende Untersuchung beschäftigt sich mit dieser Problemstellung am Beispiel zweier Cu-Werkstoffe. Dabei werden ein korrosionsbeständiger Werkstoff aus dem maritimen Bereich sowie eine Bronze mit guten Verschleißeigenschaften aus dem Anlagenbau getestet. Über mehrstufige Testschweißungen wurden die physikalisch möglichen Prozessgrenzen ermittelt und Rückschlüsse über die Eignung der Parameter zum additiven Aufbau gezogen. Hierfür wurden zunächst optimale Bereiche für den Energieeintrag anhand von Volumenenergie sowie mögliche Schweißgeschwindigkeiten untersucht. Anschließend wurde die Skalierbarkeit des Prozesses anhand von Strahlstrom und Drahtvorschub getestet. Als wesentliche Zielgrößen wurden dabei Spurgeometrie, Aufmischung und Härte herangezogen. Die Eignung der ermittelten Parameter wurde im letzten Schritt exemplarisch anhand einer additiven Testgeometrie in Form eines Zylinders nachgewiesen. T2 - DVS Congress 2022 Große Schweißtechnische Tagung DVS CAMPUS CY - Koblenz, Germany DA - 19.09.2022 KW - WEBAM KW - Electron beam KW - EBAM KW - Wire electron beam additive manufacturing PY - 2022 SN - 978-3-96144-189-1 VL - 382 SP - 446 EP - 454 PB - DVS Media AN - OPUS4-56058 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Braun, T. A1 - Uhlmann, E. A1 - Häcker, Ralf A1 - Jäger, M. A1 - Rauch, H. A1 - Kondas, J. A1 - Brach, K. A1 - Singh, R. T1 - Evaluation of electric conductivity and mechanical load capacity of copper deposits for application in large winding components for electrical high-voltage machines made with cold spray additive manufacturing N2 - In line with the industrial trend of additive manufacturing, cold spray as a non-laser-based process is becoming increasingly important for many fields of application. For the evaluation of additive manufacturing of winding components made of copper for large electrical high-voltage machines, material and component properties such as electrical conductivity, mechanical load capacity and the component size that can be produced are of particular importance. In this context, the cold spray process offers advantages over laser-based additive manufacturing processes such as laser powder bed fusion (LPBF) or laser cladding by using the kinetic energy of the copper powder particles to generate particle cohesion. To investigate the electrical conductivity as well as the mechanical load capacity of cold spray parts, specimens were machined out of cold sprayed bulk copper deposits. The characteristic values were obtained with regard to the direction of deposition, which is defined by the direction of the robot’s movement. Thus, for the investigation of the component properties, specimens were provided that had been produced both longitudinally and transversely as well as orthogonally to the direction of deposition. The results of the investigations show that both the electrical conductivity and the mechanical load capacity of the specimen have a strong preferential direction of the specimen orientation with respect to the direction of deposition. Furthermore, it could be shown that by increasing the deposition height, there is an increasing oxygen content in the sample material, combined with increasingly significant defect networks. These effects have a negative impact on the electrical conductivity as well as on the mechanical load capacity. As a conclusion, further need for investigation is identified in the optimization of the process parameters as well as in the deposition strategy for the additive manufacturing of large-volume components with cold spray. T2 - ITSC 2022 CY - Wien, Austria DA - 04.05.2022 KW - Cold Spray KW - Electrical conductivity KW - Copper powder particles KW - Large electrical high-voltage machine PY - 2022 SP - 1 EP - 7 AN - OPUS4-56108 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Voloskov, B. A1 - Mishurova, Tatiana A1 - Evlashin, S. A1 - Akhatov, I. A1 - Bruno, Giovanni A1 - Sergeichev, I. T1 - Artificial Defects in 316L Stainless Steel Produced by Laser Powder Bed Fusion: Printability, Microstructure, and Effects on the Very-High-Cycle Fatigue Behavior N2 - The printability of artificial defects inside the additively manufactured laser powder bed fusion (LPBF) 316L stainless steel is investigated. The printing parameters of the LPBF process are optimized to produce artificial defects with reproducible sizes at desired positions while minimizing redundant porosity. The smallest obtained artificial defect is 90 μm in diameter. The accuracy of the geometry of the printed defect depends on both the height and the diameter in the input model. The effect of artificial defects on the very-high-cycle fatigue (VHCF) behavior of LPBF 316L stainless steel is also studied. The specimens printed with artificial defects in the center are tested under VHCF using an ultrasonic machine. Crack initiation is accompanied by the formation of a fine granular area (FGA), typical of VHCF. Despite the presence of relatively large artificial defects, FGA formation is observed around accidental natural printing defects closer to the surface, which can still be considered as internal. The causes for this occurrence are discussed. KW - Additive manufacturing KW - Laser powder bed fusion KW - X-ray computed tomography KW - VHCF PY - 2022 U6 - https://doi.org/10.1002/adem.202200831 SP - 1 EP - 13 PB - Wiley VHC-Verlag AN - OPUS4-56109 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mishurova, Tatiana A1 - Evsevleev, Sergei A1 - Mehta, B. A1 - Nyborg, L. A1 - Virtanen, E. A1 - Markötter, Henning A1 - Hryha, E. A1 - Bruno, Giovanni T1 - Failure Mechanisms Investigation by Means of in-situ Synchrotron Computed Tomography in Aluminum MMC-based Alloy Tailored for Additive Manufacturing (AM) N2 - The availability of high-performance Al alloys in AM is limited due to difficulties in printability, requiring both the development of synergetic material and AM process to mitigate problems such as solidification cracking during laser powder bed fusion (LPBF). The goal of this work was to investigate the failure mechanism in a LPBF 7017 Aluminium alloy + 3 wt% Zr + 0.5 wt% TiC. The processing leads to different categories of Zr-rich inclusions, precipitates and defects. T2 - Alloys for Additive Manufacturing Symposium 2022 (AAMS22) CY - Munich, Germany DA - 11.09.2022 KW - Additive manufacturing KW - Laser powder bed fusion KW - Synchrotron X-ray computed tomography KW - MMC PY - 2022 AN - OPUS4-56110 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hilgenberg, Kai T1 - Herausforderungen in der additiven Fertigung sicherheitsrelevanter Komponenten N2 - Der Vortrag stellt nach einer kurzen allgemeinen Einleitung zur additiven Fertigung und des Laser Powder Bed Fusion Verfahrens einige Herausforderungen vor, die derzeitig den Einsatz von AM-Komponenten in sicherheitsrelevanten Anwendungen erschweren. Abschließend werden zwei Beispiele von Arbeiten der BAM gezeigt, die zur Überwindung dieser Herausforderungen beitragen können. T2 - Anwendertreffen des Laserverbundes Berlin-Brandenburg CY - Berlin, Germany DA - 25.11.2022 KW - Additive Fertigung KW - Laser Powder Bed Fusion PY - 2022 AN - OPUS4-56435 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Junge, P. A1 - Greinacher, M. A1 - Kober, D. A1 - Stargardt, Patrick A1 - Rupprecht, C. T1 - Metastable Phase Formation, Microstructure, and Dielectric Properties in Plasma-Sprayed Alumina Ceramic Coatings N2 - The need for new solutions for electrical insulation is growing due to the increased electrification in numerous industrial sectors, opening the door for innovation. Plasma spraying is a fast and efficient way to deposit various ceramics as electrical insulators, which are used in conditions where polymers are not suitable. Alumina (Al2O3) is among the most employed ceramics in the coating industry since it exhibits good dielectric properties, high hardness, and high melting point, while still being cost-effective. Various parameters (e.g., feedstock type, spray distance, plasma power) significantly influence the resulting coating in terms of microstructure, porosity, and metastable phase formation. Consequently, these parameters need to be investigated to estimate the impact on the dielectric properties of plasma-sprayed alumina coatings. In this work, alumina coatings with different spray distances have been prepared via atmospheric plasma spray (APS) on copper substrates. The microstructure, porosity, and corresponding phase formation have been analyzed with optical microscopy, X-ray diffraction (XRD), and scanning electron microscopy (SEM). Moreover, we present an in-depth analysis of the fundamental dielectric properties e.g., direct current (DC) resistance, breakdown strength, dielectric loss tangent, and permittivity. Our results show that decreasing spray distance reduces the resistivity from 6.31 × 109 Ωm (130 mm) to 6.33 × 108 Ωm (70 mm), while at the same time enhances the formation of the metastable δ-Al2O3 phase. Furthermore, space charge polarization is determined as the main polarization mechanism at low frequencies. KW - Alumina KW - Plasma spray KW - Dielectric properties PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-564394 SN - 2079-6412 VL - 12 SP - 1 EP - 15 PB - MDPI CY - Basel AN - OPUS4-56439 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ávila Calderón, Luis Alexander A1 - Graf, B. A1 - Rehmer, Birgit A1 - Petrat, T. A1 - Skrotzki, Birgit A1 - Rethmeier, Michael T1 - Characterization of Ti-6Al-4V fabricated by multilayer laser powder-based directed energy deposition N2 - Laser powder-based directed energy deposition (DED-L) is increasingly being used in additive manufacturing (AM). As AM technology, DED-L must consider specific challenges. It must achieve uniform volume growth over hundreds of layers and avoid heat buildup of the deposited material. Herein, Ti–6Al–4V is fabricated using an approach that addresses these challenges and is relevant in terms of transferability to DED–L applications in AM. The assessment of the obtained properties and the discussion of their relationship to the process conditions and resulting microstructure are presented. The quality of the manufacturing process is proven in terms of the reproducibility of properties between individual blanks and with respect to the building height. The characterization demonstrates that excellent mechanical properties are achieved at room temperature and at 400 °C. KW - AGIL KW - Laser powder-based directed energy deposition KW - Tensile properties KW - Ti-6Al-4V KW - Microstructure PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-542262 SN - 1438-1656 SN - 1527-2648 SP - 1 EP - 15 PB - Wiley-VCH CY - Weinheim AN - OPUS4-54226 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mishurova, Tatiana A1 - Evsevleev, Sergei A1 - Artzt, K. A1 - Haubrich, J. A1 - Sevostianov, I. A1 - Requena, G. A1 - Bruno, Giovanni T1 - Micromechanical behavior of annealed Ti-6Al-4V produced by Laser Powder Bed Fusion N2 - The micromechanical behavior of an annealed Ti-6Al-4V material produced by Laser Powder Bed Fusion was characterized by means of in-situ synchrotron X-ray diffraction during a tensile test. The lattice strain evolution was obtained parallel and transversal to the loading direction. The elastic constants were determined and compared with the conventionally manufactured alloy. In the plastic regime, a lower plastic anisotropy exhibited by the lattice planes was observed along the load axis (parallel to the building direction) than in the transverse direction. Also, the load transfer from α to β phase was observed, increasing global ductility of the material. The material seems to accumulate a significant amount of intergranular strain in the transverse direction. KW - Additive manufacturing KW - Ti-6Al-4V KW - Anisotropy KW - Intergranular strain KW - Synchrotron X-ray diffraction PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-547406 VL - 2 IS - 1 SP - 186 EP - 201 PB - Taylor & Francis AN - OPUS4-54740 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Erning, Johann Wilhelm T1 - Hygienische Eigenschaften von additiv gefertigtem 1.4404 in Trinkwasser N2 - Elektrochemische Messungen zur hygienischen Bewertung additiv gefertigter Bauteile werden diskutiert. Die Bewertung und Details des Werkstoffs werden beschrieben, Anwendungsbeispiele gezeigt. T2 - 3. Fachtagung Werkstoffe und Additive Fertigung CY - Dresden, Germany DA - 11.05.2022 KW - Korrosion KW - Trinkwasser KW - Hygiene KW - Additive Fertigung PY - 2022 AN - OPUS4-54829 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schneider, M. A1 - Schlingmann, T. A1 - Schmidt, J. A1 - Bettge, Dirk A1 - Hilgenberg, Kai A1 - Binder, M. A1 - Klöden, B. T1 - A Round Robin Test To Investigate The Printing Quality Of PBF LB/M Processed AlSi10Mg N2 - When it comes to higher accuracies, new technologies and real applications in additive manufacturing, there is one topic which cannot be avoided: The material response on the chosen processing parameters and its agreement and correspondence with literature data of the wrought material grade counterpart. In industrial Additive Manufacturing (AM) standards in terms of printing parameters, protection gas atmospheres or powder handling instructions are not obligatory. Therefore, the question must be answered whether the AM process is reproducible and reliable over different printing companies. This was the motivation to realize a round robin test between 8 European printing companies and academic partners. The consortium had printed and tested fatigue and tensile testing bars under plant-specific conditions. A commonly used cast aluminum alloy, AlSi10Mg, was chosen as test material for the PBF-LB/M process. Differences of the results between the partners and the scatter itself were discussed in detail. T2 - World PM2022 CY - Lyon, France DA - 09.10.2022 KW - Additive manufacturing KW - AlSi10Mg KW - Laser powder bed fusion KW - Round robin KW - Reproducibility PY - 2022 AN - OPUS4-56303 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schneider, M. A1 - Schlingmann, T. A1 - Schmidt, J. A1 - Bettge, Dirk A1 - Hilgenberg, Kai A1 - Binder, M. A1 - Klöden, B. T1 - A Round Robin Test To Investigate The Printing Quality Of PBF-LB/M Processed AlSi10Mg N2 - When it comes to higher accuracies, new technologies and real applications in additive manufacturing, there is one topic which cannot be avoided: The material response on the chosen processing parameters and its agreement and correspondence with literature data of the wrought material grade counterpart. In industrial Additive Manufacturing (AM) standards in terms of printing parameters, protection gas atmospheres or powder handling instructions are not obligatory. Therefore, the question must be answered whether the AM process is reproducible and reliable over different printing companies. This was the motivation to realize a round robin test between 8 European printing companies and academic partners. The consortium had printed and tested fatigue and tensile testing bars under plant-specific conditions. A commonly used cast aluminum alloy, AlSi10Mg, was chosen as test material for the PBF-LB/M process. Differences of the results between the partners and the scatter itself were discussed in detail. T2 - World PM2022 CY - Lyon, France DA - 09.10.2022 KW - Additive manufacturing KW - Round robin KW - Reproducibility KW - Laser powder bed fusion KW - AlSi10Mg PY - 2022 SN - 978-1-899072-54-5 SP - 1 EP - 10 PB - European Powder Metallurgy Association (EPMA) AN - OPUS4-56304 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Meyer, Lena A1 - Günster, Jens T1 - 3-D Druck in Schwerelosigkeit – Patentanmeldung für den Bau für Werkzeug und Ersatzteilen im Weltall N2 - Präsentation der Aktivitäten an der BAM im Bereich 3-D Druck in Schwerelosigkeit. T2 - Besuch des Deutschen Patent- und Markenamtes DPMA München CY - Berlin, Germany DA - 19.07.2022 KW - Additive manufacturing KW - Microgravity KW - Patent KW - Powder KW - Additive Fertigung KW - 3D Druck KW - Schwerelosigkeit PY - 2022 AN - OPUS4-56314 LA - mul AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Meyer, Lena A1 - Brandić Lipińska, M. A1 - Davenport, R. A1 - Imhof, A. B. A1 - Waclavicek, R. A1 - Fateri, M. A1 - Gines-Palomares, J. C. A1 - Zocca, Andrea A1 - Makaya, A. A1 - Günster, Jens T1 - How will we explore, work, and live on the moon? N2 - 3D-printed landing pads on the moon: Paving the road for large area sintering of lunar regolith. A prerequisite for lunar exploration and beyond is the manufacturing of objects directly on the moon, given the extreme costs involved in the shipping of material from Earth. Looking at processes, raw materials, and energy sources, equipment will certainly have to be brought from Earth at the beginning. Available on the moon are lunar regolith as raw material and the sun as an energy source. One of the first steps towards the establishment of a lunar base is the creation of infrastructure elements, such as roads and landing pads. We’ll introduce you to the ESA-project PAVER that demonstrates the sintering and melting of lunar regolith simulant material to produce large scale 3D printed elements that could be used during human and robotic lunar explorations. T2 - Berlin Science Week CY - Online meeting DA - 09.11.2022 KW - Additive manufacturing KW - Lunar regolith simulant KW - EAC-1A KW - Space exploration PY - 2022 UR - https://www.youtube.com/watch?v=StfLuVhKkUE AN - OPUS4-56377 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Epperlein, Martin A1 - Poka, Konstantin A1 - Hilgenberg, Kai T1 - QI-Digital - Qualitätssicherung für die Additive Fertigung N2 - Für die konventionelle Fertigung hat sich das bestehende System der Qualitätsinfrastruktur (QI) bewährt. Die additive Fertigung vergrößert den gestalterischen Spielraum von möglichen Bauteilgeometrien und Prozessfehlern jedoch erheblich. Hier gerät die QI an ihre Grenzen, sodass die Fertigung und Zulassung sicherheits-relevanter Bauteile sehr zeit- und kostenintensive Versuche erfordern. Eine moderne digitale QI erlaubt eine effizientere Qualitätssicherung für additiv gefertigte Bauteile. Dies erfordert eine durchgängig digitale Abbildung des physischen Materialflusses. T2 - QI-Forum CY - Berlin, Germany DA - 11.10.2022 KW - Additive Fertigung KW - Qualitätssicherung KW - Digitalisierung PY - 2022 AN - OPUS4-56382 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Epperlein, Martin T1 - Digitalisierung der Qualitätsinfrastruktur am Beispiel der Additiven Fertigung N2 - Die Digitalisierung der Qualitätsinfrastruktur (QI) am Beispiel der Additiven Fertigung. Der Vortrag erörtert, wie man mit Elementen einer digitalen QI (DPP, DCoC, Smart Standard, DCC, etc.) aktuelle Herausforderungen in der Qualitätssicherung additiv gefertigter Bauteile adressieren kann. T2 - FORUM Qualitätssicherung in der additiven Fertigung – Quality Engineering CY - Online meeting DA - 13.09.2022 KW - Additive Fertigung KW - Qualitätssicherung KW - Digitalisierung KW - Qualitätsinfrastruktur PY - 2022 AN - OPUS4-56383 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Meyer, Lena T1 - Additive Fertigung unter Mikrogravitationsbedingungen für Anwendungen im Weltraum N2 - Präsentation der Aktivitäten an der BAM im Bereich Additive Fertigung unter Mikrogravitationsbedingungen für Anwendungen im Weltraum beim Arbeitsgruppentreffen der AG Werkstoffe & Prozesse vom Netzwerk Space2Motion. T2 - Arbeitsgruppentreffen beim Netzwerk Space2Motion CY - Online meeting DA - 09.11.2022 KW - Additive Fertigung KW - Mikrogravitation PY - 2022 AN - OPUS4-56353 LA - mul AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Oster, Simon A1 - Becker, Tina A1 - Breese, Philipp Peter A1 - Scheuschner, Nils A1 - Maierhofer, Christiane A1 - Ulbricht, Alexander A1 - Frisch, Tobias A1 - Mohr, Gunther A1 - Altenburg, Simon T1 - Defect prediction in laser powder bed fusion based on thermographic features utilizing convolutional neural networks N2 - The appearance of irregularities such as keyhole porosity is a major challenge for the production of metal parts by laser powder bed fusion (PBF-LB/M). The utilization of thermographic in-situ monitoring is a promising approach to extract the thermal history which is closely related to the formation of irregularities. In this study, we investigate the utilization of convolutional neural networks to predict keyhole porosity based on thermographic features. Here, the porosity information calculated from an x-ray micro computed tomography scan is used as reference. Feature engineering is performed to enable the model to learn the complex physical characteristics of the porosity formation. The model is examined with regard to the choice of hyperparameters, the significance of thermal features and characteristics of the data acquisition. Based on the results, future demands on irregularity prediction in PBF-LB/M are derived. T2 - GIMC SIMAI YOUNG 2022 CY - Pavia, Italy DA - 29.09.2022 KW - Laser Powder Bed Fusion KW - Thermography KW - In-situ Monitoring KW - Convolutional Neural Networks PY - 2022 AN - OPUS4-56331 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Oster, Simon A1 - Becker, Tina A1 - Breese, Philipp Peter A1 - Scheuschner, Nils A1 - Altenburg, Simon T1 - Machine Learning based defect detection in Laser Powder Bed Fusion utilizing thermographic feature data N2 - The formation of irregularities such as keyhole porosity pose a major challenge to the manufacturing of metal parts by laser powder bed fusion (PBF-LB/M). In-situ thermography as a process monitoring technique shows promising potential in this manner since it is able to extract the thermal history of the part which is closely related to the formation of irregularities. In this study, we investigate the utilization of machine learning algorithms to detect keyhole porosity on the base of thermographic features. Here, as a referential technique, x-ray micro computed tomography is utilized to determine the part's porosity. An enhanced preprocessing workflow inspired by the physics of the keyhole irregularity formation is presented in combination with a customized model architecture. Furthermore, experiments were performed to clarify the role of important parameters of the preprocessing workflow for the task of defect detection . Based on the results, future demands on irregularity prediction in PBF-LB/M are derived. T2 - International Conference on NDE 4.0 CY - Berlin, Germany DA - 24.10.2022 KW - Laser Powder Bed Fusion KW - Thermography KW - In-situ Monitoring KW - Convolutional Neural Networks PY - 2022 AN - OPUS4-56332 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Roveda, Ilaria A1 - Serrano Munoz, Itziar A1 - Mishurova, Tatiana A1 - Madia, Mauro A1 - Pirling, T. A1 - Evans, Alexander A1 - Klaus, M. A1 - Haubrich, J. A1 - Requena, G. A1 - Bruno, Giovanni T1 - Influence of a 265 °C heat treatment on the residual stress state of a PBF-LB/M AlSi10Mg alloy N2 - Laser Powder Bed Fusion (PBF-LB/M) additive manufacturing (AM) induces high magnitude residual stress (RS) in structures due to the extremely heterogeneous cooling and heating rates. As the RS can be deleterious to the fatigue resistance of engineering components, great efforts are focused on understanding their generation and evolution after post-process heat treatments. In this study, one of the few of its kind, the RS relaxation induced in an as-built PBF-LB/M AlSi10Mg material by a low-temperature heat treatment (265 °C for 1 h) is studied by means of X-ray and neutron diffraction. Since the specimens are manufactured using a baseplate heated up to 200 °C, low RS are found in the as-built condition. After heat treatment a redistribution of the RS is observed, while their magnitude remains constant. It is proposed that the redistribution is induced by a repartition of stresses between the a-aluminium matrix and the silicon phase, as the morphology of the silicon phase is affected by the heat treatment. A considerable scatter is observed in the neutron diffraction RS profiles, which is principally correlated to the presence (or absence) of pockets of porosity developed at the borders of the chessboard pattern. KW - Neutron diffraction KW - Additive manufacturing PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-565115 SN - 1573-4803 VL - 57 SP - 22082 EP - 22098 PB - Springer Science + Business Media CY - Dordrecht AN - OPUS4-56511 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Khrapov, D. A1 - Paveleva, A. A1 - Kozadayeva, M. A1 - Evsevleev, Sergei A1 - Mishurova, Tatiana A1 - Bruno, Giovanni A1 - Surmenev, R. A1 - Koptyug, A. A1 - Surmeneva, M. T1 - Trapped powder removal from sheet-based porous structures based on triply periodic minimal surfaces fabricated by electron beam powder bed fusion N2 - Electron Beam Powder Bed Fusion-manufactured (E-PBF) porous components with narrow pores or channels and rough walls or struts can be filled with trapped powder after the manufacturing process. Adequate powder removal procedures are required, especially for high-density porous structures. In the present research, sheetbased porous structures with different thicknesses based on triply periodic minimal surfaces fabricated by EPBF were subjected to different post-processing methods, including a traditional powder recovery system for EPBF, chemical etching and ultrasound vibration-assisted powder removal. Wall thickness, internal defects, microstructure and morphology features, powder distribution inside the specimens, mechanical properties and deformation modes were investigated. A powder recovery system could not remove all residual powder from dense structures. In turn, chemical etching was effective for surface morphology changes and subsurface layers elimination but not for powder removal, as it affected the wall thickness, considerably influencing the mechanical properties of the whole structure. The ultrasound vibration method was quite effective for the removal of residual powder from sheet-based TMPS structures and without a severe degradation of mechanical properties. 10.1016/j.msea.2022.144479 Ultrasound vibration also caused grain refinement. KW - Additive manufacturing KW - Residual powder removal KW - Ti6Al4V alloy KW - Electron beam powder bed fusion KW - TPMS structures PY - 2023 U6 - https://doi.org/10.1016/j.msea.2022.144479 VL - 862 SP - 1 EP - 16 PB - Elsevier B.V. AN - OPUS4-56564 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Brandić Lipińska, M. A1 - Davenport, R. A1 - Imhof, A. B. A1 - Waclavicek, R. A1 - Fateri, M. A1 - Meyer, Lena A1 - Gines-Palomares, J. C. A1 - Zocca, Andrea A1 - Makaya, A. A1 - Günster, Jens T1 - PAVER - Contextualizing laser sintering within a lunar technology roadmap N2 - The Global Exploration Strategy of the International Space Exploration Coordination Group (ISECG) describes a timeframe of 2020 and beyond with the ultimate aim to establish a human presence on Mars towards the 2040ies. The next steps lie on the Moon with a focus on the coming 10 years. Early lunar surface missions will establish a capability in support of lunar science and prepare and test mission operations for subsequent human exploration of Mars and long-duration human activities on the Moon. Given the extreme costs involved in the shipping of material from Earth, a prerequisite for future human exploration is the manufacturing of elements directly on the Moon’s surface. Unlike the equipment, which at the beginning will have to be brought from Earth, raw materials and energy could be available following the concept of In-Situ Resource Utilization. The ESA OSIP PAVING THE ROAD (PAVER) study investigates the use of a laser to sinter regolith into paving elements for use as roadways and launch pads thus mitigating dust issues for transport and exploration vehicles. The ESA-funded study examines the potential of using a laser (12 kW CO2 laser with spot beam up to 100 mm) for layer sintering of lunar and martian regolith powders to manufacture larger 3D elements and provide know-how for the automatic manufacture of paving elements in the lunar environment. The project contributes to the first step toward the establishment of a lunar base and will lead to the construction of equipment capable of paving areas and manufacturing 3D structures. PAVER project sets the starting point for an examination of the larger context of lunar exploration. Mission scenarios will look at different phases of lunar exploration: Robotic Lunar Exploration, Survivability, Sustainability, and Operational Phase. A proposed Technology Roadmap investigates the mission scenario and analyses how, and to which extent, laser melting/sintering will play a role in the various phases of exploration. The paper contextualizes laser sintering within selected mission scenarios and discusses the different kinds of infrastructure that can be produced at each phase of the mission. The outcome of the study includes the detailing of the TRL steps in the project and an outline of a timeline for the different elements. Covered aspects include terrain modelling such as operation pads, roadways, or towers, non-pressurized building structures to protect machinery, and habitat envelopes, to protect and shield humans against dust, micrometeoroids, and radiation. T2 - 73rd International Astronautical Congress (IAC) CY - Paris, France DA - 18.09.2022 KW - Additive manufacturing KW - Solar sintering KW - ISRU KW - Infrastructure KW - Lunar habitat KW - Paving PY - 2022 SP - 1 EP - 9 AN - OPUS4-56519 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Günster, Jens A1 - Meyer, Lena T1 - Laser beam melting additive manufacturing at μ-gravity N2 - At the Workshop "Neutron and Synchrotron Monitoring in Aerospace Advanced Manufacturing" at the Institute of Materials Physics in Space, German Aerospace Center (DLR) in Cologne, we presented on the opportunities and our experiences of using a powder based additive manufacturing process for in-space manufacturing applications in microgravity. T2 - Workshop 'Neutron and Synchrotron Monitoring in Aerospace Advanced Manufacturing' CY - Cologne, Germany DA - 11.08.2022 KW - Additive manufacturing KW - In-space manufacturing KW - Microgravity KW - μ-gravity KW - Laser beam melting KW - Advanced manufacturing KW - Aerospace KW - Process monitoring PY - 2022 AN - OPUS4-56521 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zocca, Andrea A1 - Schubert, Hendrik A1 - Günster, Jens T1 - Combination of layerwise slurry deposition and binder jetting (lsd-print) for the additive manufacturing of advanced ceramic materials N2 - Powder bed technologies are amongst the most successful Additive Manufacturing (AM) techniques. Powder bed fusion and binder jetting especially are leading AM technologies for metals and polymers, thanks to their high productivity and scalability. The application of these techniques to most ceramics has been difficult so far, because of the challenges related to the deposition of homogeneous powder layers when using fine powders. In this context, the “layerwise slurry deposition” (LSD) has been developed as a layer deposition method which enables the use of powder bed AM technologies also for advanced ceramic materials. The layerwise slurry deposition consists of the layer-by-layer deposition of a ceramic slurry by means of a doctor blade, in which the slurry is deposited and dried to achieve a highly packed powder layer. This offers high flexibility in the ceramic feedstock used, especially concerning material and particle size. The LSD technology can be combined with binder jetting to develop the so-called “LSDprint” process for the additive manufacturing of ceramics. The LSDprint technology combines the high-speed printing of binder jetting with the possibility of producing a variety of high-quality ceramics with properties comparable to those achieved by traditional processing. In this presentation, the LSD process will be introduced and several examples of application ranging from silicate to high-performance ceramics will be shown. Recent developments towards the scale-up and industrialization of this process will be discussed, alongside future perspectives for the multi-material additive manufacturing. T2 - Shaping 8 CY - Dübendorf, Switzerland DA - 14.09.2022 KW - Additive Manufacturing KW - 3D printing KW - Ceramics PY - 2022 AN - OPUS4-56523 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Brandić Lipińska, M. A1 - Davenport, R. A1 - Imhof, A. B. A1 - Waclavicek, R. A1 - Fateri, M. A1 - Meyer, Lena A1 - Gines-Palomares, J. C. A1 - Zocca, Andrea A1 - Makaya, A. A1 - Günster, Jens T1 - PAVER - Contextualizing laser sintering within a lunar technology roadmap N2 - The Global Exploration Strategy of the International Space Exploration Coordination Group (ISECG) describes a timeframe of 2020 and beyond with the ultimate aim to establish a human presence on Mars towards the 2040ies. The next steps lie on the Moon with a focus on the coming 10 years. Early lunar surface missions will establish a capability in support of lunar science and prepare and test mission operations for subsequent human exploration of Mars and long-duration human activities on the Moon. Given the extreme costs involved in the shipping of material from Earth, a prerequisite for future human exploration is the manufacturing of elements directly on the Moon’s surface. Unlike the equipment, which at the beginning will have to be brought from Earth, raw materials and energy could be available following the concept of In-Situ Resource Utilization. The ESA OSIP PAVING THE ROAD (PAVER) study investigates the use of a laser to sinter regolith into paving elements for use as roadways and launch pads thus mitigating dust issues for transport and exploration vehicles. The ESA-funded study examines the potential of using a laser (12 kW CO2 laser with spot beam up to 100 mm) for layer sintering of lunar and martian regolith powders to manufacture larger 3D elements and provide know-how for the automatic manufacture of paving elements in the lunar environment. The project contributes to the first step toward the establishment of a lunar base and will lead to the construction of equipment capable of paving areas and manufacturing 3D structures. PAVER project sets the starting point for an examination of the larger context of lunar exploration. Mission scenarios will look at different phases of lunar exploration: Robotic Lunar Exploration, Survivability, Sustainability, and Operational Phase. A proposed Technology Roadmap investigates the mission scenario and analyses how, and to which extent, laser melting/sintering will play a role in the various phases of exploration. The paper contextualizes laser sintering within selected mission scenarios and discusses the different kinds of infrastructure that can be produced at each phase of the mission. The outcome of the study includes the detailing of the TRL steps in the project and an outline of a timeline for the different elements. Covered aspects include terrain modelling such as operation pads, roadways, or towers, non-pressurized building structures to protect machinery, and habitat envelopes, to protect and shield humans against dust, micrometeoroids, and radiation. T2 - 73rd International Astronautical Congress (IAC) CY - Paris, France DA - 18.09.2022 KW - Additive manufacturing KW - ISRU KW - Infrastructure KW - Lunar habitat KW - Paving KW - Solar sintering PY - 2022 AN - OPUS4-56529 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Merz, Benjamin A1 - Mohr, Gunther A1 - Hilgenberg, Kai T1 - Position Detection for Hybrid Repair of gas turbine blades using PBF-LB/M N2 - This poster presents a workflow for camera-based position detection of components within PBF-LB/M machines. This enables a hybrid repair process of highly stressed components such as gas turbine blades using PBF-LB/M. T2 - Kuratoriumsführung CY - Berlin, Germany DA - 21.06.2022 KW - Additive Manufacturing KW - PBF-LB/M KW - Position detection KW - Camera KW - Image processing PY - 2022 AN - OPUS4-56587 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Becker, Tina A1 - Altenburg, Simon A1 - Metz, Christian A1 - Breese, Philipp Peter A1 - Oster, Simon A1 - Maierhofer, Christiane T1 - Two approaches for multi measurand in-situ monitoring of the L-PBF process – bicolor- and RGB-optical tomography N2 - Since metal additive manufacturing (AM) becomes more and more established in industry, also the cost pressure for AM components increases. One big cost factor is the quality control of the manufactured components. Reliable in-process monitoring systems are a promising route to lower scrap rates and enhance trust in the component and process quality. The focus of this contribution is the presentation and comparison of two optical tomography based multi measurand in-situ monitoring approaches for the L-PBF process: the bicolor- and the RGB-optical tomography. The classical optical tomography (OT) is one of the most common commercial in-situ monitoring techniques in industrial L-PBF machines. In the OT spatial resolved layer-images of the L-PBF process are taken from an off-axis position in one near infrared wavelength window. In addition to the explanatory powers classical OT, both here presented approaches enable the determination of the maximum surface temperature. In contrast to thermography that may also yield maximum temperature information, the needed equipment is significantly cheaper and offers a higher spatial resolution. Both approaches are implemented at a new in-house developed L-PBF system (Sensor-based additive manufacturing machine - SAMMIE). SAMMIE is specifically designed for the development and characterization of in-situ monitoring systems and is introduced as well. T2 - ICAM2022 CY - Orlando, FL, USA DA - 31.10.2022 KW - Additive Manufacturing KW - L-PBF KW - In-process monitoring KW - Optical tomography PY - 2022 AN - OPUS4-56594 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Topolniak, Ievgeniia A1 - Elert, Anna Maria A1 - Knigge, Xenia A1 - Cinar Ciftci, G. A1 - Radnik, Jörg A1 - Sturm, Heinz T1 - Direct laser writing of mussel inspired polydopamine N2 - Polydopamine (PDA) is one of the simplest and most versatile approaches for forming an excellent binding exterior to confer new functionalities to nearly any material surface. Inspired by nature, it mimics the behavior of mussels and can be easily deposited on virtually all types of inorganic and organic substrates, including superhydrophobic surfaces. Moreover, PDA exhibits high potential for surface modification and diversified secondary reactions that makes it extremely interesting for a wide range of application including biomedical field, e.g., drug delivery, adhesives, cell adhesion, biosensing. PDA has undergone significant expansion in its applications and is one of the most attractive areas within the materials field. Nevertheless, PDA integration in microdevices is still constrained by poor spatial and temporal control of excited deposition methods. Herein, we demonstrate a novel maskless approach for PDA micropatterning based on Direct Laser Writing that overcomes present limitations. The pattern is formed upon exposure of the dopamine solution by light produced by tightly-focused fs NIR laser that scans substrate surface accordingly to the selected pattern design. Neither strong oxidants, metal ions nor adjusting pH to alkaline is required by this technique to perform dopamine polymerization. Our method achieves the PDA micropatterns with the spatial resolution of 0.8 µm, at least an order of magnitude smaller than what is possible with other PDA microplanning techniques. Some examples of PDA patterns are shown in Figure 1. The here introduced PDA deposition technique will uniquely unravel applications of polydopamine and other catecholamine-based mussel-inspired materials in various multifunctional systems and microdevices (e.g., MEMS elements, microfluidics). The chemical nature of PDA was confirmed by locally recorded vibrational and x-ray photoelectron spectra. Moreover, the morphology and thickness of PDA microstructure can be controlled by the laser power and scanning velocity revealing the possibility of fabricating the structures with gradient. In most of the applied conditions the increase of the laser intensity and decrease of the scanning velocity would lead to the thicker PDA pattern. Different morphologies from smooth and bulky-like to grain like has been obtained. PDA was produced in the presence of tris buffer, phosphate buffer and DI water only. We also tested the effect of the solution pH applying pH 6.0, 7.0 and 8.5. Furthermore, the effect of antioxidants and purging of the solution with oxygen and nitrogen was investigated. Summarizing, we could see that the structures could be produced in all the given conditions, however their thickness and quality, morphology and roughness would differ. We did not observe negative impact of the antioxidants and nitrogen purging on the performance of PDA build up indicating that the PDA formation mechanism is different to common autooxidation. The current mechanism is based on the interaction of dopamine molecules with the photoinitiator added to solution as active to DLW laser light component. Apart from the glass substrate, we achieved PDA patterning at surfaces of different nature such as polychlorotrifluoroethylene, polydimethylsiloxane, polyethylene terephthalate, silicon wafers, and fluorinated glass coverslips. We also performed facile posts-modification of the PDA surface with protein enzymes like trypsin that was confirmed by XPS. Obtained bioactive pattern could be further integrated in the protein sensing devices. Presented in this work DLW-based microfabrication technique and the possibilities for further PDA surface post-functionalization empowers advanced applications of this material in single-molecule bioassays, sensors and other complex microdevices. T2 - MNE EUROSENSORS CY - Leuven, Belgium DA - 19.09.2022 KW - Polydopamine KW - Two-photon polymerisation KW - Micropatterning PY - 2022 AN - OPUS4-56421 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Topolniak, Ievgeniia A1 - Elert, Anna Maria A1 - Knigge, Xenia A1 - Cinar Ciftci, G. A1 - Radnik, Jörg A1 - Sturm, Heinz T1 - Direct laser surface micropatterning with polydopamine N2 - Inspired by the chemistry of mussel adhesive proteins, polydopamine (PDA) is one of the simplest and most versatile approaches to confer new functionalities to nearly any material surface. Moreover, PDA exhibits high potential for surface modification and diversified secondary reactions that makes it extremely interesting for a wide range of application including biomedical field, e.g., drug delivery, adhesives, cell adhesion, biosensing. PDA has undergone significant expansion in its applications and is one of the most attractive areas within the materials field. Nevertheless, PDA integration in microdevices is still constrained by poor spatial and temporal control of excited deposition methods. Herein, we demonstrate a novel maskless approach for PDA micropatterning based on Direct Laser Writing (DLW) that overcomes present limitations. The pattern is formed upon exposure of the dopamine solution by light produced by tightly-focused fs NIR laser that scans substrate surface accordingly to the selected pattern design. Neither strong oxidants, metal ions nor adjusting pH to alkaline is required by this technique. Our method achieves the PDA micropatterns with the spatial resolution of 0.8 µm, at least an order of magnitude smaller than what is possible with other PDA microplanning techniques. The here introduced PDA deposition technique will uniquely unravel applications of polydopamine and other catecholamine-based mussel-inspired materials in various multifunctional systems and microdevices (e.g., MEMS elements, microfluidics). Adjustment of MPL parameters revealed that the morphology and thickness of resulted PDA microstructures can be controlled by altering the laser power and its scanning velocity. As a result, it also enables the production of micropatterns with structural gradient. Apart from the glass substrate, we achieved PDA patterning at surfaces of different nature such as polychlorotrifluoroethylene, polydimethylsiloxane, polyethylene terephthalate, silicon wafers, and fluorinated glass coverslips. The chemical nature of PDA was confirmed by locally recorded vibrational and x-ray photoelectron spectra. To ensure post-modification potential of MPL deposited PDA we demonstrated one-step deposition of micropatterns with trypsin. Obtained bio-functionalised surface can be further applied as a protein sensing active microelement. Presented in this work DLW-based microfabrication technique and the possibilities for further PDA surface post-functionalization empowers advanced applications of this material in single-molecule bioassays, sensors and other complex microdevices. T2 - Swiss ePrint 2022 CY - Buchs, Switzerland DA - 05.09.2022 KW - Polydopamine KW - Two-photon polymerisation KW - Micropatterning PY - 2022 AN - OPUS4-56422 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Scharf-Wildenhain, R. A1 - Hälsig, A. A1 - Hensel, J. A1 - Wandtke, Karsten A1 - Schröpfer, Dirk A1 - Kromm, Arne A1 - Kannengießer, Thomas T1 - Einfluss von Wärmeführung und Bauteildesign auf die Beanspruchungen additiv geschweißter hochfester Feinkornbaustähle N2 - Hochfeste Feinkornbaustähle verfügen über großes Potenzial für gewichtsoptimierte, effiziente Strukturen in vielen modernen Stahlkonstruktion. Weitere Effizienzsteigerungen können durch additives Fertigen sowie bionische Bauweisen erreicht werden. Hochfeste Zusatzwerkstoffe für additives MSG-Schweißen (engl.: Wire Arc Additive Manufacturing, WAAM) sind bereits von den Schweißzusatzherstellern lieferbar. Eine breite industrielle Anwendung insbesondere für KMU ist aufgrund fehlender quantitativer Erkenntnisse und Richtlinien bezüglich schweißbedingter Beanspruchungen und Bauteilsicherheit während der Herstellung und des Betriebs derzeit stark limitiert. In einem gemeinsamen Forschungsprojekt (FOSTA-P1380/IGF21162BG) der BAM und der TU Chemnitz werden daher die mit Eigenspannungsausbildung und der Gefahr einer Kaltrissbildung verbundenen prozess- und werkstoffbedingten sowie konstruktiven Einflüsse beim WAAM hochfester Stähle untersucht. Der vorliegende Beitrag fokussiert die Analyse der Auswirkungen von Schweißwärmeführung und Design der WAAM-Bauteile auf die Abkühlbedingungen, Gefüge, mechanisch-technologischen Eigenschaften und Eigenspannungen. Hierfür werden geometrisch definierte Probenkörper (Hohlquader) vollautomatisiert mit einem speziellen, hochfesten WAAM-Massivdraht (Streckgrenze >790 MPa) geschweißt. Die Wärmeführung und Probenabmessungen werden innerhalb eines statistischen Versuchsplans variiert. Die Schweißwärmeführung wird dabei so eingestellt, dass die t8/5-Abkühlzeiten im empfohlenen Verarbeitungsbereich (ca. 5 s bis 20 s) sichergestellt sind. Hierzu ließen sich über zusätzliche thermo-physikalische Umformsimulationen mittels Dilatometer die komplexen Wärmezyklen abbilden und die resultierende Zugfestigkeit des Schweißgutes bestimmen. Das WAAM-Schweißen komplexer Geometrien mit variierenden Schweißwärmeführungen und geometrischen Verhältnissen bzw. Wanddicken bedingt neben den Auswirkungen auf die Abkühlbedingungen, Abkühlzeiten und Gefüge deutliche Einflüsse auf die konstruktiven Steifigkeitsverhältnisse beim Schweißen. Es zeigen sich anhand der Schweißexperimente signifikante Auswirkungen durch Probenskalierung und Wärmeeinbringung auf die resultierenden lokalen Eigenspannungen. Die Folge können ungünstige Bauteileigenschaften und risskritische Zugeigenspannungen sein. T2 - DVS Congress 2022 CY - Koblenz, Germany DA - 19.09.2022 KW - WAAM KW - Eigenspannungen KW - Additive Fertigung KW - Hochfester Stahl KW - Kaltrisssicherheit KW - Windenergie KW - Wärmeführung PY - 2022 AN - OPUS4-56718 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Scharf-Wildenhain, R. A1 - Hälsig, A. A1 - Hensel, J. A1 - Wandtke, Karsten A1 - Schröpfer, Dirk A1 - Kromm, Arne A1 - Kannengießer, Thomas T1 - Einfluss von Wärmeführung und Bauteildesign auf die Eigenschaften und fertigungsbedingten Beanspruchungen additiv geschweißter hochfester Feinkornbaustähle N2 - Hochfeste Feinkornbaustähle verfügen über großes Potenzial für gewichtsoptimierte, effiziente Strukturen in vielen modernen Stahlkonstruktion. Weitere Effizienzsteigerungen können durch additives Fertigen sowie bionische Bauweisen erreicht werden. Hochfeste Zusatzwerkstoffe für additives MSG-Schweißen (engl.: Wire Arc Additive Manufacturing, WAAM) sind bereits von den Schweißzusatzherstellern lieferbar. Eine breite industrielle Anwendung insbesondere für KMU ist aufgrund fehlender quantitativer Erkenntnisse und Richtlinien bezüglich schweißbedingter Beanspruchungen und Bauteilsicherheit während der Herstellung und des Betriebs derzeit stark limitiert. In einem gemeinsamen Forschungsprojekt (FOSTA-P1380/IGF21162BG) der BAM und der TU Chemnitz werden daher die mit Eigenspannungsausbildung und der Gefahr einer Kaltrissbildung verbundenen prozess- und werkstoffbedingten sowie konstruktiven Einflüsse beim WAAM hochfester Stähle untersucht. Der vorliegende Beitrag fokussiert die Analyse der Auswirkungen von Schweißwärmeführung und Design der WAAM-Bauteile auf die Abkühlbedingungen, Gefüge, mechanisch-technologischen Eigenschaften und Eigenspannungen. Hierfür werden geometrisch definierte Probenkörper (Hohlquader) vollautomatisiert mit einem speziellen, hochfesten WAAM-Massivdraht (Streckgrenze >790 MPa) geschweißt. Die Wärmeführung und Probenabmessungen werden innerhalb eines statistischen Versuchsplans variiert. Die Schweißwärmeführung wird dabei so eingestellt, dass die t8/5-Abkühlzeiten im empfohlenen Verarbeitungsbereich (ca. 5 s bis 20 s) sichergestellt sind. Hierzu ließen sich über zusätzliche thermo-physikalische Umformsimulationen mittels Dilatometer die komplexen Wärmezyklen abbilden und die resultierende Zugfestigkeit des Schweißgutes bestimmen. Das WAAM-Schweißen komplexer Geometrien mit variierenden Schweißwärmeführungen und geometrischen Verhältnissen bzw. Wanddicken bedingt neben den Auswirkungen auf die Abkühlbedingungen, Abkühlzeiten und Gefüge deutliche Einflüsse auf die konstruktiven Steifigkeitsverhältnisse beim Schweißen. Es zeigen sich anhand der Schweißexperimente signifikante Auswirkungen durch Probenskalierung und Wärmeeinbringung auf die resultierenden lokalen Eigenspannungen. Die Folge können ungünstige Bauteileigenschaften und risskritische Zugeigenspannungen sein. T2 - DVS Congress 2022 CY - Koblenz, Germany DA - 19.09.2022 KW - MAG-Schweißen KW - Additive Fertigung KW - Eigenspannungen KW - Hochfester Stahl KW - Kaltrisssicherheit KW - Wärmeführung KW - Windenergie PY - 2022 SN - 978-3-96144-189-1 VL - 382 SP - 737 EP - 745 PB - DVS Media GmbH CY - Düsseldorf AN - OPUS4-56719 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Scharf-Wildenhain, R. A1 - Hälsig, A. A1 - Hensel, J. A1 - Wandtke, Karsten A1 - Schröpfer, Dirk A1 - Kromm, Arne A1 - Kannengießer, Thomas T1 - Herstellung und Charakterisierung von WAAM-Bauteilen aus hochfesten Zusatzwerkstoffe N2 - Hochfeste Feinkornbaustähle verfügen über großes Potenzial für gewichtsoptimierte, effiziente Strukturen in vielen modernen Stahlkonstruktion. Weitere Effizienzsteigerungen können durch additives Fertigen sowie bionische Bauweisen erreicht werden. Hochfeste Zusatzwerkstoffe für additives MSG-Schweißen (engl.: Wire Arc Additive Manufacturing, WAAM) sind bereits von den Schweißzusatzherstellern lieferbar. Eine breite industrielle Anwendung insbesondere für KMU ist aufgrund fehlender quantitativer Erkenntnisse und Richtlinien bezüglich schweißbedingter Beanspruchungen und Bauteilsicherheit während der Herstellung und des Betriebs derzeit stark limitiert. In einem gemeinsamen Forschungsprojekt (FOSTA-P1380/IGF21162BG) der BAM und der TU Chemnitz werden daher die mit Eigenspannungsausbildung und der Gefahr einer Kaltrissbildung verbundenen prozess- und werkstoffbedingten sowie konstruktiven Einflüsse beim WAAM hochfester Stähle untersucht. Der vorliegende Beitrag fokussiert die Analyse der Auswirkungen von Schweißwärmeführung und Design der WAAM-Bauteile auf die Abkühlbedingungen, Gefüge, mechanisch-technologischen Eigenschaften und Eigenspannungen. Hierfür werden geometrisch definierte Probenkörper (Hohlquader) vollautomatisiert mit einem speziellen, hochfesten WAAM-Massivdraht (Streckgrenze >790 MPa) geschweißt. Die Wärmeführung und Probenabmessungen werden innerhalb eines statistischen Versuchsplans variiert. Die Schweißwärmeführung wird dabei so eingestellt, dass die t8/5-Abkühlzeiten im empfohlenen Verarbeitungsbereich (ca. 5 s bis 20 s) sichergestellt sind. Hierzu ließen sich über zusätzliche thermo-physikalische Umformsimulationen mittels Dilatometer die komplexen Wärmezyklen abbilden und die resultierende Zugfestigkeit des Schweißgutes bestimmen. Das WAAM-Schweißen komplexer Geometrien mit variierenden Schweißwärmeführungen und geometrischen Verhältnissen bzw. Wanddicken bedingt neben den Auswirkungen auf die Abkühlbedingungen, Abkühlzeiten und Gefüge deutliche Einflüsse auf die konstruktiven Steifigkeitsverhältnisse beim Schweißen. Es zeigen sich anhand der Schweißexperimente signifikante Auswirkungen durch Probenskalierung und Wärmeeinbringung auf die resultierenden lokalen Eigenspannungen. Die Folge können ungünstige Bauteileigenschaften und risskritische Zugeigenspannungen sein. Im vorliegenden Beitrag werden einige Verarbeitungsempfehlung auf Basis der Ergebnisse für den Arbeitskreis des DVS AG V 12 (Additive Fertigung) abgeleitet. T2 - Sitzung der DVS Arbeitsgruppe (AG) V 12 Additive Fertigung CY - Online meeting DA - 23.11.2022 KW - MAG-Schweißen KW - Additive Fertigung KW - Eigenspannungen KW - Hochfester Stahl KW - Kaltrisssicherheit KW - Wärmeführung KW - Windenergie PY - 2022 AN - OPUS4-56721 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wandtke, Karsten A1 - Schröpfer, Dirk A1 - Kromm, Arne A1 - Kannengießer, Thomas A1 - Scharf-Wildenhain, R. A1 - Hälsig, A. A1 - Hensel, J. T1 - Einfluss der Prozessführung auf den Eigenspannungszustand beim WAAM-Schweißen hochfester Stahlbauteile N2 - Hochfeste Feinkornbaustähle verfügen über großes Potenzial für gewichtsoptimierte, effiziente Strukturen in vielen modernen Stahlkonstruktion. Weitere Effizienzsteigerungen können durch additives Fertigen sowie bionische Bauweisen erreicht werden. Hochfeste Zusatzwerkstoffe für additives MSG-Schweißen (engl.: Wire Arc Additive Manufacturing, WAAM) sind bereits von den Schweißzusatzherstellern lieferbar. Eine breite industrielle Anwendung insbesondere für KMU ist aufgrund fehlender quantitativer Erkenntnisse und Richtlinien bezüglich schweißbedingter Beanspruchungen und Bauteilsicherheit während der Herstellung und des Betriebs derzeit stark limitiert. In einem gemeinsamen Forschungsprojekt (FOSTA-P1380/IGF21162BG) der BAM und der TU Chemnitz werden daher die mit Eigenspannungsausbildung und der Gefahr einer Kaltrissbildung verbundenen prozess- und werkstoffbedingten sowie konstruktiven Einflüsse beim WAAM hochfester Stähle untersucht. Der vorliegende Beitrag fokussiert die Analyse der Auswirkungen von Schweißwärmeführung und Design der WAAM-Bauteile auf die Abkühlbedingungen, Gefüge, mechanisch-technologischen Eigenschaften und Eigenspannungen. Hierfür werden geometrisch definierte Probenkörper (Hohlquader) vollautomatisiert mit einem speziellen, hochfesten WAAM-Massivdraht (Streckgrenze >790 MPa) geschweißt. Die Wärmeführung und Probenabmessungen werden innerhalb eines statistischen Versuchsplans variiert. Die Schweißwärmeführung wird dabei so eingestellt, dass die t8/5-Abkühlzeiten im empfohlenen Verarbeitungsbereich (ca. 5 s bis 20 s) sichergestellt sind. Hierzu ließen sich über zusätzliche thermo-physikalische Umformsimulationen mittels Dilatometer die komplexen Wärmezyklen abbilden und die resultierende Zugfestigkeit des Schweißgutes bestimmen. Das WAAM-Schweißen komplexer Geometrien mit variierenden Schweißwärmeführungen und geometrischen Verhältnissen bzw. Wanddicken bedingt neben den Auswirkungen auf die Abkühlbedingungen, Abkühlzeiten und Gefüge deutliche Einflüsse auf die konstruktiven Steifigkeitsverhältnisse beim Schweißen. Es zeigen sich anhand der Schweißexperimente signifikante Auswirkungen durch Probenskalierung und Wärmeeinbringung auf die resultierenden lokalen Eigenspannungen. Die Folge können ungünstige Bauteileigenschaften und risskritische Zugeigenspannungen sein. Im Rahmen der Normungssitzung werden praktikable Verarbeitungsempfehlungen basierend auf den Erkenntnissen des Vh. mit Vertretern aus Industrie und Forschung diskutiert. T2 - NA 092-00-05 GA: Gemeinschaftsarbeitsausschuss NAS/NMP: Zerstörende Prüfung von Schweißverbindungen (DVS AG Q 4/Q 4.1) CY - Online meeting DA - 10.03.2022 KW - MAG-Schweißen KW - Additive Fertigung KW - Eigenspannungen KW - Hochfester Stahl KW - Kaltrisssicherheit KW - Wärmeführung KW - Windenergie PY - 2022 AN - OPUS4-56722 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schröpfer, Dirk A1 - Wandtke, Karsten A1 - Kromm, Arne A1 - Kannengießer, Thomas A1 - Scharf-Wildenhain, R. A1 - Hälsig, A. A1 - Hensel, J. T1 - Correlation of process, design and welding residual stresses in WAAM of high-strength steel components N2 - High-strength fine-grained structural steels have great potential for modern weight optimized steel construc-tions. Efficient manufacturing and further weight savings are achievable due to Wire Arc Additive Manu-facturing (WAAM). First commercial high-strength welding consumables for WAAM are already available. However, the application is still severely limited due to a lack of knowledge and guidelines for the industry regarding welding residual stresses and component safety in manufacturing and operation. Residual stresses may be critical regarding the special microstructure of high-strength steels in context with the risk of cold cracking and component performance in service. Therefore, process- and material-related influences, as well as the design effects on residual stress formation and cold cracking, are being investi-gated in a research project (IGF 21162 BG) focusing a high-strength WAAM welding consumable with yield strength of over 800 MPa. Objectives are the establish-ment of special WAAM cold cracking tests and pro-cessing recommendations allowing economical, suita-ble, and crack-safe WAAM of high-strength steels. First studies on process-related influences showed transfor-mation residual stresses arising during cooling, which significantly influence stress evolution of the compo-nent during layer-wise build-up. This has not yet been investigated for WAAM of high-strength steels. Focus of this study is on the systematic investigation of interactions of the WAAM welding process and design with cooling time, hardness, and residual stresses. Defined open hollow cuboids were welded and investi-gated under systematic variation (design of experi-ments, DoE) of the scale/dimensions (cf. Fig. 1a) and heat control (interlayer temperature Ti: 100–300 °C), heat input E: 200–650 kJ/m. The welding parameters were kept constant as possible to avoid any influence by the arc and the material transfer mode. The heat input adjusted primarily via the welding speed. The resulting different weald bead widths were considered by different build-up strategies (weld beads per layer) to ensure defined wall thicknesses. The hardness was determined on cross-sections taken from the manufac-tured hollow cuboids (Fig. 1c) and the analysis of the residual stress state was carried out by means of X-ray diffraction (XRD) at defined positions on the lateral wall (Fig. 1b). The hardness is higher at the top compared to the lower weld beads, as shown in Fig. 1c exemplarily for central test parameters of the DoE = 425 kJ/mm, Ti = 200 °C). This may be attributed to the specific heat control of the top weld beads, i.e., quenching effects, which are not tempered by weld beads above as is the case for lower weld beads implying a higher hardness. It was observed that the hardness level decreases with increasing energy per unit length, while the in-terpass temperature has a rather low influence on the hardness Residual stress analysis was performed on the lat-eral wall in the welding direction, cf. Fig. 1b, to deter-mine the influence of heat control and design. In the top area of the wall, maximum longitudinal residual stress-es of up to over 500 MPa exhibit, which corresponds to approx. 65% of the nominal yield strength of the mate-rial. The statistic evaluation of stress levels in welding direction of all test specimens show that adaption of heat input may reduce welding stresses up to 50%. In-terpass temperature has less pronounced effect on cool-ing times, microstructure, and on the residual level within parameter matrix. Overall, the results show a significant influence of heat input and component di-mensions on the residual stresses and minor effect of the interpass temperature. Hence, the properties of the specimens may be effectively adjusted via heat input. The working temperatures should be considered for global shrinkage behavior or restraints. Such investiga-tions of residual stress are necessary to further deter-mine local and global welding stresses regarding the consequences on the component safety during manu-facturing and service. T2 - 6th International Symposium on Visualization in Joining & Welding Science through Advanced Measurements and Simulation CY - Osaka, Japan DA - 25.10.2022 KW - MAG-Schweißen KW - Additive Fertigung KW - Eigenspannungen KW - Hochfester Stahl KW - Kaltrisssicherheit KW - Wärmeführung KW - Windenergie PY - 2022 AN - OPUS4-56725 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wandtke, Karsten A1 - Schröpfer, Dirk A1 - Kannengießer, Thomas A1 - Scharf-Wildenhain, R. A1 - Hälsig, A. A1 - Hensel, J. T1 - Einfluss der Wärmeführung auf den Beanspruchungszustand in additiv gefertigten Bauteilen aus hochfestem Stahl N2 - Hochfeste Feinkornbaustähle verfügen über großes Potenzial für gewichtsoptimierte, effiziente Strukturen in vielen modernen Stahlkonstruktion. Weitere Effizienzsteigerungen können durch additives Fertigen sowie bionische Bauweisen erreicht werden. Hochfeste Zusatzwerkstoffe für additives MSG-Schweißen (engl.: Wire Arc Additive Manufacturing, WAAM) sind bereits von den Schweißzusatzherstellern lieferbar. Eine breite industrielle Anwendung insbesondere für KMU ist aufgrund fehlender quantitativer Erkenntnisse und Richtlinien bezüglich schweißbedingter Beanspruchungen und Bauteilsicherheit während der Herstellung und des Betriebs derzeit stark limitiert. In einem gemeinsamen Forschungsprojekt (FOSTA-P1380/IGF21162BG) der BAM und der TU Chemnitz werden daher die mit Eigenspannungsausbildung und der Gefahr einer Kaltrissbildung verbundenen prozess- und werkstoffbedingten sowie konstruktiven Einflüsse beim WAAM hochfester Stähle untersucht. Der vorliegende Beitrag fokussiert die Analyse der Auswirkungen von Schweißwärmeführung und Design der WAAM-Bauteile auf die Abkühlbedingungen, Gefüge, mechanisch-technologischen Eigenschaften und Eigenspannungen. Hierfür werden geometrisch definierte Probenkörper (Hohlquader) vollautomatisiert mit einem speziellen, hochfesten WAAM-Massivdraht (Streckgrenze >790 MPa) geschweißt. Die Wärmeführung und Probenabmessungen werden innerhalb eines statistischen Versuchsplans variiert. Die Schweißwärmeführung wird dabei so eingestellt, dass die t8/5-Abkühlzeiten im empfohlenen Verarbeitungsbereich (ca. 5 s bis 20 s) sichergestellt sind. Hierzu ließen sich über zusätzliche thermo-physikalische Umformsimulationen mittels Dilatometer die komplexen Wärmezyklen abbilden und die resultierende Zugfestigkeit des Schweißgutes bestimmen. Das WAAM-Schweißen komplexer Geometrien mit variierenden Schweißwärmeführungen und geometrischen Verhältnissen bzw. Wanddicken bedingt neben den Auswirkungen auf die Abkühlbedingungen, Abkühlzeiten und Gefüge deutliche Einflüsse auf die konstruktiven Steifigkeitsverhältnisse beim Schweißen. Es zeigen sich anhand der Schweißexperimente signifikante Auswirkungen durch Probenskalierung und Wärmeeinbringung auf die resultierenden lokalen Eigenspannungen. Die Folge können ungünstige Bauteileigenschaften und risskritische Zugeigenspannungen sein. T2 - OVGU-Kolloquium (BMDK des IWF) CY - Magdeburg, Germany DA - 23.06.2022 KW - MAG-Schweißen KW - Additive Fertigung KW - Eigenspannungen KW - Hochfester Stahl KW - Kaltrisssicherheit KW - Wärmeführung KW - Windenergie PY - 2022 AN - OPUS4-56726 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Scharf-Wildenhain, R. A1 - Hälsig, A. A1 - Schröpfer, Dirk A1 - Wandtke, Karsten A1 - Kromm, Arne A1 - Kannengießer, Thomas T1 - Einfluss der Wärmeführung auf die Eigenschaften und fertigungsbedingten Beanspruchungen additiv geschweißter hochfester Feinkornbaustähle N2 - Hochfeste Feinkornbaustähle verfügen über ein großes Potenzial für gewichtsoptimierte, effiziente Strukturen in vielen modernen Stahlkonstruktion. Weitere Effizienzsteigerungen können durch additives Fertigen sowie bionische Bauweisen erreicht werden. Kommerzielle hochfeste Zusatzwerkstoffe für additives MSG-Schweißen (engl.: Wire Arc Additive Manufacturing, WAAM) sind bereits von den Schweißzusatzherstellern lieferbar. Derzeit ist jedoch eine breite industrielle Anwendung insbesondere für KMU aufgrund fehlender quantitativer Erkenntnisse und Richtlinien bezüglich schweißbedingter Beanspruchungen und Bauteilsicherheit während der Herstellung und des Betriebs stark limitiert. In einem gemeinsamen Forschungsprojekt (FOSTA-P1380/IGF21162BG) der BAM und der TU Chemnitz werden die mit Eigenspannungsausbildung und der Gefahr einer Kaltrissbildung verbundenen prozess- und werkstoffbedingten sowie konstruktiven Einflüsse untersucht. Im Fokus dieser Analysen steht die Bestimmung der Wechselwirkungen zwischen WAAM-Prozessparametern bzw. der Wärmeführung auf das Gefüge und die Eigenspannungen. Hierfür werden Referenzproben als offene Hohlquader mit definierten Abmessungen vollautomatisiert mit einem speziellen, hochfesten WAAM-Massivdraht (Streckgrenze >790 MPa) geschweißt. Die gezielte Einstellung der geometrischen Eigenschaften erfolgt durch Schweißparameter und Nahtaufbau bei ca. 4 kg/h mittlerer Abschmelzleistung. Die Wärmeführung wird innerhalb eines statistischen Versuchsplanes mittels Streckenenergie (200 kJ/m bis 650 kJ/m) und Zwischenlagentemperatur (100 °C bis 300 °C) so variiert, dass die t8/5-Abkühlzeiten dem empfohlenen Verarbeitungsbereich entsprechen (ca. 5 s bis 20 s). Ziel ist es bei konstanten geometrisch-konstruktiven Randbedingungen, den Einfluss der Wärmeführung auf Gefüge und resultierende Eigenspannungen zu analysieren. Für die Streckenenergie können neben den Gefügeeinflüssen aufgrund der resultierenden Abkühlzeit deutliche Effekte insbesondere auf die lokalen Eigenspannungen im Bauteil belegt werden. Das Schweißen mit zu hoher Wärmeeinbringung bzw. Abschmelzleistung kann zu ungünstigen Gefüge- und Bauteileigenschaften führen, gleichzeitig jedoch niedrigere Zugeigenspannungsniveaus bewirken. Solche komplexen Wechselwirkungen gilt es letztlich mit diesen Untersuchungen zu klären, um leicht anwendbare Verarbeitungsempfehlungen und Normvorgaben für ein wirtschaftliches, anforderungsgerechtes und risssicheres WAAM von hochfesten Stählen den Anwendern zur Verfügung zu stellen. T2 - DVS Congress 2021 CY - Online meeting DA - 14.09.2021 KW - MAG-Schweißen KW - Additive Fertigung KW - Eigenspannungen KW - Kaltrisssicherheit KW - Hochfester Stahl PY - 2021 AN - OPUS4-56668 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Scharf-Wildenhain, R. A1 - Hälsig, A. A1 - Wandtke, Karsten A1 - Schröpfer, Dirk A1 - Kromm, Arne A1 - Kannengießer, Thomas T1 - Einfluss der Wärmeführung auf die Eigenschaften und fertigungsbedingten Beanspruchungen additiv geschweißter hochfester Feinkornbaustähle N2 - Hochfeste Feinkornbaustähle verfügen über ein großes Potenzial für gewichtsoptimierte, effiziente Strukturen in vielen modernen Stahlkonstruktion. Weitere Effizienzsteigerungen können durch additives Fertigen sowie bionische Bauweisen erreicht werden. Kommerzielle hochfeste Zusatzwerkstoffe für additives MSG-Schweißen (engl.: Wire Arc Additive Manufacturing, WAAM) sind bereits von den Schweißzusatzherstellern lieferbar. Derzeit ist jedoch eine breite industrielle Anwendung insbesondere für KMU aufgrund fehlender quantitativer Erkenntnisse und Richtlinien bezüglich schweißbedingter Beanspruchungen und Bauteilsicherheit während der Herstellung und des Betriebs stark limitiert. In einem gemeinsamen Forschungsprojekt (FOSTA-P1380/IGF21162BG) der BAM und der TU Chemnitz werden die mit Eigenspannungsausbildung und der Gefahr einer Kaltrissbildung verbundenen prozess- und werkstoffbedingten sowie konstruktiven Einflüsse untersucht. Im Fokus dieser Analysen steht die Bestimmung der Wechselwirkungen zwischen WAAM-Prozessparametern bzw. der Wärmeführung auf das Gefüge und die Eigenspannungen. Hierfür werden Referenzproben als offene Hohlquader mit definierten Abmessungen vollautomatisiert mit einem speziellen, hochfesten WAAM-Massivdraht (Streckgrenze >790 MPa) geschweißt. Die gezielte Einstellung der geometrischen Eigenschaften erfolgt durch Schweißparameter und Nahtaufbau bei ca. 4 kg/h mittlerer Abschmelzleistung. Die Wärmeführung wird innerhalb eines statistischen Versuchsplanes mittels Streckenenergie (200 kJ/m bis 650 kJ/m) und Zwischenlagentemperatur (100 °C bis 300 °C) so variiert, dass die t8/5-Abkühlzeiten dem empfohlenen Verarbeitungsbereich entsprechen (ca. 5 s bis 20 s). Ziel ist es bei konstanten geometrisch-konstruktiven Randbedingungen, den Einfluss der Wärmeführung auf Gefüge und resultierende Eigenspannungen zu analysieren. Für die Streckenenergie können neben den Gefügeeinflüssen aufgrund der resultierenden Abkühlzeit deutliche Effekte insbesondere auf die lokalen Eigenspannungen im Bauteil belegt werden. Das Schweißen mit zu hoher Wärmeeinbringung bzw. Abschmelzleistung kann zu ungünstigen Gefüge- und Bauteileigenschaften führen, gleichzeitig jedoch niedrigere Zugeigenspannungsniveaus bewirken. Solche komplexen Wechselwirkungen gilt es letztlich mit diesen Untersuchungen zu klären, um leicht anwendbare Verarbeitungsempfehlungen und Normvorgaben für ein wirtschaftliches, anforderungsgerechtes und risssicheres WAAM von hochfesten Stählen den Anwendern zur Verfügung zu stellen. T2 - DVS Congress 2021 CY - Online meeting DA - 14.09.2021 KW - MAG-Schweißen KW - Hochfester Stahl KW - Eigenspannungen KW - Additive Fertigung KW - Kaltrisssicherheit PY - 2021 SN - 978-3-96144-146-4 VL - 371 SP - 16 EP - 22 PB - DVS Media GmbH CY - Düsseldorf AN - OPUS4-56669 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Winterkorn, René T1 - WAAM dickwandiger Bauteile aus höherfesten AL-MG-SI Legierungen N2 - Das Wire and Arc Additive Manufacturing (WAAM) ist dank hoher erreichbarer Aufbauraten prädestiniert für die Fertigung großvolumiger Bauteile. Dabei ist auf die Wirkmechanismen zwischen Prozessparametern und den daraus resultierenden mechanisch-technologischen Eigenschaften zu achten. Dies gilt insbesondere für die Fertigung dickwandiger Bauteile aus Al-Mg-Si-Aluminiumlegierungen, die eine hohe Anfälligkeit gegenüber Erstarrungsrissen und wasserstoffinduzierter Porosität aufweisen. Der Einfluss der Prozessparameter und des resultierenden Temperaturregimes auf die Bauteilqualität wurde durch die Analyse der Größe und Verteilung von Poren sowie der resultierenden Festigkeit untersucht. Darüber hinaus wurde der Einfluss einer Wärmenachbehandlungsstrategien auf das Festigkeitsverhalten analysiert. T2 - Additive Fertigung – Werkstoffe – Prozesse – Wärmebehandlung 2022 CY - Bremen, Germany DA - 29.06.2022 KW - WAAM KW - AlMgSi Legierungen KW - Wärmenachbehandlung KW - Mechanische Eigenschaften PY - 2022 AN - OPUS4-56672 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Winterkorn, René A1 - Pittner, Andreas A1 - Rethmeier, Michael T1 - Lichtbogenbasierte additive Fertigung dickwandiger Strukturen aus einer höherfesten Al-Mg-Si-Aluminiumlegierungen N2 - Die lichtbogenbasierte, additive Fertigung ist dank hoher erreichbarer Aufbauraten und nahezu uneingeschränktem Bauraum zur Fertigung großvolumiger Bauteile prädestiniert. Die Kombination etablierter Maschinenkomponenten aus Robotertechnik, Schweißtechnik und Sensorik ermöglicht den präzisen schichtweisen Materialauftrag. Die Wirkmechanismen zwischen Prozessparametern und den daraus resultierenden mechanisch-technologischen Eigenschaften der additiv gefertigten Bauteile stellen eine Herausforderung dar. Dies gilt insbesondere auch für dickwandige Bauteile. Bei der Fertigung von Bauteilen aus höherfesten Al-Mg-Si-Aluminiumlegierungen ist aufgrund der hohen Anfälligkeit für Erstarrungsrisse und der Neigung zu wasserstoffinduzierter Porosität im besonderen Maße auf das Temperaturregime und die gewählte Aufbaustrategie zu achten. Der Einfluss der Prozessparameter auf die Bauteilqualität wurde durch die Analyse der Größe und Verteilung von Poren sowie der resultierenden Festigkeit untersucht. Darüber hinaus wurde der Einfluss einer Wärmenachbehandlungsstrategien auf das Festigkeitsverhalten analysiert. Es konnte gezeigt werden, dass dickwandige Strukturen aus höherfesten Al-Mg-Si-Aluminiumlegierungen mit mechanischen Kennwerten im Bereich des Referenzmaterials mittels MSGLichtbogenverfahren additiv gefertigt werden können. T2 - Additive Fertigung – Werkstoffe – Prozesse – Wärmebehandlung 2022 CY - Bremen, Germany DA - 29.06.2022 KW - WAAM KW - Al-Mg-Si-Legierungen KW - Porosität KW - Wärmenachbehandlung KW - Mechanisch technologische Kennwerte PY - 2022 SP - 169 EP - 181 PB - Arbeitsgemeinschaft Wärmebehandlung und Werkstofftechnik e. V. CY - Bremen AN - OPUS4-56673 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wandtke, Karsten A1 - Becker, Amadeus A1 - Schröpfer, Dirk A1 - Kromm, Arne A1 - Kannengießer, Thomas A1 - Scharf-Wildenhain, R. A1 - Hälsig, A. A1 - Hensel, J. T1 - Residual Stress Evolution During Slot Milling for Repair Welding and WAAM of High-Strength Steel Components N2 - High-strength steels have great potential for weight optimization due to reduced wall thicknesses in many modern steel constructions. Further advances in efficiency can be achieved through the application of additive manufacturing processes, such as Wire Arc Additive Manufacturing (WAAM). These technologies enable the sustainable and resource-efficient manufacturing of high-strength steels into near-net-shape, efficient structures. During the production of steel structures, unacceptable defects may occur in the weld area or in the WAAM component, e.g., due to unstable process conditions. The economical solution for most of the cases is local gouging or machining of the affected areas and repair welding. With respect to the limited ductility of high-strength steels, it is necessary to clarify the effects of machining steps on the multiaxial stress state and the high design-induced shrinkage restraint. In this context, the component-related investigations in two research projects are concerned with the residual stress evolution during welding and slot milling of welds and WAAM structures made of high-strength steels with yield strengths ≥790 MPa. In-situ digital image correlation (DIC) and ex-situ X-ray diffraction (XRD) were used to analyse the stresses and strains induced on specimens during and after milling. The systematic analyses revealed a significant interaction of the stiffness and relaxation of the specimens with the initial residual stresses induced by welding. T2 - ICRS 11 - The 11th International Conference on Residual Stresse CY - Nancy, France DA - 27.03.2022 KW - MAG-Schweißen KW - Eigenspannungen KW - Additive Fertigung KW - Hochfester Stahl KW - Reparaturschweißen KW - Gefügedegradation KW - Windenergie PY - 2022 AN - OPUS4-56708 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Scharf-Wildenhain, R. A1 - Hälsig, A. A1 - Hensel, J. A1 - Wandtke, Karsten A1 - Schröpfer, Dirk A1 - Kannengießer, Thomas T1 - Heat control and design-related effects on the properties and welding stresses in WAAM components of high-strength structural steels N2 - Commercial high-strength filler metals for wire arc additive manufacturing (WAAM) are already available. However, widespread industrial use is currently limited due to a lack of quantitative knowledge and guidelines regarding welding stresses and component safety during manufacture and operation for WAAM structures. In a joint research project (FOSTA-P1380/IGF21162BG), the process- and material-related as well as design influences associated with residual stress formation and the risk of cold cracking are being investigated. For this purpose, reference specimens are welded fully automated with defined dimensions and systematic variation of heat control using a special, high-strength WAAM filler metal (yield strength >790 MPa). Heat control is varied by means of heat input (200–650 kJ/m) and interlayer temperature (100–300 °C). The ∆t8/5 cooling times correspond with the recommendations of steel producers (approx. 5–20 s). Welding parameters and AM geometry are correlated with the resulting microstructure, hardness and residual stress state. High heat input leads to a lower tensile stress in the component and may cause unfavorable microstructure and mechanical properties. However, a sufficiently low interlayer temperature is likely to be suitable for obtaining adequate properties at a reduced tensile stress level when welding with high heat input. The component design affects heat dissipation conditions and the intensity of restraint during welding and has a significant influence on the residual stress. These complex interactions are analyzed within this investigation. The aim is to provide easily applicable processing recommendations and standard specifications for an economical, appropriate and crack-safe WAAM of high-strength steels. T2 - Third edition of the International Congress on Welding, Additive Manufacturing and associated non destructive testing CY - Online meeting DA - 08.06.2022 KW - MAG-Schweißen KW - Eigenspannungen KW - Additive Fertigung KW - Hochfester Stahl KW - Kaltrisssicherheit PY - 2022 AN - OPUS4-56710 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wandtke, Karsten A1 - Schröpfer, Dirk A1 - Kannengießer, Thomas A1 - Kromm, Arne A1 - Scharf-Wildenhain, R. A1 - Hälsig, A. A1 - Hensel, J. T1 - Influence of the WAAM process on residual stresses in high-strength steels (IIW-Doc. II-A-408-2022) N2 - High-strength fine-grain structeural steels have great potential for weight optimization of many modern engineering structures. Efficient manufacturing can be achieved here above all by Wire Arc Additive Manufacturing (WAAM). First commercial high-strength welding consumables for WAAM are already available. However, due to a lack of knowledge and guidelines for the industry regarding welding residual stresses and component safety in manufacturing and operation, their application is still severely limited. Residual stresses play a crucial role here, as the sensitive microstructure of high-strength steels carries a high risk of cold cracking. For this reason, process- and material-related influences, as well as the design aspects on residual stress formation and the risk of cold cracking, are being investigated in a recent project (FOSTA-P1380/IGF21162BG). This high strength of the WAAM welding consumables is adjusted via a martensitic phase transformation. The volume expansion associated with martensite formation has a significant influence on residual stress evolution. However, this has not yet been investigated in relation to the processing of high-strength steels by WAAM. The aim of this work is to establish a WAAM cold crack test and easy-to-apply processing recommendations that will allow economical, expedient, and crack-resistant fabrication of high-strength steels, especially for SME. This paper focuses on the analysis of the effects of welding heat control and design of WAAM components on cooling conditions, microstructure, mechanical-technological properties and residual stresses. For this purpose, geometrically defined specimens (hollow cuboids) are welded fully automatically with a special, high-strength WAAM solid wire (yield strength >790 MPa). The heat control and specimen dimensions are varied within a statistical experimental design. The weld heat control is adjusted in such a way that the t8/5 cooling times are ensured within the recommended processing range (approx. 5–20 s). For this purpose, additional thermo-physical forming simulations using a dilatometer allowed the complex heat cycles to be reproduced and the resulting ultimate tensile strength of the weld metal to be determined. The WAAM welding of complex geometries with varying welding heat control and geometric factors or wall thicknesses not only has an effect on the cooling conditions, cooling times and microstructure, but also has a significant influence on the structural restraint conditions during welding. Hence, the welding experiments show significant effects of specimen scaling and heat input on the welding residual stresses, which may be detrimental regarding component properties and crack-critical tensile residual stresses. These complex interactions are analyzed within this investigation. T2 - Intermediate Meeting of IIW Comissions II and IX CY - Online meeting DA - 17.03.2022 KW - MAG-Welding KW - Additive Manufacturing KW - Residual stresses KW - high-strength steel KW - cold cracking safety PY - 2022 AN - OPUS4-56712 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hensel, J. A1 - Hälsig, A. A1 - Scharf-Wildenhain, R. A1 - Wandtke, Karsten A1 - Schröpfer, Dirk A1 - Kromm, Arne A1 - Kannengießer, Thomas T1 - Influence of the WAAM process and design aspects on residual stresses in high-strength structural steels N2 - High-strength fine-grain structural steels have great potential for weight optimization of many modern engineering structures. Efficient manufacturing can be achieved here above all by Wire Arc Additive Manufacturing (WAAM). First commercial high-strength welding consumables for WAAM are already available. However, due to a lack of knowledge and guidelines for the industry regarding welding residual stresses and component safety in manufacturing and operation, their application is still severely limited. Residual stresses play a crucial role here, as the sensitive microstructure of high-strength steels carries a high risk of cold cracking. For this reason, process- and material-related influences, as well as the design aspects on residual stress formation and the risk of cold cracking, are being investigated in a recent project (FOSTA-P1380/IGF21162BG). This high strength of the WAAM welding consumables is adjusted via a martensitic phase transformation. The volume expansion associated with martensite formation has a significant influence on residual stress evolution. However, this has not yet been investigated in relation to the processing of high-strength steels by WAAM. The aim of this work is to establish a WAAM cold crack test and easy-to-apply processing recommendations that will allow economical, expedient, and crack-resistant fabrication of high-strength steels, especially for SME. This paper focuses on the analysis of the effects of welding heat control and design of WAAM components on cooling conditions, microstructure, mechanical-technological properties and residual stresses. For this purpose, geometrically defined specimens (hollow cuboids) are welded fully automatically with a special, high-strength WAAM solid wire (yield strength >790 MPa). The heat control and specimen dimensions are varied within a statistical experimental design. The weld heat control is adjusted in such a way that the t8/5 cooling times are ensured within the recommended processing range (approx. 5–20 s). For this purpose, additional thermo-physical forming simulations using a dilatometer allowed the complex heat cycles to be reproduced and the resulting ultimate tensile strength of the weld metal to be determined. The WAAM welding of complex geometries with varying welding heat control and geometric factors or wall thicknesses not only has an effect on the cooling conditions, cooling times and microstructure, but also has a significant influence on the structural restraint conditions during welding. Hence, the welding experiments show significant effects of specimen scaling and heat input on the welding residual stresses, which may be detrimental regarding component properties and crack-critical tensile residual stresses. These complex interactions are analyzed within this investigation. T2 - 75th IIW Annual Assembly CY - Tokyo, Japan DA - 17.07.2022 KW - WAAM KW - Residual Stresses KW - High-strength Steels KW - Cold cracking safety KW - Heat control KW - Wind energy PY - 2022 AN - OPUS4-56713 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wandtke, Karsten A1 - Schröpfer, Dirk A1 - Kromm, Arne A1 - Kannengießer, Thomas A1 - Scharf-Wildenhain, R. A1 - Hälsig, A. A1 - Hensel, J. T1 - Influence of the WAAM process and design aspects on residual stresses in high-strength structural steels N2 - High-strength fine-grain structural steels have great potential for weight optimization of many modern engineering structures. Efficient manufacturing can be achieved here above all by Wire Arc Additive Manufacturing (WAAM). First commercial high-strength welding consumables for WAAM are already available. However, due to a lack of knowledge and guidelines for the industry regarding welding residual stresses and component safety in manufacturing and operation, their application is still severely limited. Residual stresses play a crucial role here, as the sensitive microstructure of high-strength steels carries a high risk of cold cracking. For this reason, process- and material-related influences, as well as the design aspects on residual stress formation and the risk of cold cracking, are being investigated in a recent project (FOSTA-P1380/IGF21162BG). This high strength of the WAAM welding consumables is adjusted via a martensitic phase transformation. The volume expansion associated with martensite formation has a significant influence on residual stress evolution. However, this has not yet been investigated in relation to the processing of high-strength steels by WAAM. The aim of this work is to establish a WAAM cold crack test and easy-to-apply processing recommendations that will allow economical, expedient, and crack-resistant fabrication of high-strength steels, especially for SME. This paper focuses on the analysis of the effects of welding heat control and design of WAAM components on cooling conditions, microstructure, mechanical-technological properties and residual stresses. For this purpose, geometrically defined specimens (hollow cuboids) are welded fully automatically with a special, high-strength WAAM solid wire (yield strength >790 MPa). The heat control and specimen dimensions are varied within a statistical experimental design. The weld heat control is adjusted in such a way that the t8/5 cooling times are ensured within the recommended processing range (approx. 5–20 s). For this purpose, additional thermo-physical forming simulations using a dilatometer allowed the complex heat cycles to be reproduced and the resulting ultimate tensile strength of the weld metal to be determined. The WAAM welding of complex geometries with varying welding heat control and geometric factors or wall thicknesses not only has an effect on the cooling conditions, cooling times and microstructure, but also has a significant influence on the structural restraint conditions during welding. Hence, the welding experiments show significant effects of specimen scaling and heat input on the welding residual stresses, which may be detrimental regarding component properties and crack-critical tensile residual stresses. These complex interactions are analyzed within this investigation T2 - 75th IIW Annual Assembly (Subcomission IIA) CY - Online meeting DA - 17.07.2022 KW - WAAM KW - Residual Stresses KW - High-strength Steels KW - Cold cracking safety KW - Wind energy KW - Heat control PY - 2022 AN - OPUS4-56715 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Scharf-Wildenhain, R. A1 - Hälsig, A. A1 - Schröpfer, Dirk A1 - Wandtke, Karsten A1 - Kannengießer, Thomas T1 - Wire Arc Additive Manufacturing (WAAM) mit hochfesten Feinkornbaustählen N2 - Die additive Verarbeitung hochfester Feinkornbaustähle mittels Wire Arc Additive Manufacturing (WAAM) ist ein komplexes, aber zugleich auch effizientes Verfahren, bei dem Werkstoff, Bauteilgeometrie und Schweißprozess gezielt aufeinander abgestimmt sein müssen. Ziel dieser Studie war es, einen Zusammenhang zwischen den Prozessparametern und der generierten Schichtgeometrie zu ermitteln. Dazu wurden definierte Referenzkörper mit einem robotergestützten Schweißsystem additiv gefertigt und hinsichtlich Schichthöhe, Wandstärke und Mikrostruktur analysiert. Fokus der Untersuchung waren sowohl konventionelle als auch für die WAAM-Fertigung speziell entwickelte hochfeste Schweißzusatzwerkstoffe. Die geometrischen Eigenschaften additiv gefertigter Bauteile lassen sich insbesondere durch die Faktoren Drahtvorschubgeschwindigkeit und Schweißgeschwindigkeit gezielt einstellen. Jedoch können diese Parameter nicht beliebig variiert werden, auch aufgrund der rheologischen Eigenschaften der Zusatzwerkstoffe. Zu hohe Streckenenergien führen zu lokalen Überhitzungen und Fehlstellen in der generierten Schicht. Undefinierte Fließ- und Erstarrungsvorgänge im überhitzten Bereich erschweren die maßhaltige Fertigung. Deshalb wird bei speziellen WAAM-Schweißdrähten das Fließverhalten gezielt modifiziert, sodass es über einen größeren Temperaturbereich hinweg konstant ist. Erst die Kenntnis über die komplexen Zusammenhänge zwischen den Prozessparametern und der Bauteilgeometrie ermöglicht die Erzeugung exakter Schichtmodelle für die additive Fertigung. Dies bildet die Grundlage für die Bearbeitung weiterer Fragestellungen auf dem Gebiet der additiven Fertigung mit hochfesten Zusatzwerkstoffen und insbesondere deren Anwendung in modernen hochfesten Bauteilen. T2 - 41. Assistentenseminar Fügetechnik CY - Magdeburg, Germany DA - 03.09.2020 KW - Additiver Fertigung KW - MSG-Schweißen KW - Eigenspannungen KW - Hochfester Stahl KW - Kaltrisssicherheit PY - 2020 AN - OPUS4-56690 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Scharf-Wildenhain, R. A1 - Hälsig, A. A1 - Härtel, Sebastian A1 - Wandtke, Karsten A1 - Schröpfer, Dirk A1 - Kromm, Arne A1 - Kannengießer, Thomas T1 - Einfluss der Wärmeführung auf die Eigenschaften und fertigungsbedingten Beanspruchungen additiv geschweißter hochfester Feinkornbaustähle N2 - Hochfeste Feinkornbaustähle verfügen über ein großes Potenzial für gewichtsoptimierte, effiziente Strukturen in vielen modernen Stahlkonstruktion. Weitere Effizienzsteigerungen können durch additives Fertigen sowie bionische Bauweisen erreicht werden. Kommerzielle hochfeste Zusatzwerkstoffe für additives MSG-Schweißen (engl.: Wire Arc Additive Manufacturing, WAAM) sind bereits von den Schweißzusatzherstellern lieferbar. Derzeit ist jedoch eine breite industrielle Anwendung insbesondere für KMU aufgrund fehlender quantitativer Erkenntnisse und Richtlinien bezüglich schweißbedingter Beanspruchungen und Bauteilsicherheit während der Herstellung und des Betriebs stark limitiert. In einem gemeinsamen Forschungsprojekt (FOSTA-P1380/IGF21162BG) der BAM und der TU Chemnitz werden die mit Eigenspannungsausbildung und der Gefahr einer Kaltrissbildung verbundenen prozess- und werkstoffbedingten sowie konstruktiven Einflüsse untersucht. Im Fokus dieser Analysen steht die Bestimmung der Wechselwirkungen zwischen WAAM-Prozessparametern bzw. der Wärmeführung auf das Gefüge und die Eigenspannungen. Hierfür werden Referenzproben als offene Hohlquader mit definierten Abmessungen vollautomatisiert mit einem speziellen, hochfesten WAAM-Massivdraht (Streckgrenze >790 MPa) geschweißt. Die gezielte Einstellung der geometrischen Eigenschaften erfolgt durch Schweißparameter und Nahtaufbau bei ca. 4 kg/h mittlerer Abschmelzleistung. Die Wärmeführung wird innerhalb eines statistischen Versuchsplanes mittels Streckenenergie (200 kJ/m bis 650 kJ/m) und Zwischenlagentemperatur (100 °C bis 300 °C) so variiert, dass die t8/5-Abkühlzeiten dem empfohlenen Verarbeitungsbereich entsprechen (ca. 5 s bis 20 s). Ziel ist es bei konstanten geometrisch-konstruktiven Randbedingungen, den Einfluss der Wärmeführung auf Gefüge und resultierende Eigenspannungen zu analysieren. Darüber hinaus erfolgt die Bestimmung des Einflusses der t8/5-Abkühlzeit auf die mechanisch-technologischen Eigenschaften des speziellen, hochfesten WAAM-Massivdrahts mithilfe von Dilatometeranalysen. Für die Streckenenergie können neben den Gefügeeinflüssen aufgrund der resultierenden Abkühlzeit deutliche Effekte insbesondere auf die lokalen Eigenspannungen im Bauteil belegt werden. Das Schweißen mit zu hoher Wärmeeinbringung bzw. Abschmelzleistung kann zu ungünstigen Gefüge- und Bauteileigenschaften führen, gleichzeitig jedoch niedrigere Zugeigenspannungsniveaus bewirken. Die Dilatometeranalysen zeigen für den untersuchten WAAM-Schweißzusatzwerkstoff eine großes t8/5-Zeitfenster mit einer vergleichsweise geringen Abnahme der Zugfestigkeit mit zunehmender t8/5-Abkühlzeit. Solche komplexen Wechselwirkungen gilt es letztlich mit diesen Untersuchungen zu klären, um leicht anwendbare Verarbeitungsempfehlungen und Normvorgaben für ein wirtschaftliches, anforderungsgerechtes und risssicheres WAAM von hochfesten Stählen den Anwendern zur Verfügung zu stellen. T2 - 42. Assistentenseminar Fügetechnik CY - Braunschweig, Germany DA - 06.10.2021 KW - MAG-Schweißen KW - Eigenspannungen KW - Additive Fertigung KW - Hochfester Stahl KW - Kaltrisssicherheit PY - 2021 AN - OPUS4-56691 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Topolniak, Ievgeniia A1 - Elert, Anna Maria A1 - Knigge, Xenia A1 - Ciftci, G. C. A1 - Radnik, Jörg A1 - Sturm, Heinz T1 - High precision micropatterning of polydopamine by Multiphoton Lithography N2 - Mussel-inspired polydopamine (PDA) initiated a multifunctional modification route that leads to the generation of novel advanced materials and their applications. However, existing PDA deposition techniques still exhibit poor spatial control, have a very limited capability of micropatterning and do not allow to locally tune PDA topography. Herein, we demonstrate PDA deposition based on Multiphoton Lithography (MPL) that enables full spatial and temporal control with nearly total freedom of patterning design. Using MPL, we achieve 2D microstructures of complex design with pattern precision of 0.8 μm without the need of a photomask or stamp. Moreover, this approach permits adjusting the morphology and thickness of the fabricated microstructure within one deposition step, resulting in a unique tunability of materials properties. The chemical composition of PDA is confirmed and its ability for protein enzyme immobilization is demonstrated. This work presents a new methodology for high precision and complete control of PDA deposition, enabling PDA incorporation in applications where fine and precise local surface functionalization is required. Possible applications include multicomponent functional elements and devices in microfluidics or lab-on-a-chip systems. KW - Multiphoton lithography KW - Polydopamine KW - Micropatterning PY - 2022 U6 - https://doi.org/10.1002/adma.202109509 VL - 34 IS - 18 SP - e2109509 PB - Wiley online library AN - OPUS4-54535 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Chaudry, Mohsin A1 - Mohr, Gunther A1 - Hilgenberg, Kai T1 - Experimental and numerical comparison of heat accumulation during laser powder bed fusion of 316L stainless steel N2 - Heat accumulation during laser powder bed fusion (LPBF) of metallic build parts can adversely affect their microstructure and mechanical properties. To study the heat accumulation during 316L steel based parts manufactured by LPBF, a finite element method (FEM) based numerical study is carried out. For the investigation, a computationally efficient FEM based model, where the whole layer is simultaneously exposed to a heat source, is used. The simulation results are compared with experimental results to validate the numerical model. While considering different influencing factors such as volumetric energy density (VED) and inter-layer time (ILT), the FEM model is shown to successfully simulate the process of heat accumulation during LPBF based manufacturing of a cuboidal shaped geometry. It is shown that ILT and VED have a significant effect on heat accumulation. The validated numerical model provides a good basis for the optimization of processing parameters and geometries for a future investigation of a reduction of heat accumulation effects. Furthermore, it can be used to quickly provide preheating boundary conditions for detailed investigations by different model approaches at a finer scale for future studies. KW - Laser powder bed fusion KW - Finite element method KW - Heat accumulation KW - Inter-layer time PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-545115 SP - 1 EP - 13 PB - Springer AN - OPUS4-54511 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Oster, Simon A1 - Breese, Philipp Peter A1 - Altenburg, Simon T1 - Porosity prediction in metal based additive manufacturing utilizing in situ thermography N2 - Quality assessment of components produced by metal based additive manufacturing (AM) technologies such as laser powder bed fusion is rising in importance due to the increased use of AM in industrial production. Here, the presence of internal porosity was identified as a limiting factor for the final component quality. The utilization of thermography as an in-situ monitoring technique allows the determination of the part’s thermal history which was found to be connected to the porosity formation [1]. Combining the local thermal information derived from thermography with the porosity information obtained by x-ray micro computed tomography, machine learning algorithms can be utilized to predict the porosity distribution in the part. In this study, a first approach for the prediction of keyhole porosity in a cylindric specimen from AISI 316L stainless steel is presented. It is based on data augmentation using the “SmoteR” algorithm [2] to cure the dataset imbalance and a 1-dimensional convolutional neural network. [1] C.S. Lough et al., Local prediction of Laser Powder Bed Fusion porosity by short-wave infrared thermal feature porosity probability maps. Journal of Materials Processing Technology, 302, p. 117473 (2022) https://dx.doi.org/10.1016/j.imatprotec.2021.117473 [2] L. Torgo et al., SMOTE for Regression. Progress in Artificial Intelligence, Chapter 33, p. 378-289 (2013) https://dx.doi.org/10.1007/978-3-642-40669-0_33 T2 - KI-Tag Arbeitskreis Chemometrik & Qualitätssicherung - Chemometrics meets Artificial Intelligence CY - Berlin, Germany DA - 01.04.2022 KW - Laser Powder Bed Fusion KW - Thermography KW - Defect Prediction KW - Convolutional Neural Networks PY - 2022 AN - OPUS4-54621 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pauzon, C. A1 - Mishurova, Tatiana A1 - Fischer, M. A1 - Ahlström, J. A1 - Fritsch, Tobias A1 - Bruno, Giovanni A1 - Hryha, Eduard T1 - Impact of contour scanning and helium-rich process gas on performances of Alloy 718 lattices produced by laser powder bed fusion N2 - Contour scanning and process gas type are process parameters typically considered achieving second order effects compared to first order factors such as laser power and scanning speed. The present work highlights that contour scanning is crucial to ensure geometrical accuracy and thereby the high performance under uniaxial compression of complex Alloy 718 lattice structures. Studies of X-ray computed tomography visualizations of as-built and compression-strained structures reveal the continuous and smooth bending and compression of the walls, and the earlier onset of internal contact appearance in the denser lattices printed with contour. In contrast, the effect of addition of He to the Ar process gas appears to have limited influence on the mechanical response of the lattices and their microstructure as characterized by electron backscattered diffraction. However, the addition of He proved to significantly enhance the cooling rate and to reduce the amount of the generated spatters as evidenced by in situ monitoring of the process emissions, which is very promising for the process stability and powder reusability during laser powder bed fusion. KW - Additive manufacturing KW - Laser powder bed fusion KW - Gyroid lattice KW - Process atmosphere PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-546632 SN - 0264-1275 VL - 215 SP - 110501 PB - Elsevier Ltd. AN - OPUS4-54663 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - D'Accardi, E. A1 - Krankenhagen, Rainer A1 - Ulbricht, Alexander A1 - Pelkner, Matthias A1 - Pohl, Rainer A1 - Palumbo, D. A1 - Galietti, U. T1 - Capability to detect and localize typical defects of laser powder bed fusion (L‑PBF) process: an experimental investigation with different non‑destructive techniques N2 - Additive manufacturing (AM) technologies, generally called 3D printing, are widely used because their use provides a high added value in manufacturing complex-shaped components and objects. Defects may occur within the components at different time of manufacturing, and in this regard, non-destructive techniques (NDT) represent a key tool for the quality control of AM components in many industrial fields, such as aerospace, oil and gas, and power industries. In this work, the capability of active thermography and eddy current techniques to detect real imposed defects that are representative of the laser powder bed fusion process has been investigated. A 3D complex shape of defects was revealed by a μCT investigation used as reference results for the other NDT methods. The study was focused on two different types of defects: porosities generated in keyhole mode as well as in lack of fusion mode. Different thermographic and eddy current measurements were carried out on AM samples, providing the capability to detect volumetric irregularly shaped defects using non-destructive methods. KW - Additive Manufacturing KW - Defect detection KW - Thermography KW - Eddy-current testing KW - Micro-computed tomography PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-546680 SN - 2363-9512 VL - 7 IS - 6 SP - 1239 EP - 1256 PB - Springer AN - OPUS4-54668 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Straße, Anne A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - Study on Duplex Stainless Steel Powder Compositions for the Coating of thick Plates of Laser Beam Welding N2 - Duplex stainless steels combine the positive properties of its two phases, austenite and ferrite. Due to its good corrosion resistance, high tensile strength, and good ductility, it has multiple applications. But laser beam welding of duplex steels changes the balanced phase distribution in favor of ferrite. This results in a higher vulnerability to corrosion and a lower ductility. Herein, different powder combinations consisting of duplex and nickel for coating layers by laser metal deposition (LMD) are investigated. Afterward, laser tracks are welded, and the temperature cycles are measured. The ferrite content of the tracks is analyzed by feritscope, metallographic analysis, and electron backscatter diffraction. The goal is the development of a powder mixture allowing for a duplex microstructure in a two-step process, where first the edges of the weld partners are coated with the powder mixture by LMD and second those edges are laser beam welded. The powder mixture identified by the pretests is tested in the two-step process and analyzed by metallographic analysis, energy-dispersive X-ray spectroscopy, and Vickers hardness tests. The resulting weld seams show a balanced duplex microstructure with a homogenous nickel distribution and a hardness of the weld seam similar to the base material. KW - Duplex AISI 2205 KW - Laser metal deposition KW - Laser beam welding KW - Nickel KW - Stainless steels PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-547024 SN - 1438-1656 SP - 1 EP - 11 PB - Wiley-VCH CY - Weinheim AN - OPUS4-54702 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Marko, A. A1 - Bähring, S. A1 - Raute, J. A1 - Biegler, M. A1 - Rethmeier, Michael T1 - Quality Prediction in Directed Energy Deposition Using Artificial Neural Networks Based on Process Signals N2 - The Directed Energy Deposition process is used in a wide range of applications including the repair, coating or modification of existing structures and the additive manufacturing of individual parts. As the process is frequently applied in the aerospace industry, the requirements for quality assurance are extremely high. Therefore, more and more sensor systems are being implemented for process monitoring. To evaluate the generated data, suitable methods must be developed. A solution, in this context, was the application of artificial neural networks (ANNs). This article demonstrates how measurement data can be used as input data for ANNs. The measurement data were generated using a pyrometer, an emission spectrometer, a camera (Charge-Coupled Device) and a laser scanner. First, a concept for the extraction of relevant features from dynamic measurement data series was presented. The developed method was then applied to generate a data set for the quality prediction of various geometries, including weld beads, coatings and cubes. The results were compared to ANNs trained with process parameters such as laser power, scan speed and powder mass flow. It was shown that the use of measurement data provides additional value. Neural networks trained with measurement data achieve significantly higher prediction accuracy, especially for more complex geometries. KW - DED KW - Artificial neural network KW - Process monitoring KW - Quality assurance KW - Data preparation PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-547039 VL - 12 IS - 8 SP - 1 EP - 13 PB - MDPI AN - OPUS4-54703 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Geisen, O. A1 - Müller, V. A1 - Graf, B. A1 - Rethmeier, Michael T1 - Integrated weld preparation designs for the joining of L‑PBF and conventional components via TIG welding N2 - size limitations and high production costs of L-PBF make it competitive for smaller, highly complex components, while the less complex elements of an assembly are manufactured conventionally. This leads to scenarios that use L-PBF only where it’s beneficial, and it require an integration and joining to form the final product. For example, L-PBF combustion swirlers are welded onto cast parts to produce combustion systems for stationary gas turbines. Today, the welding process requires complex welding fixtures and tack welds to ensure the correct alignment and positioning of the parts for repeatable weld results. In this paper, L-PBF and milled weld preparations are presented as a way to simplify the Tungsten inert gas (TIG) welding of rotationally symmetrical geometries using integrated features for alignment and fixation. Pipe specimens with the proposed designs are manufactured in Inconel 625 using L-PBF and milling. The pipe assembly is tested and TIG welding is performed for validation. 3D scans of the pipes before and after welding are evaluated, and the weld quality is examined via metallography and computed tomography (CT) scans. All welds produced in this study passed the highest evaluation group B according to DIN 5817. Thanks to good component alignment, safe handling, and a stable welding process, the developed designs eliminate the need for part-specific fixtures, simplify the process chain, and increase the process reliability. The results are applicable to a wide range of components with similar requirements. KW - L-PBF KW - AM feature integration KW - TIG welding KW - Integrated alignment features KW - Pipe weld preparation KW - Dissimilar joints KW - Inconel 625 PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-547042 SN - 2363-9512 SP - 1 EP - 11 PB - Springer AN - OPUS4-54704 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Erning, Johann Wilhelm T1 - Hygienic assessment of SLM-printed stainless steel N2 - Elektrochemische Messungen zur hygienischen Bewertung additiv gefertigter Bauteile werden diskutiert. Die Bewertung und Details des Werkstoffs werden beschrieben, Anwendungsbeispiele gezeigt. T2 - Kormat 2022 CY - Online meeting DA - 26.04.2022 KW - Korrosion KW - Trinkwasser KW - Hygienische Bewertung KW - Additive Fertigung PY - 2022 AN - OPUS4-54709 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gook, S. A1 - El-Sari, B. A1 - Biegler, M. A1 - Rethmeier, Michael A1 - Lichtenthäler, F. A1 - Stark, M. T1 - Multiple-wire submerged arc welding of high-strength fine-grained steels N2 - Ensuring the required mechanical-technological properties of welds is a critical issue in the application of multi-wire submerged arc welding processes for welding high-strength fine-grained steels. Excessive heat input is one of the main causes for microstructural zones with deteriorated mechanical properties of the welded joint, such as a reduced notched impact strength and a lower structural robustness. A process variant is proposed which reduces the weld volume as well as the heat input by adjusting the welding wire configuration as well as the energetic parameters of the arcs, while retaining the advantages of multiwire submerged arc welding such as high process stability and production speed. KW - Submerged arc welding KW - High-strength fine-grained steels KW - Mechanical properties of the joints KW - Energy parameters of the arc PY - 2022 U6 - https://doi.org/10.37434/tpwj2022.01.02 SN - 0957-798X IS - 1 SP - 9 EP - 13 PB - Paton Publishing House CY - Kiev AN - OPUS4-54701 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Scheuschner, Nils A1 - Altenburg, Simon A1 - Mohr, Gunther A1 - Straße, Anne A1 - Oster, Simon A1 - Gumenyuk, Andrey A1 - Hilgenberg, Kai A1 - Maierhofer, Christiane T1 - Infrared Thermography of the DED-LB/M and PBF LB/M processes N2 - Infrared thermography is a technique that allows to measure the temperatures of objects by analyzing the intensity of the thermal emission without the need of direct contact with very high spatial and temporal resolution. As the temperature is a fundamental factor for the additive manufacturing processes of metals, infrared thermography can provide experimental data that can be used for the validation of simulations and improving the understanding of the processes as well as for in-situ process monitoring for nondestructive evaluation (NDE) for quality control. In this talk we will provide an overview over the possibilities of state of the art thermographic in-situ monitoring systems for the DED-LB/M and PBF-LB/M processes and the challenges such as phase transitions and unknown emissivity values in respect to the determination of real temperatures. We define the requirements for different camera systems in various configurations and give examples on the selection of appropriate measurement parameters and data acquisition techniques as well as on techniques for data analysis and interpretation. Finally, we compare in-situ monitoring methods against post NDE methods by analyzing the advantages and disadvantages of both. This research was funded by BAM within the Focus Area Materials. T2 - Coupled2021 - IX International Conference on Coupled Problems in Science and Engineering CY - Online meeting DA - 13.06.2021 KW - Additive Manufacturing KW - Thermography KW - Direct Energy Deposition PY - 2021 AN - OPUS4-54399 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Becker, Tina A1 - Altenburg, Simon A1 - Scheuschner, Nils A1 - Maierhofer, Christiane T1 - Multi measurand in-situ monitoring of the laser powder bed fusion process by means of multispectral optical tomography N2 - Laser Powder Bed Fusion (L-PBF), as one of the most promising production process in the field of metal additive manufacturing, enables traditional constructive solutions to be rethought and the manufacturing of optimized components according to the "form follows function" principle. The most significant obstacle for a broad industrial application of the L-PBF process is the inadequate quality assurance during the manufacturing process so far, leading to high production costs. Although several mainly camera based commercial in-process monitoring systems are already available, a deep understanding of the interpretation of the monitored data and correlation with actual defects is still lacking. One reason for this is the reduction of the complex process signature to just one measurement value. The focus of this contribution is the presentation of the multispectral optical tomography as alternative to single measurand in-situ monitoring systems. The potential of this approach is hereby shown on L-PBF printed samples with induced process instabilities. Beyond that, an in-house developed L-PBF printer for further testing of multi-sensor in-situ monitoring systems is presented. T2 - ICAM2021 CY - Online meeting DA - 01.11.2021 KW - In-situ monitoring KW - L-PBF KW - Optical tomography KW - 3d printing KW - Thermography PY - 2021 AN - OPUS4-54388 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - THES A1 - Mishurova, Tatiana T1 - Influence of residual stress and microstructure on mechanical performance of LPBF TI-6AL-4V N2 - Additive manufacturing technologies provide unique possibilities in the production of topologically optimized, near-net shape components. The main limiting factors affecting the structural integrity of Laser Powder Bed Fusion (LPBF) parts are manufacturing defects and residual stress (RS) because both of them are virtually inevitable. Taking into account the complex thermal history of LPBF materials, a prediction of the material behavior is not possible without experimental data on the microstructure, defect distribution, and RS fields. Therefore, this thesis aims to understand the factors that influence the LPBF Ti-6Al-4V material performance the most, covering both the production and the post-processing steps of manufacturing. Indeed, a parametric study on the influence of manufacturing process and post-processing on RS, defects and microstructure was performed. It was found that the volumetric energy Density (EV), commonly used for the LPBF process optimization, does neither consider the pore shapes and distribution, nor the influence of individual parameters on the volume fraction of pores. Therefore, it was recommended not to use EV without great care. It was shown that the Position on the base plate has a great impact on the amount of RS in the part. The micromechanical behavior of LPBF Ti-6Al-4V was also studied using in-situ Synchrotron X-ray diffraction during tensile and compression tests. Diffraction elastic constants (DEC), connecting macroscopic stress and (micro) strain, of the LPBF Ti-6Al-4V showed a difference from the DEC of conventionally manufactured alloy. This fact was attributed to the peculiar microstructure and crystallographic texture. It was therefore recommended to determine experimentally DECs whenever possible. Low Cycle Fatigue (LCF) tests at a chosen operating temperature were performed to evaluate the effect of post-treatment on the mechanical performance. Through the information on the microstructure, the mesostructure, and the RS, the LCF behavior was (indirectly) correlated to the process parameters. It was found that the fatigue performance of LPBF samples subjected to hot isostatic pressing is similar to that of hot-formed Ti-6Al-4V. The tensile RS found at the surface of LPBF as-built samples decreased the fatigue life compared to the heat-treated samples. The modification of the microstructure (by heat treatment) did not affect the Fatigue performance in the elastic regime. This shows that in the absence of tensile RS, the manufacturing defects solely control the failure of LPBF components and densification has the strongest effect on the improvement of the mechanical performance. KW - Additive manufacturing KW - Ti-6Al-4V KW - Residual stress KW - Computed tomography PY - 2021 SP - 1 EP - 143 CY - RWTH Aachen AN - OPUS4-54389 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Stargardt, Patrick A1 - Junge, P. A1 - Greinacher, M. A1 - Kober, D. A1 - Mieller, Björn T1 - Bulk vs thermal sprayed alumina for insulation applications: A comparison of electrical and dielectrical properties N2 - Additive manufacturing (AM) processes are opening new design possibilities for large scale electrical devices such as power generators. Conventional manufacturing methods use copper rods which are wrapped, vacuum impregnated, bend and welded. These processes are labor-intensive and time-consuming. The introduction of AM methods for manufacturing the copper conductor and electrical insulation can reduce the size of the generator head, the most complex part of the generator. In this study, the electrical and dielectrical properties of additively deposited ceramic layers are investigated and compared with the properties of conventionally fabricated bulk ceramics. The ceramic layers are thermally deposited by atmospheric plasma spraying of a commercially available alumina powder. Bulk ceramics are fabricated by dry pressing and sintering of the same powder. Microstructure and porosity were analyzed by scanning electron microscopy (SEM). Electrical and dielectrical properties such as DC resistance, dielectric strength, dielectric loss, and relative permittivity were determined according to the standards. The microstructures of sprayed and sintered alumina show significant differences with respect to grain form and porosity. The density of the bulk ceramic is lower than the density of the sprayed layer due to the coarse particle size (d50 = 33 μm). Therefore, data from dense samples of the same chemical composition but lower particle size alumina powder were used for comparison. T2 - Keramik 2022 CY - Online meeting DA - 07.03.2022 KW - High Voltage Insulation KW - Thermal Spray KW - Dielectric Spectroscopy KW - Atmospheric Plasma Spraying PY - 2022 AN - OPUS4-54446 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael A1 - Kannengießer, Thomas T1 - Fügetechnik für Wasserstofftechnologien: Ausgewählte Themen und Herausforderungen N2 - Die Präsentation fasst die Bedeutung der Fügetechnik für Wasserstofftechnologien im Rahmen der Arbeiten für einer Studie (DVS-Berichte Nr. 373) mit besonderer Berücksichtigung der Normung und Regelwerkssetzung zusammen. T2 - Sitzung des DIN-Gemeinschaftsarbeitsausschusses NA 092 00 05 GA, NAS/NMP: Zerstörende Prüfung von Schweißverbindungen CY - Online meeting DA - 10.03.2022 KW - Wasserstoff KW - Fügetechnik KW - Schweißen KW - Wasserstofftechnologien KW - Bedeutung PY - 2022 AN - OPUS4-54447 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Meyer, Lena A1 - Zocca, Andrea A1 - Wilbig, Janka A1 - Kolsch, Nico A1 - Günster, Jens T1 - Laser beam melting additive manufacturing at μ-gravity N2 - In-space manufacturing (ISM) provides the opportunity to manufacture and repair critical components on future human spaceflight missions. For explorations to Mars and beyond, ISM is a key strategy not only due to the long travel distances and high costs of supply from earth but also to be able to safely work in space for years. Human spaceflight is still dependent on shipments from earth that can fail for several reasons. ISM is a valuable alternative to ensure the timely and safe resupply of space missions. With additive manufacturing (AM) technologies, components are built directly from a 3D computer-aided-design (CAD) model which offers the advantages of freedom of design and the production of complex and ready-to-use parts. A virtual tool box with 3D models in space or the supply of information instead of components from earth to space can strongly benefit future missions. For industrial use, most research has focused on laser based additive manufacturing processes such as laser beam melting (LBM) where metallic powder particles are spread into a uniform powder bed and melted by a laser to the desired shape. In the absence of gravity, the handling of metal powders, which is essential for the process, is challenging. We present an evolution of an AM system, where a gas flow throughout the powder bed is applied to stabilize the powder bed. This is needed to compensate for the missing gravitational forces in microgravity experiments on parabolic flight campaigns. The system consists of a porous building platform acting as a filter for the fixation of metal particles in a gas flow. It is driven by reduced pressure established by a vacuum pump underneath the platform. The system creates a drag force that directs the particles towards the porous building platform, similar to the effect of the gravitational force. The AM system with its gas-flow-assisted powder deposition has been tested in several parabolic flight campaigns, and stainless-steel powder has successfully been processed during microgravity conditions. Different powder recoating mechanisms have been investigated to assess the homogeneous distribution of the powder as well as the attachment of the next layer to the powder bed. These mechanisms included different container designs with parallel double blades and with a V-shape at the bottom, and a roller recoating system. The samples presented are the first metal parts ever manufactured using LBM in μ-gravity. In addition to manufacturing in a μ-gravity environment, the experiments have shown the feasibility to manufacture components at different accelerations during the parabolic flight: hyper gravity (1.8 g), μ-gravity (< 0.01 g) and 1 g. Recent results will also be presented describing the application of this LBM setup in a parabolic flight campaign with mixed lunar, martian and µ-gravity acceleration, during which the processing of a lunar regolith simulant powder was tested. For ISM, the development and testing of the proposed AM system demonstrates that LBM can be considered a viable technology for the manufacturing of metal and ceramic parts in a μ-gravity or reduced-gravity environment. T2 - International Conference on Advanced Manufacturing CY - Online meeting DA - 07.03.2022 KW - μ-gravity KW - In-space manufacturing KW - Additive manufacturing KW - Laser beam melting KW - Microgravity KW - Stainless steel KW - Lunar regolith simulant PY - 2022 AN - OPUS4-54450 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Altenburg, Simon A1 - Maierhofer, Christiane A1 - Pelkner, Matthias T1 - Process monitoring in metal AM @ BAM - The project ProMoAM N2 - Results of the project ProMoAM (Process monitoring in additive manufacturing) presented. Results from in-situ eddy current testing, optical emission spectroscopy, thermography, optical tomography as well as particle and gas emission spectroscopy are summarized and correlated to results from computed tomography for future in-situ defect detection. T2 - 3rd Meeting of WG6 (NDT in AM) of the EFNDT CY - Online meeting DA - 15.03.2022 KW - Additive Manufacturing KW - Process monitoring KW - ProMoAM PY - 2022 AN - OPUS4-54484 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael A1 - Kannengießer, Thomas T1 - Joining processes for components in hydrogen technologies: Current need and future importance N2 - This presentation gives an overview on the importance of joining processes for component fabrication in hydrogen technologies. For that reason, the current need and future research and developement activites are highlighted for the three technological fields: hydrogen storage, transport and use (in terms of the emerging field of additive manufacturing). Finally, some remarks are given for necessary changes in the standardization. T2 - IIW Intermediate Meeting, Comm. II-A "Welding Metallurgy" CY - Online meeting DA - 17.03.2022 KW - Hydrogen KW - Welding KW - Research KW - Review KW - Additive manufacturing PY - 2022 AN - OPUS4-54488 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kempf, Andreas A1 - Kruse, Julius A1 - Madia, Mauro A1 - Hilgenberg, Kai T1 - Correlation between quasistatic und fatigue properties of additively manufactured AlSi10Mg using Laser Powder Bed Fusion N2 - In order to find a resource efficient approach for the fatigue lifetime prediction of laser powder bed fusion (L-PBF) processed AlSi10Mg material, results of tensile and fatigue tests were compared. The specimens were manufactured with three different L-PBF machines and studied in different heat treatment conditions (as-built, annealed, T6 heat treated). The investigations showed that the high attainable tensile strength properties after the manufacturing process are not beneficial in the high cycle fatigue (HCF) regime. In contrast, the applied heat treatments, which lead typically to a decrease of ultimate tensile strength, improved dramatically the fatigue behavior. Additionally, a clear correlation between the elongation at fracture and HCF resistance has been found for individual heat treatment conditions. This empiric relationship provides an estimation of the fatigue resistance in the presence of material defects and can be implemented in part and process approvals. T2 - FATIGUE DESIGN 2021 CY - Online meeting DA - 17.11.2021 KW - Additive Manufacturing KW - Laser powder bed fusion KW - AlSi10Mg KW - Tensile properties KW - Fatigue properties PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-544921 SN - 2452-3216 VL - 38 SP - 77 EP - 83 PB - Elsevier B.V. AN - OPUS4-54492 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Roveda, Ilaria A1 - Serrano Munoz, Itziar A1 - Kromm, Arne A1 - Madia, Mauro T1 - Investigation of residual stresses and microstructure effects on the fatigue behaviour of a L-PBF AlSi10Mg alloy N2 - Al-Si alloys produced by Laser Powder Bed Fusion (L-PBF) techniques allow the fabrication of lightweight free-shape components that find space in aerospace, automotive, biomedical and military applications. Due to the high cooling rates occurring during the building process, L-PBF AlSi10Mg alloys exhibit an ultra-fine microstructure that leads to superior mechanical properties in the as-built condition compared to conventional cast Al-Si materials. Nevertheless, L-PBF processing induces high thermal gradients, leading to deleterious residual stress levels that must be considered to avoid part distortion and unpredicted failures. In order to relax detrimental residual stress and to increase the ductility, post-processing stress relief treatments are generally performed. In as-built condition the hypoeutectic AlSi10Mg microstructure consist of fine α-Al cells containing uniformly dispersed silicon nanoparticles, which are, in addition, surrounded by a eutectic Si network. Above 260°C the silicon interconnectivity starts to breakdown into spheroidized particles and to coarsen. At the same time, the heating residual stresses are relieved. The objective of the contribution is to investigate, under different heat treatment conditions, the evolution of microstructure and residual stresses in view of optimizing the fatigue performance of the alloy. To this purpose various heat treatments in a range of temperatures between 265°C and 300°C for a duration between 15 minutes and 2 hours are performed. The microstructure modifications are analysed using a scanning electron microscope and the residual stress state is measured by laboratory X-ray diffraction. T2 - FATIGUE DESIGN 2021 CY - Online meeting DA - 17.11.2021 KW - AlSi10Mg alloy KW - Additive manufacturing KW - L-PBF KW - Residual stress KW - Heat treatment PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-544942 SN - 2452-3216 VL - 38 SP - 564 EP - 571 PB - Elsevier B.V. AN - OPUS4-54494 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Werner, Tiago A1 - Madia, Mauro A1 - Zerbst, Uwe T1 - Comparison of the fatigue behavior of wrought and additively manufactured AISI 316L N2 - Additive manufacturing (AM) is becoming increasingly important in engineering applications due to the possibility of producing components with a high geometrical complexity allowing for optimized forms with respect to the in-service functionality. Despite the promising potential, AM components are still far from being used in safety-relevant applications, mainly due to a lack of understanding of the feedstock-process-properties-performance relationship. This work aims at providing a full characterization of the fatigue behavior of the additively manufactured AISI 316L austenitic stainless steel and a direct comparison with the fatigue performance of the wrought steel. To this purpose, a set of specimens has been produced by laser powder bed fusion (L-PBF) and subsequently heat treated at 900 °C for 1 hour for complete stress relief, whereas a second set of specimens has been machined out of hot-rolled plates. Low cycle fatigue (LCF) and high cycle fatigue (HCF) tests have been conducted for characterizing the fatigue behavior. The L-PBF material had a higher fatigue limit and better finite life performance compared to wrought material. Both, LCF and HCF-testing revealed an extensive cyclic softening. T2 - FATIGUE DESIGN 2021 CY - Online meeting DA - 17.11.2021 KW - Additive manufacturing KW - L-PBF KW - 316L KW - Fatigue KW - LCF KW - HCF PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-544952 SN - 2452-3216 VL - 38 SP - 554 EP - 563 PB - Elsevier B.V. AN - OPUS4-54495 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Günster, Jens T1 - Research and carrier in governmental research institute in Japan and Germany N2 - Being invited to Japan in 1996 as a Humboldt/STA was on of the most exciting things in my life. Not that it is on an absolute scale the most exciting thing still, but at that time, just after finalizing my PhD and thinking what is coming next, it was. KW - Networking PY - 2022 U6 - https://doi.org/10.11470/oubutsu.91.2_115 SN - 0369-8009 VL - 91 IS - 2 SP - 115 EP - 117 PB - Gakkai CY - Tōkyō AN - OPUS4-54462 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - El-Sari, B. A1 - Biegler, M. A1 - Rethmeier, Michael T1 - Verbesserung der Vorhersagegüte von künstlichen neuronalen Netzen zum Widerstandspunktschweißen durch Auswertung des dynamischen Widerstands N2 - Das Widerstandspunktschweißen ist ein etabliertes Fügeverfahren in der Automobilindustrie. Es wird vor allem bei der Herstellung sicherheitsrelevanter Bauteile, zum Beispiel der Karosserie, eingesetzt. Daher ist eine kontinuierliche Prozessüberwachung unerlässlich, um die hohen Qualitätsanforderungen zu erfüllen. Künstliche neuronale Netzalgorithmen können zur Auswertung der Prozessparameter und -signale eingesetzt werden, um die individuelle Schweißpunktqualität zu gewährleisten. Die Vorhersagegenauigkeit solcher Algorithmen hängt von dem zur Verfügung gestellten Trainingsdatensatz ab. In diesem Beitrag wird untersucht, inwieweit die Vorhersagegüte eines künstlichen neuronalen Netzes durch Auswertung einer Prozessgröße, dem dynamischen Widerstand, verbessert werden kann. KW - Künstliche Intelligenz KW - Qualität KW - Neuronales Netz KW - Widerstandspunktschweißen PY - 2021 SP - 785 EP - 789 AN - OPUS4-53976 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - El-Sari, B. A1 - Biegler, M. A1 - Rethmeier, Michael T1 - Investigation of the Extrapolation Capability of an Artificial Neural Network Algorithm in Combination with Process Signals in Resistance Spot Welding of Advanced High-Strength Steels N2 - Resistance spot welding is an established joining process for the production of safetyrelevant components in the automotive industry. Therefore, consecutive process monitoring is essential to meet the high quality requirements. Artificial neural networks can be used to evaluate the process parameters and signals, to ensure individual spot weld quality. The predictive accuracy of such algorithms depends on the provided training data set, and the prediction of untrained data is challenging. The aim of this paper was to investigate the extrapolation capability of a multi-layer perceptron model. That means, the predictive performance of the model was tested with data that clearly differed from the training data in terms of material and coating composition. Therefore, three multi-layer perceptron regression models were implemented to predict the nugget diameter from process data. The three models were able to predict the training datasets very well. The models, which were provided with features from the dynamic resistance curve predicted the new dataset better than the model with only process parameters. This study shows the beneficial influence of process signals on the predictive accuracy and robustness of artificial neural network algorithms. Especially, when predicting a data set from outside of the training space. KW - Automotive KW - Artificial intelligence KW - Quality monitoring KW - Resistance spot welding KW - Quality assurance PY - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-539783 VL - 11 IS - 11 SP - 1 EP - 11 PB - MDPI AN - OPUS4-53978 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Raute, J. A1 - Biegler, M. A1 - Rethmeier, Michael T1 - Elektronenstrahl schweißt additiv gefertigte Nickel-Superlegierungen N2 - Die Additive Fertigung ist ideal zur Herstellung und Reparatur komplexer Bauteile aus hochfesten Werkstoffen. Doch es fehlen Fügeverfahren, die Heißrisse vermeiden. Die Lösung heißt Elektronenstrahl. KW - Additive Fertigung PY - 2021 SP - 1 EP - 6 AN - OPUS4-53979 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Agea, Boris A1 - Walzel, S. T1 - 3D Druck unterstütz die Dekarbonisierung N2 - Suspensionsbasiertes Binder Jetting reduziert die Brennzeiten von technischer Keramik im Vergleich zu anderen 3d-druckverfahren signifikant. dabei wird nicht nur Energie beim Betrieb der Brennöfen gespart, sondern auch die Emission von Kohlendioxid beim Brennvorgang selbst gesenkt. KW - Schlickerdeposition PY - 2021 VL - 6 SP - 26 EP - 28 PB - Keramische Zeitschrift AN - OPUS4-53812 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mohr, Gunther A1 - Hilgenberg, Kai ED - Eiber, M. T1 - Prozessinduzierte Vorerwärmung beim pulverbettbasierten Laserstrahlschmelzen und deren Auswirkung auf die Bauteileigenschaften austenitischer Stahlbauteile N2 - Heterogene Fehlstellendichten und Mikrostrukturausbildungen sind große Herausforderungen für den Einsatz des pulverbettbasierten Laserstrahlschmelzens (L PBF) besonders für sicherheitskritische Bauteile. Unter der Vielzahl an Einflussfaktoren auf die Qualität und die mechanischen Eigenschaften von L PBF-Bauteilen hat die Zwischenlagenzeit (ILT) bisher wenig Beachtung gefunden. Sie nimmt ebenso wie die Bauteilgeometrie Einfluss auf die thermische Historie während der Fertigung. Ihr Einfluss auf die intrinsische Vorerwärmung ist in Kombination mit der Bauteilhöhe mittels thermografischer Temperaturmessung untersucht worden. Signifikante Unterschiede in der thermischen Historie konnten dabei mit variierenden Schmelzbaddimensionen, Korngrößen und Fehlstellendichten am Beispiel der austenitischen Stahllegierung AISI 316L in Zusammenhang gebracht werden. T2 - DVM 6. Tagung Additiv gefertigte Bauteile und Strukturen CY - Berlin, Germany DA - 03.11.2021 KW - Additive Fertigung KW - Laserstrahlschmelzen KW - In-situ Prozessüberwachung KW - Wärmeakkumulation KW - Zwischenlagenzeit PY - 2021 U6 - https://doi.org/10.48447/Add-2021-003 SP - 19 EP - 30 PB - Deutscher Verband für Materialforschung und -prüfung (DVM) CY - Berlin AN - OPUS4-54287 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kang, M. A1 - Czasny, M. A1 - Kober, D. A1 - Reschetnikow, A. A1 - Stargardt, Patrick A1 - Mieller, Björn A1 - Gurlo, A. T1 - Influence of mica particle content in composites for high voltage applications produced by additive manufacturing and mold casting N2 - The insulation system of high voltage electrical devices like generators and electrical motors has to withstand thermal, electrical, ambient and mechanical influences (TEAM) during operation. Especially the dielectric properties have to satisfy the requirements also under elevated temperatures and extreme environments. To provide this high quality, the conventional fabrication process uses partly manually applied insulation tapes combined with a cost-intensive and under safety concerns at least problematic vacuum pressure impregnation step (VPI). In order to reduce process costs by increasing the degree of automation and avoiding the VPI process, additively manufactured (AM) insulations were studied. This study focuses on the fabrication of ceramic/polymer compounds via AM technique. The AM technology used a rotating screw extrusion print head with air pressure to supply the paste. Plate-like samples with dimensions of 55 mm x 55 mm x1mm thickness were produced. This work focuses on the homogeneously high viscous paste with 12.5 to 50 volume % ratio of filler particles. Three types of mica powders as ceramic filler materials with different particle sizes from micro to mm scale were evaluated. The controlled volume % ratio of particles affects the paste viscosity which enables stacking of paste layers with a viscosity close to clay pastes. The mixed pastes were cured by heating and UV light to increase mechanical properties. A TG/DTA was performed, and electrical properties were investigated. First experiments with respect to the dielectric properties such as volume resistance, permittivity and dielectric strength revealed promising results and the possibility to use AM techniques for the fabrication of high voltage insulations for electrical machines. T2 - MaterialsWeek 2021 CY - Online meeting DA - 07.09.2021 KW - HV-Insulation KW - Polymer-Ceramic-Composite KW - Additive manufacturing PY - 2021 AN - OPUS4-54368 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Serrano Munoz, Itziar A1 - Ulbricht, Alexander A1 - Mishurova, Tatiana A1 - Fritsch, Tobias A1 - Kromm, Arne A1 - Evans, Alexander A1 - Bruno, Giovanni T1 - Influence of the scanning strategy on the RS state of a LPBF IN718 material N2 - For metal-based additive manufacturing (AM) to achieve leaner designs and enable longer life predictions, it is imperative to gain a detailed knowledge of the residual stress (RS) built-up. Laser powder bed fusion (LPBF) is an AM technique particularly prone to RS because of the highly localized heat source, extremely high cooling rates (in the order of 103-107 K/s), and successive cooling and heating cycles of the solidified material. Furthermore, RS analysis of LPBF materials by diffraction methods is peculiar because of the complexity of the thermal history, the possibility of encountering high levels of surface roughness, spatial textural variations and/or changes in solute concentrations at the component scale. Diverse aspects of the influence of scanning strategies on the as-built residual stress state of a LPBF IN718 alloy will be presented, with particular focus on the challenges that AM microstructures pose for a reliable RS determination. T2 - MECASENS 2021 CY - Prague, Czech Republic DA - 25.11.2021 KW - Laser Powder Bed Fusion KW - IN718 KW - Residual stress analysis PY - 2021 AN - OPUS4-53875 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schröder, Jakob A1 - Evans, Alexander A1 - Mishurova, Tatiana A1 - Ulbricht, Alexander A1 - Sprengel, Maximilian A1 - Serrano Munoz, Itziar A1 - Fritsch, Tobias A1 - Kromm, Arne A1 - Kannengießer, Thomas A1 - Bruno, Giovanni T1 - Diffraction-Based Residual Stress Characterization in Laser Additive Manufacturing of Metals N2 - Laser-based additive manufacturing methods allow the production of complex metal structures within a single manufacturing step. However, the localized heat input and the layer-wise manufacturing manner give rise to large thermal gradients. Therefore, large internal stress (IS) during the process (and consequently residual stress (RS) at the end of production) is generated within the parts. This IS or RS can either lead to distortion or cracking during fabrication or in-service part failure, respectively. With this in view, the knowledge on the magnitude and spatial distribution of RS is important to develop strategies for its mitigation. Specifically, diffraction-based methods allow the spatial resolved determination of RS in a non-destructive fashion. In this review, common diffraction-based methods to determine RS in laser-based additive manufactured parts are presented. In fact, the unique microstructures and textures associated to laser-based additive manufacturing processes pose metrological challenges. Based on the literature review, it is recommended to (a) use mechanically relaxed samples measured in several orientations as appropriate strain-free lattice spacing, instead of powder, (b) consider that an appropriate grain-interaction model to calculate diffraction-elastic constants is both material- and texture-dependent and may differ from the conventionally manufactured variant. Further metrological challenges are critically reviewed and future demands in this research field are discussed. KW - Laser-based additive manufacturing KW - Residual stress analysis KW - X-ray and neutron diffraction KW - Diffraction-elastic constants KW - Strain-free lattice spacing PY - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-538054 VL - 11 IS - 11 SP - 1830 PB - MPDI CY - Basel AN - OPUS4-53805 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Carstensen, Niels A1 - Schirdewahn, S. A1 - Merklein, M. A1 - Hilgenberg, Kai T1 - Generation of Tribosystems by Additive Surface Treatment on Tool Steel Substrate N2 - Laser implantation aims at reducing friction and wear on highly stressed surfaces in forming processes. Especially the hot stamping process that is used as a resource efficient process for manufacturing geometrical complex and high-strength structures, exhibits severe wear and high friction during the forming operation. The laser implantation process addresses this problem by combining two different approaches (surface modification and surface structuring) in surface technology by creating elevated, highly wear-resistant micro-features to influence the tribological performance. Pure TiB2 implants have shown to reduce tool-sided wear significally and improve the part formability by reducing local necking in deep drawing tests. Within the scope of this work, TiB2-TiC and TiB2-TaC hard material mixtures are implanted on X38CrMoV5-3 hot work tool steel. The aim is to investigate how the implant material properties can be influenced by the application of different mixing ratios of hard material mixtures under the specific variation of the process parameters. Distinct implant formations are tested on a novel test apparatus to examine the influence on the tribological properties. From the analyses of the implant properties by hardness measurements, light microscopic images, EDX and XRD analyses process parameter ranges are identified to produce defect-free dome- and ring-shaped implants. The specific process parameters (pulse power, pulse duration, mixing ratio and coating thickness) can be used for the determination of the implant geometry (height, width and depth). The tribological tests exhibit improved friction and wear properties. Based on these results, a tribosystem manufactured by this additive surface treatment technology shows great potential to enhance the effectiveness of the hot stamping process. T2 - Friction 2021 CY - Sankt Augustin, Germany DA - 18.11.2021 KW - Laser implantation KW - Surface modification KW - Additive surface treatment KW - Hot stamping KW - Tool steel PY - 2021 AN - OPUS4-53809 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mohr, Gunther A1 - Hilgenberg, Kai T1 - Prozessinduzierte Vorerwärmung beim pulverbasierten Laserstrahlschmelzen und deren Auswirkung auf die Bauteileigenschaften austenitischer Stahlbauteile N2 - Heterogene Fehlstellendichten und Mikrostrukturausbildungen sind große Heraus-forderungen für den Einsatz des pulverbettbasierten Laserstrahlschmelzens (L PBF) besonders für sicherheitskritische Bauteile. Unter der Vielzahl an Einflussfaktoren auf die Qualität und die mechanischen Eigenschaften von L PBF-Bauteilen hat die Zwischenlagenzeit (ILT) bisher wenig Beachtung gefunden. Sie nimmt ebenso wie die Bauteilgeometrie Einfluss auf die thermische Historie während der Fertigung. Ihr Einfluss auf die intrinsische Vorerwärmung ist in Kombination mit der Bauteilhöhe mittels thermografischer Temperaturmessung untersucht worden. Signifikante Unterschiede in der thermischen Historie konnten dabei mit variierenden Schmelzbaddimensionen, Korngrößen und Fehlstellendichten am Beispiel der austenitischen Stahllegierung AISI 316L in Zusammenhang gebracht werden. T2 - DVM Tagung Additiv gefertigte Bauteile und Strukturen CY - Berlin, Germany DA - 03.11.2021 KW - Additive Manufacturing KW - Laser powder bed fusion KW - In-situ process monitoring PY - 2021 AN - OPUS4-53729 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Straße, Anne A1 - Gumenyuk, Andrey A1 - Scheuschner, Nils A1 - Altenburg, Simon A1 - Pignatelli, Giuseppe A1 - Gornushkin, Igor B. A1 - Baensch, Franziska A1 - Rethmeier, Michael T1 - In-situ Prozessüberwachung beim Laser-Pulver-Auftragschweißen (LPA) mittels Thermografie, optischer Emissionsspektroskopie (OES) und Schallemissionsanalyse (SEA) N2 - Vor allem in den letzten Jahren ist das Interesse der Industrie an der additiven Fertigung deutlich gestiegen. Die Vorteile dieser Verfahren sind zahlreich und ermöglichen eine ressourcenschonende, kundenorientierte Fertigung von Bauteilen, welche zur stetigen Entwicklung neue Anwendungsbereiche und Werkstoffe führen. Aufgrund der steigenden Anwendungsfälle, nimmt auch der Wunsch nach Betriebssicherheit unabhängig von anschließenden kostenintensiven zerstörenden und zerstörungsfreien Prüfverfahren zu. Zu diesem Zweck werden im Rahmen des von der BAM durchgeführten Themenfeldprojektes „Prozessmonitoring in Additive Manufacturing“ verschiedenste Verfahren auf ihre Tauglichkeit für den in-situ Einsatz bei der Prozessüberwachung in der additiven Fertigung untersucht. Hier werden drei dieser in-situ Verfahren, die Thermografie, die optische Emissionsspektroskopie und die Schallmissionsanalyse für den Einsatz beim Laser-Pulver-Auftragschweißen betrachtet. T2 - 41. Assistentenseminar der Füge- und Schweißtechnik CY - Magdeburg, Germany DA - 02.09.2020 KW - Laser-Pulver-Auftragschweißen (LPA) KW - Thermographie KW - Optische Emissionsspektroskopie (OES) KW - Schallemissionsanalyse (SEA) PY - 2021 SN - 978-3-96144-141-9 VL - 370 SP - 132 EP - 140 PB - DVS MEdia CY - Düsseldorf AN - OPUS4-53967 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rethmeier, Michael A1 - Gumenyuk, Andrey A1 - Bachmann, Marcel T1 - High-power laser beam welding for thick section steels – new perspectives using electromagnetic systems N2 - In recent years, it was shown that the introduction of additional oscillating and permanent magnetic fields to laser beam and laser-arc hybrid welding can bring several beneficial effects. Examples are a contactless weld pool support for metals of high thickness suffering from severe drop-out when being welded conventionally or an enhanced stirring to improve the mixing of added filler material in the depth of the weld pool to guarantee homogeneous resulting mechanical properties of the weld. The latest research results show the applicability to various metal types over a wide range of thicknesses and welding conditions. The observations made were demonstrated in numerous experimental studies and a deep understanding of the interaction of the underlying physical mechanisms was extracted from numerical calculations. KW - Laser beam welding KW - Numerical simulations KW - Electromagnetic support PY - 2021 U6 - https://doi.org/10.1080/13621718.2021.1999763 VL - 27 IS - 1 SP - 43 EP - 51 PB - Taylor & Francis Group AN - OPUS4-53970 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Serrano Munoz, Itziar A1 - Roveda, Ilaria A1 - Kupsch, Andreas A1 - Müller, Bernd R. A1 - Bruno, Giovanni T1 - Synchrotron X-Ray Refraction during in-situ heat treatments N2 - For the first time, synchrotron X-ray refraction radiography (SXRR) has been paired with in-situ heat treatment to monitor microstructure and porosity evolution as a function of temperature. T2 - HZB User Meeting 2021 CY - Online meeting DA - 09.12.2021 KW - Synchrotron refraction radiography KW - Laser powder bed fusion KW - AlSi10Mg alloy KW - In-situ heat treatment KW - Porosity growth PY - 2021 AN - OPUS4-53973 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Brunner-Schwer, Chr. A1 - Biegler, M. A1 - Rethmeier, Michael T1 - Investigation on laser cladding of rail steel without preheating N2 - The contact between train wheels and rail tracks is known to induce material degradation in the form of wear, and rolling contact fatigue in the railhead. Rails with a pearlitic microstructure have proven to provide the best wear resistance under severe wheel-rail interaction in heavy haul applications. High speed laser cladding, a state-of-the-art surface engineering technique, is a promising solution to repair damaged railheads. However, without appropriate preheating or processing strategies, the utilized steel grades lead to martensite formation and cracking during deposition welding. In this study, laser cladding of low-alloy steel at very high speeds was investigated, without preheating the railheads. Process speeds of up to 27 m/min and laser power of 2 kW are used. The clad, heat affected zone and base material are examined for cracks and martensite formation by hardness tests and metallographic inspections. A methodology for process optimization is presented and the specimens are characterized for suitability. Within the resulting narrow HAZ, the hardness could be significantly reduced. T2 - Lasers in Manufacturing Conference 2021 CY - Erlangen, Germany DA - 21.06.2021 KW - High speed laser cladding KW - Preheatin KW - Rail tracks KW - Pearlitic microstructure PY - 2021 AN - OPUS4-53974 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Altenburg, Simon A1 - Maierhofer, Christiane T1 - Improving additive manufacturing technologies by in-situ monitoring: Thermography N2 - Additive manufacturing of metals gains increasing relevance in the industrial field for part production. However, especially for safety relevant applications, a suitable quality assurance is needed. A time and cost efficient route to achieve this goal is in-situ monitoring of the build process. Here, the BAM project ProMoAM (Process monitoring in additive manufacturing) is briefly introduced and recent advances of BAM in the field of in-situ monitoring of the L-PBF and the LMD process using thermography are presented. T2 - Anwenderkonferenz Infratec GmbH CY - Online meeting DA - 04.11.2021 KW - Additive Manufacturing KW - Process monitoring KW - Thermography PY - 2021 AN - OPUS4-54026 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Oster, Simon A1 - Altenburg, Simon T1 - Multispectral in-situ monitoring of a L-PBF manufacturing process using three thermographic camera systems N2 - The manufacturing of metal parts for the use in safety-relevant applications by Laser Powder Bed Fusion (L-PBF) demands a quality assurance of both part and process. Thermography is a nondestructive testing method that allows the in-situ determination of the thermal history of the produced part which is connected to the mechanical properties and the formation of defects [1]. A wide range of commercial thermographic camera systems working in different spectral ranges is available on the market. The understanding of the applicability of these cameras for qualitative and quantitative in-situ measurements in L-PBF is of vital importance [2]. In this study, the building process of a cylindrical specimen (Inconel 718) is monitored by three camera systems simultaniously. These camera systems are sensitive in various spectral bandwidths providing information in different temperature ranges. The performance of each camera system is explored in the context of the extraction of image features for the detection of defects. It is shown that the high temporal and thermal process dynamics are limiting factors on this matter. The combination of different spectral camera systems promises the potential of an improved defect detection by data fusion. T2 - LASER SYMPOSIUM & ISAM 2021 CY - Online meeting DA - 07.12.2021 KW - Laser Powder Bed Fusion KW - Thermography KW - In-situ Monitoring KW - Defect detection PY - 2021 AN - OPUS4-54141 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Biegler, M. A1 - El-Sari, B. A1 - Rethmeier, Michael A1 - Finus, F. T1 - Schweißen unter Zug – LME-Eingangsprüfung für die Autoindustrie N2 - Der Trend zum Leichtbau und die Transformation zur E-Mobilität in der Automobilindustrie befeuern die Entwicklung neuer hochfester Stähle für den Karosseriebau. Derartige Werkstoffe sind beim Widerstandspunktschweißen besonders rissanfällig (LME). Das Schweißen unter Zug stellt eine effektive Methode um die LME-Anfälligkeit unterschiedlicher Werkstoffe qualitativ zu bestimmen. KW - Automobilindustrie KW - Widerstandspunktschweißen KW - Liquid Metal Embrittlement KW - Zinkbeschichtung KW - Hochfester Stahl PY - 2021 IS - 6 SP - 54 EP - 55 AN - OPUS4-54057 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Chi, J. A1 - Agea Blanco, B. A1 - Bruno, Giovanni A1 - Günster, Jens A1 - Zocca, Andrea T1 - Self-Organization Postprocess for Additive Manufacturingin Producing Advanced Functional Structure and Material N2 - Additive manufacturing (AM) is developing rapidly due to itsflexibility in producing complex geometries and tailored material compositions. However, AM processes are characterized by intrinsic limitations concerning their resolution and surface finish, which are related to the layer-by-layer stacking process. Herein, a self-organization process is promoted as an approach to improve surface quality and achieve optimization of 3D minimal surface lightweight structures. The self-organization is activated after the powder bed 3D printing process via local melting, thereby allowing surface tension-driven viscous flow.The surface roughness Ra (arithmetic average of the roughness profile) could bedecreased by a factor of 1000 and transparent lenses and complex gyroid structures could be produced for demonstration. The concept of self-organization is further elaborated by incorporating external magnetic fields to intentionally manipulate magnetic particles, which are mixed with the polymer before printing and self-organization. This concept can be applied to develop programmable materials with specific microtextures responding to the external physical conditions. KW - Additive Manufacturing KW - Self-organization KW - Triply Periodical Minimal Surface PY - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-540588 VL - 24 IS - 6 SP - 1 EP - 8 PB - Wiley VCH AN - OPUS4-54058 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Meyerdierks, M. A1 - Schreiber, V. A1 - Böhne, Ch. A1 - Jüttner, S. A1 - Meschut, G. A1 - Rethmeier, Michael T1 - Validierung von Methoden zur Vermeidung von Liquid Metal Embrittlement an realitätsnahen Prinzipbauteilen (IGF 21483 BG / P 1488) N2 - Ziel des Forschungsprojekts ist es, eine Korrelation zwischen Gleeble-Heißzug-Prüfverfahren und Widerstandspunktschweiß-basierten Prüfverfahren herzustellen. Es soll die Effektivität von Methoden zu Vermeidung von Liquid Metal Embrittlement an realitätsnahen Prinzipbauteilen bewertet werden. Weiterhin soll Kenntnis über Auswirkungen von LME Rissen auf das Tragverhalten von realitätsnahen Prinzipbauteilen gewonnen werden. T2 - 30. Schweißtechnische Fachtagung CY - Barleben, Germany DA - 07.10.2021 KW - Liquid Metal Embrittlement KW - Gleeble KW - Heißzug KW - Widerstandpunktschweißen KW - Flüssigmetallversprödung PY - 2021 AN - OPUS4-54061 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Müller, V. A1 - Marko, A. A1 - Kruse, T. A1 - Biegler, M. A1 - Rethmeier, Michael T1 - Analysis and recycling of bronze grinding waste to produce maritime components using directed energy deposition N2 - Additive manufacturing promises a high potential for the maritime sector. Directed Energy Deposition (DED) in particular offers the opportunity to produce large-volume maritime components like propeller hubs or blades without the need of a costly casting process. The post processing of such components usually generates a large amount of aluminum bronze grinding waste. The aim of the presented project is to develop a sustainable circular AM process chain for maritime components by recycling aluminum bronze grinding waste to be used as raw material to manufacture ship Propellers with a laser-powder DED process. In the present paper, grinding waste is investigated using a dynamic image Analysis system and compared to commercial DED powder. To be able to compare the material quality and to verify DED process parameters, semi-academic sample geometries are manufactured. T2 - LiM 2021 CY - Munich, Germany DA - 21.06.2021 KW - Additive Manufacturing KW - Maritime Components KW - Powder Analysis KW - Recycling KW - Directed Energy Deposition PY - 2021 SP - 1 EP - 9 AN - OPUS4-54067 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Evans, Alexander A1 - Przyklenk, A. A1 - Bosse, H. A1 - Zeleny, V. A1 - Czułek, D. A1 - Balsamo, A. A1 - O'Connor, D. A1 - Yandayan, T. A1 - Phillips, D. A1 - Meli, F. A1 - Ragusa, C. S. A1 - Flys, O. A1 - Favre, G. T1 - The European Metrology Network (EMN) for Advanced Manufacturing N2 - Advanced Manufacturing and Advanced Materials have been identified by the European Commission as one of six Key Enabling Technologies (KETs), the full exploitation of which will create advanced and sustainable economies. Metrology is a key enabler for progress of these KETs. EURAMET, which is the association of metrology institutes in Europe, has addressed the vital importance of Metrology for these KETs through the support for the creation of a European Metrology Network for Advanced Manufacturing. The EMN for Advanced Manufacturing (AdvanceManu) was approved in June 2021 and held the formal kick-of meeting in October 2022. The EMN comprises both National Metrology Institutes (NMIs) from across Europe and other designated Institutes (Dis). The EMN is organized in three sections; Advanced Materials, Smart Manufacturing Systems and Manufactured components and products. The aim of the EMN is to engage with stakeholders in the field of Advanced Manufacturing and Advanced Materials (Large & SMEs, industry organisations, existing networks and academia) with the aim to prepare a Strategic Research Agenda (SRA) for Metrology for Advanced Manufacturing. In the shorter term, an orientation paper is aimed to be produce to in the context of the European Partnership for Metrology. In addition to the SRA, the EMN will establish knowledge and technology transfer and promotion plan. This includes leveraging the existing research results from the completed and running EMPIR JRP projects funded through EURAMET. This presentation will outline the EMN for Advanced Manufacturing, describing the structures and goals, the route to the production of the SRA and the progress made to date identifying the key metrology challenges across the related Key Industrial Sectors (KICs). In particular, the presentation aims to inform the community on how to be involved in the shaping of the strategic research agenda for the future of Metrology for Advanced Manufacturing and Advanced Materials. T2 - 3D Metrology Conference (3DMC) CY - Online meeting DA - 08.11.2021 KW - Advanced manufacturing KW - Metrology KW - European Metrology Network (EMN) KW - Strategic Research Agenda (SRA) KW - JNP PY - 2021 AN - OPUS4-54099 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Evans, Alexander A1 - Przyklenk, A. A1 - Bosse, H. A1 - Zeleny, V. A1 - Czułek, D. A1 - Balsamo, A. A1 - O'Connor, D. A1 - Yandayan, T. A1 - Phillips, D. A1 - Meli, F. A1 - Ragusa, C. S. A1 - Flys, O. T1 - European Metrology Network for Advanced Manufacturing N2 - The progress of Advanced Manufacturing, which has been identified by the European Commission as a Key Enabling Technology (KET) for future economic and societal progress is strongly reliant on the development of metrology capabilities. EURAMET, the association of metrology institutes in Europe, has established metrology research programs to address the metrology requirements across a spectrum of different thematic areas. In order to leverage the benefits of these developments on the wider industrial landscape, a high-level coordination of the metrology community supporting the Advanced Manufacturing landscape is required. This coordination is aimed to be achieved by the establishment of European Metrology Networks (EMNs), which are intended by EURAMET to provide a sustainable structure for stakeholder engagement and support. The joint networking project 19NET01 AdvManuNet funded by EMPIR for 4 years, started in June 2020 and aims to accelerate the process of establishing an EMN to strengthen Europe’s position in Advanced Manufacturing. The AdvManuNet project aims to support the establishment of an EMN on Advanced Manufacturing via the following specific aims: 1. Creation of a single hub for stakeholder engagement across the landscape of various industrial sectors including relevant societies and standardization bodies. 2. Development of a Strategic Research Agenda (SRA) and roadmaps for Advanced Manufacturing metrology based on the stakeholder engagement activities, considering current gaps in metrological capabilities existing networks and roadmaps. 3. Establish a knowledge-sharing program for Advanced Manufacturing stakeholders, promoting the dissemination and exploitation of the results of the project, including those from previous EU funded research projects. 4. Development of a sustainable web-based platform and service desk for Advanced Manufacturing stakeholders to allow for easy access to European metrology capabilities and support the wider advanced manufacturing community with metrology-based requirements. 5. Develop a plan for a coordinated and sustainable European metrology infrastructure for Advanced Manufacturing via a European Metrology Network. The project concept followed by the scope and definition of Advanced Manufacturing will be described. The analysis of the current capability of metrology for Advanced Manufacturing and the preliminary concepts for the strategic research agenda will be presented with a focus on dimensional metrology. T2 - CIM 2021 CY - Online meeting DA - 07.09.2021 KW - Advanced manufacturing KW - Metrology KW - European Metrology Networks (EMNs) KW - Strategic Research Agenda (SRA) KW - Stakeholder PY - 2021 AN - OPUS4-54101 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Evans, Alexander A1 - Sprengel, Maximilian A1 - Ulbricht, Alexander A1 - Kromm, Arne A1 - Mishurova, Tatiana A1 - Serrano Munoz, Itziar A1 - Fritsch, Tobias A1 - Schröder, Jakob A1 - Kannengießer, Thomas A1 - Bruno, Giovanni T1 - Residual Stresses in Additive Manufacturing (L-PBF) N2 - Additive manufacturing (AM) technologies are experiencing an exceedingly rapid growth, driven by their potential through layer wise deposition for transformational improvements of engineering design, leading to efficiency and performance improvements. Laser Powder Bed Fusion (LPBF) is an Additive Manufacturing (AM) method which permits the fabrication of complex structures that cannot otherwise be produced via conventional subtractive manufacturing methods. Nevertheless, the rapid cooling rates associated with this process results in the formation of significant and complex residual stress (RS) fields. A large body of both experimental and simulation research has been dedicated in recent years to the control and mitigation of RS in AM. In order to validate simulations with the end goal of being able to model the residual stress state in AM components and to devise strategies for their reduction during manufacturing, experimental methods need to be able to accurately determine 3D residual stresses fields in complex geometries. Several destructive and non-destructive methods can be used to analyze the RS state, the choice of which depends on the geometry and the information required. Diffraction-based methods using penetrating neutron and synchrotron X-rays at large scale facilities offer the possibility to non-destructively spatially resolve both surface and bulk residual stresses in complex components and track their changes following applied thermal or mechanical loads. This presentation will overview the success stories of using large scale facilities by the BAM for the characterization of residual stresses in additively manufactured metallic alloys. In particular, the study of the influence of process parameters on the residual stress state and the relaxation of these stresses through heat treatment will be presented. However there remains challenges to overcome particularly of the hypotheses underlying the experimental determination of residual stresses, which will be discussed. T2 - 10th International Conference on Mechanical Stress Evaluation by Neutron and Synchrotron Radiation – MECASENS 2021 CY - Prague, Czech Republic DA - 25.11.2021 KW - Residual stress KW - Additive manufacturing KW - Diffraction KW - L-PBF KW - AGIL PY - 2021 AN - OPUS4-54105 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Evans, Alexander T1 - Introduction to AGIL N2 - An introduction to the Themenfeld Material project AGIL will be presented. The concept of the project, the work package structure and the material used within the project will be presented. T2 - 2nd Workshop on In situ Monitoring and Microstructure Development in Additive Manufacturing CY - Online meeting DA - 19.04.2021 KW - AGIL KW - Ageing KW - Additive manufacturing KW - Laser powder bed fusion PY - 2021 AN - OPUS4-54107 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Evans, Alexander A1 - Sprengel, Maximilian A1 - Ulbricht, Alexander A1 - Kromm, Arne A1 - Mishurova, Tatiana A1 - Serrano Munoz, Itziar A1 - Fritsch, Tobias A1 - Schröder, Jakob A1 - Kannengießer, Thomas A1 - Bruno, Giovanni T1 - Residual Stresses in Additive Manufacturing (L-PBF) N2 - Metal Additive manufacturing (AM) technologies such as Laser Powder Bed Fusion (LPBF) enable the fabrication of complex structures, giving rise to potential improvements in component and manufacturing efficiency. However, the processes are typically characterized by the generation of high magnitude residual stress (RS) which can have detrimental consequences for subsequent applications. Therefore, the characterization of these RS fields and the understanding of their formation and mitigation through optimized processing is crucial for the wider uptake of the technology. Due to the potential complex nature and high value of components manufactured by LPBF, it is important to have suitable characterisation methods which can determine the spatial variations of RS in a non-destructive manner. Neutron diffraction is considered to be the best suited for these requirements. However, the microstructures developed in the complex thermal cycles experience in the production can pose challenges to the ND method for RS analysis. The BAM has conducted significant research over the past years to overcome these obstacles, enabling higher confidence in the RS determined in LPBF materials by neutron diffraction. This contribution will overview some of these advancements made recently at European neutron sources including on Stress-Spec at FRM2/MLZ. T2 - MLZ User Meeting 2021 CY - Online meeting DA - 07.12.2021 KW - Residual stress KW - Additive manufacturing KW - Diffraction KW - AGIL KW - Manufact PY - 2021 AN - OPUS4-54044 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Winterkorn, René A1 - Pittner, Andreas A1 - Rethmeier, Michael T1 - Wire arc additive manufacturing with novel Al-Mg-Si filler wire - Assessment of weld quality and mechanical properties N2 - Wire arc additive manufacturing enables the production of near-net shape large-volume metallic components leveraging an established industrial base of welding and cladding technology and adapting it for layer-wise material deposition. However, the complex relationship between the process parameters and resulting mechanical properties of the components still remains challenging. In case of high-strength Al-Mg-Si aluminum alloys, no commercial filler wires are yet available due the high susceptibility of solidification cracking as well as the necessary efforts to obtain acceptable mechanical properties. To address this need, we evaluated a novel filler wire based on AlMg0.7Si doped with a Ti5B1 master alloy to foster fine equiaxed grains within the deposited metal. The correlation between the process parameters and component quality was examined by analyzing the size and distribution of pores as well as the grain morphology. Furthermore, we evaluated the influence of different post-weld heat treatment strategies to achieve mechanical properties corresponding to the reference wrought material. We demonstrated that fine equiaxed grains in the weld metal reduced the susceptibility of solidification cracking significantly. The novel AlMg0.7Si-TiB (S Al 6063-TiB) filler wire facilitated wire arc additive manufacturing of high-strength aluminum components with mechanical properties that were almost as superior as the corresponding wrought base material. KW - Wire arc additive manufacturing KW - Precipitation hardening aluminum alloys KW - AlMg0.7SiTiB filler wire KW - Grain refinement KW - Mechanical properties PY - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-538327 SN - 2075-4701 VL - 11 IS - 8 SP - 1 EP - 13 PB - MDPI CY - Basel AN - OPUS4-53832 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kempf, A. A1 - Kruse, Julius A1 - Madia, Mauro A1 - Hilgenberg, Kai T1 - Correlation between quasistatic und fatigue properties of additively manufactured AlSi10Mg using Laser Powder Bed Fusion N2 - In order to find a resource efficient approach for the fatigue lifetime prediction of laser powder bed fusion (L-PBF) processed AlSi10Mg material, results of tensile and fatigue tests were compared. The specimens were manufactured with three different L-PBF machines and studied in different heat treatment conditions (as-built, annealed, T6 heat treated). The investigations showed that the high attainable tensile strength properties after the manufacturing process are not beneficial in the high cycle fatigue (HCF) regime. In contrast, the applied heat treatments, which lead typically to a decrease of ultimate tensile strength, improved dramatically the fatigue behavior. Additionally, a clear correlation between the elongation at fracture and HCF resistance has been found for individual heat treatment conditions. This empiric relationship provides an estimation of the fatigue resistance in the presence of material defects and can be implemented in part and process approvals. T2 - Fatigue Design 2021 CY - Online meeting DA - 17.11.2021 KW - Additive Manufacturing KW - Laser powder bed fusion KW - AlSi10Mg KW - Tensile properties KW - Fatigue properties PY - 2021 AN - OPUS4-53792 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Roveda, Ilaria A1 - Serrano Munoz, Itziar A1 - Kromm, Arne A1 - Madia, Mauro T1 - Investigation of residual stresses and microstructure effects on the fatigue behaviour of a L-PBF AlSi10Mg alloy N2 - Al-Si alloys produced by Laser Powder Bed Fusion (L-PBF) techniques allow the fabrication of lightweight free-shape components. Due to the high cooling rates occurring during the building process, L-PBF AlSi10Mg alloys exhibit an ultra-fine microstructure that leads to superior mechanical properties in the as-built condition compared to conventional cast Al-Si materials. Nevertheless, L-PBF processing induces high thermal gradients, leading to deleterious residual stress. In order to relax detrimental residual stress and to increase the ductility, post-processing stress relief treatments are performed. The objective of the contribution is to investigate, under different heat treatment condition, the evolution of microstructure and residual stresses in view of optimizing the fatigue performance of the alloy. To this purpose various heat treatments in a range of temperatures between 265°C and 300°C for a duration between 15 minutes and 2 hours are performed. T2 - Fatigue Design 2021 CY - Senlis, France DA - 17.11.2021 KW - AlSi10Mg KW - Additive manufacturing KW - L-PBF KW - Residual stress KW - Heat treatment PY - 2021 AN - OPUS4-53794 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zocca, Andrea A1 - Wilbig, Janka A1 - Waske, Anja A1 - Günster, Jens A1 - Widjaja, Martinus A1 - Neumann, C. A1 - Clozel, M. A1 - Meyer, A. A1 - Ding, J. A1 - Zhou, Z. A1 - Tian, X. T1 - Challenges in the Technology Development for Additive Manufacturing in Space N2 - Instead of foreseeing and preparing for all possible scenarios of machine failures, accidents, and other challenges arising in space missions, it appears logical to take advantage of the flexibility of additive manufacturing for “in-space manufacturing” (ISM). Manned missions into space rely on complicated equipment, and their safe operation is a great challenge. Bearing in mind the absolute distance for manned missions to the Moon and Mars, the supply of spare parts for the repair and replacement of lost equipment via shipment from Earth would require too much time. With the high flexibility in design and the ability to manufacture ready-to-use components directly from a computer-aided model, additive manufacturing technologies appear to be extremely attractive in this context. Moreover, appropriate technologies are required for the manufacture of building habitats for extended stays of astronauts on the Moon and Mars, as well as material/feedstock. The capacities for sending equipment and material into space are not only very limited and costly, but also raise concerns regarding environmental issues on Earth. Accordingly, not all materials can be sent from Earth, and strategies for the use of in-situ resources, i.e., in-situ resource utilization (ISRU), are being envisioned. For the manufacturing of both complex parts and equipment, as well as for large infrastructure, appropriate technologies for material processing in space need to be developed. KW - Additive manufacturing KW - Space KW - Process PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-549204 SN - 2772-6657 VL - 1 IS - 1 SP - 1 EP - 13 PB - Elsevier Ltd. AN - OPUS4-54920 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fu, B. A1 - Shen, J. A1 - Suhuddin, U. A1 - Pereira, A. A1 - Maawad, E. A1 - dos Santos, J. A1 - Klusemann, B. A1 - Rethmeier, Michael T1 - Revealing joining mechanism in refill friction stir spot welding of AZ31 magnesium alloy to galvanized DP600 steel N2 - The application of magnesium (Mg) inevitably involves dissimilar welding with steel. A novel solid state spot welding method, refill friction stir spot welding (refill FSSW), was utilized to weld AZ31 Mg alloy to galvanized DP600 steel. Although Mg/Fe is an immiscible alloy system, defect-free welds with high strength were successfully obtained in a wide parameter window. The results of microstructure, interfacial reactions, and mechanical properties are reported to reveal the underlying joining mechanism. Due to the melting of Zn coating and subsequent Mg-Zn reactions, Mg-Zn eutectic and intermetallic compounds were detected within welds. Heterogeneous interfacial reactions occur along Mg/steel interface, and the relationship between interfacial structure and fracture behavior was investigated. The joining mechanism is associated with Zn coating and Fe-Al layer: 1) the presence of Zn coating is beneficial for achieving high-quality welding between Mg and steel, it protects the interface from oxidation and contributes to brazing of the weld; 2) the Al present in Mg alloy reacts with Fe, resulting in the growth of Fe-Al layer, which contributes to the diffusion bonding in the interface. The overall results clearly show that Refill FSSW is a competitive welding method for joining Mg and galvanized steel. KW - Refill friction stir spot welding KW - Multi-materials joining KW - Magnesium alloy KW - Galvanized steel KW - Mechanical properties KW - Microstructure PY - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-536878 SN - 0264-1275 VL - 209 SP - 109997 PB - Elsevier Ltd. AN - OPUS4-53687 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fu, B. A1 - Shen, J. A1 - Suhuddin, U. A1 - Chen, T. A1 - dos Santos, J. A1 - Klusemann, B. A1 - Rethmeier, Michael T1 - Improved mechanical properties of cast Mg alloy welds via texture weakening by differential rotation refill friction stir spot welding N2 - Cast magnesium alloys welds produced by refill friction stir spot welding (refill FSSW) show low lap shear strength (LSS) and constantly fail in stirred zone (SZ) shear mode. The cause is most probably related to the heavily textured microstructure. Here, to re-engineer the resulting microstructure, we pro- pose a novel process variant, the differential rotation refill FSSW (DR-refill FSSW). DR-refill FSSW stim- ulates discontinuous dynamic recrystallization and produces a bimodal microstructure with weakened texture. Therefore, the deformation incompatibility between SZ and thermal-mechanically affected zone is avoided. The welds have 50% higher LSS than that of standard refill FSSW welds, and fail in a different failure mode, i.e., SZ pull-out mode. DR-refill FSSW provides a new and effective strategy for improving the performance of spot welds based on microstructural engineering. KW - Refill friction stir spot welding KW - Magnesium Alloy KW - Texture KW - EBSD KW - Plastic deformation PY - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-536885 SN - 1359-6462 VL - 203 SP - 114113 PB - Elsevier Ltd. AN - OPUS4-53688 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Raute, J. A1 - Jokisch, T. A1 - Biegler, M. A1 - Rethmeier, Michael T1 - Effects on crack formation of additive manufactured Inconel 939 sheets during electron beam welding N2 - The potential of additive manufacturing for processing precipitation hardened nickel-base superalloys, such as Inconel 939 is considerable, but in order to fully exploit this potential, fusion welding capabilities for additive parts need to be explored. Currently, it is uncertain how the different properties from the additive manufacturing process will affect the weldability of materials susceptible to hot cracking. Therefore, this work investigates the possibility of joining additively manufactured nickel-based superalloys using electron beam welding. In particular, the influence of process parameters on crack formation is investigated. In addition, hardness measurements are performed on cross-sections of the welds. It is shown that cracks at the seam head are enhanced by Welding speed and energy per unit length and correlate with the hardness of the weld metal. Cracking parallel to the weld area shows no clear dependence on the process variables that have been investigated, but is related to the hardness of the heat-affected zone. KW - Electron beam welding KW - Hot Cracks KW - Superalloy KW - Inconel 939 PY - 2021 U6 - https://doi.org/10.1016/j.vacuum.2021.110649 SN - 0042-207X VL - 195 SP - 10649 PB - Elsevier Ltd. AN - OPUS4-53689 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schridewahn, S. A1 - Spranger, F. A1 - Hilgenberg, Kai A1 - Merklein, M. T1 - Laser Implantation of Niobium and Titanium-Based Particles on Hot Working Tool Surfaces for Improving the Tribological Performance within Hot Stamping N2 - Within the scope of this work, a laser implantation process has been used, in order to improve the tribological performance of hot stamping tools. This surface engineering Technology enables the generation of dome-shaped, elevated and highly wear resistant microfeatures on tool surfaces in consequence of a localized dispersing of hard ceramic particles via pulsed laser radiation. As a result, the topography and material properties of the tool and thus the tribological interactions at the blank-die interface are locally influenced. However, a suitable selection of hard ceramic particles is imperative for generating defect-free surface features with a high share of homogenously disturbed particles. For this purpose, different niobium (NbB2 and NbC) as well as titanium-based (TiB2 and TiC) materials were embedded on hot working tool specimens and subsequently analyzed with regard to their resulting shape and mechanical properties. Afterwards, modified pin-on-disk tests were carried out by using conventional and laser-implanted tool surfaces, in order to evaluate the wear and friction behavior of both tooling systems. KW - Surface modification KW - Triobology KW - Laser implantation PY - 2020 U6 - https://doi.org/10.4028/www.scientific.net/DDF.404.117 SN - 1662-9507, VL - 404 SP - 117 EP - 123 PB - Trans Tech Publications Ltd. AN - OPUS4-53690 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schridewahn, S. A1 - Spranger, F. A1 - Hilgenberg, Kai A1 - Merklein, M. T1 - Verbesserung des tribologischen Einsatzverhaltens von Presshärtewerkzeugen durch Laserimplantation titanbasierter Hartstoffpartikel N2 - In der Automobilindustrie stellt das Presshärteverfahren eine Schlüsseltechnologie zur ressourceneffizienten Herstellung sicherheitsrelevanter Karosserie-komponenten dar. Während der Umformoperation treten jedoch hohe Reibungs- und Verschleißerscheinungen an den interagierenden Werkzeug- und Werkstückwirkflächen auf, die sowohl die Bauteilqualität als auch die Maschinenstandzeit nachhaltig beeinträchtigen. Um die bestehenden Verfahrensgrenzen zu erweitern, wird daher eine Modifikation der Presshärtewerkzeuge mittels Laserimplantation angestrebt. Hierbei werden in die Werkzeugoberfläche keramische Hartstoffpartikel anhand eines gepulsten Laserstrahles eingebettet, infolgedessen kuppelförmige sowie höchstfeste Strukturen im Mikrometerbereich entstehen. Die Auswahl geeigneter Hartstoffmaterialien stellt jedoch ein entscheidendes und bisweilen limitierendes Kriterium dar, um defektfreie sowie verschleißresistente Oberflächenmodifikationen zu generieren. In diesem Zusammenhang wurden im Rahmen dieser Arbeit unterschiedliche titanbasierte Hartstoffpartikel auf presshärtespezifische Werkzeugstähle laserimplantiert und anschließend mittels modifizierten Pin-on-Disk-Tests hinsichtlich ihres tribologischen Einsatzverhaltens untersucht. Um die Wirksamkeit des Laserimplantationsverfahrens zu evaluieren, wurden zudem Verschleißuntersuchungen an unmodifizierten Werkzeugoberflächen durchgeführt und mit den erzielten Ergebnissen der lokal dispergierten Topographien verglichen. T2 - 15. Erlanger Workshop Warmblechumformung 2020 CY - Erlangen, Germany DA - 17.11.2020 KW - Laserimplantation KW - Werkzeugmodifikation KW - Presshärten KW - Tribologie PY - 2020 SP - 1 AN - OPUS4-53692 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Winterkorn, R. A1 - Pittner, Andreas A1 - Rethmeier, Michael T1 - Wire Arc Additive Manufacturing von einer neuartigen, höherfesten Al-Mg-Si Legierungen N2 - Der Einsatz von Aluminiumlegierungen als Konstruktionswerkstoff hat in den letzten Jahrzehnten aufgrund seines überlegenen Festigkeits-/ Gewichtsverhältnisses zugenommen. Dabei spielen höherfeste aushärtbare Al-Mg-Si-Legierungen eine wichtige Rolle. Dieser Beitrag konzentriert sich auf die additive Fertigung von Prinzipbauteilen aus einer Al-Mg-Si-Aluminiumlegierung mittels Wire + Arc Additive Manufacturing. Werkstoffe dieses Legierungssystems weisen eine ausgeprägte Heißrissanfälligkeit auf, weshalb das artgleiche Fügen dieser Materialien, mittels Metallschutzgasschweißen, heutzutage immer noch eine Herausforderung darstellt. Kommerzielle Al-Mg-Si-Schweißdrähte sind am Markt nicht verfügbar. In dieser Arbeit wird die Anwendbarkeit eines neuartigen Al-Mg-Si-Schweißdrahtes mit zusätzlichen kornfeinenden Elementen für die additive Fertigung mittels MSG-Verfahren gezeigt. Dazu wird der Zusammenhang von verwendeten Prozessparametern und der resultierenden Bauteilqualität untersucht, wobei die Größe und Verteilung von Poren sowie die Kornmorphologie analysiert werden. Darüber hinaus wird der Einfluss einer T6 Wärmenachbehandlung auf die mechanischen Eigenschaften des Werkstoffes untersucht und ein Vergleich zum entsprechenden Referenzmaterial (Knetlegierung) gezogen. T2 - 40. Assistentenseminar Fügetechnik CY - Braulage, Germany DA - 25.09.2019 KW - WAAM KW - Al-Mg-Si PY - 2020 SN - 978-3-96144-071-9 VL - 357 SP - 68 EP - 77 PB - DVS Media GmbH CY - Düsseldorf AN - OPUS4-52901 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Winterkorn, R. A1 - Pittner, Andreas A1 - Rethmeier, Michael T1 - Vorteile und Herausforderungen dynamischer Parameterstudien beim Wire Arc Additive Manufacturing von Al-Mg-Si-Legierungen N2 - Der Einsatz von Aluminiumlegierungen als Konstruktionswerkstoff hat in den letzten Jahren stetig zugenommen. Insbesondere höherfeste Aluminiumlegierungen, wie die Vertreter der 6000’er Aluminiumgruppe, rücken Aufgrund ihres hervorragenden Festigkeits- / Gewichtsverhältnisses immer mehr in den Fokus. Vertreter dieser Aluminiumklasse, die als Hauptlegierungselemente Magnesium und Silizium beinhalten, weisen neben der bei allen Aluminiumlegierungen präsenten Affinität zur Porenbildung zusätzlich eine ausgeprägte Heißrissanfälligkeit auf. Die additive Verarbeitung von Al-Mg-Si-Legierungen mittels MSG Verfahren gestaltet sich daher herausfordernd. Neben der Schweißeignung ist die geometrische Gestalt der Schweißraupe für die additive Fertigung von entscheidender Bedeutung. Spurbreite und Spurhöhe sind maßgebliche Größen, die bei der Pfadgenerierung im Hinblick auf Endkonturnähe und der Vermeidung von Ungänzen, Poren und Bildefehlern zu beachten sind. Dieser Beitrag zeigt am Beispiel des Wire Arc Additive Manufacturing von Al-Mg-Si-Legierungen einen Ansatz, mit dem es möglich ist, zeit- und kostenintensive vollfaktorielle Parameterstudien zum Erhalt von Spurgeometrie und Schweißqualität durch dynamische Parameterstudien zu ersetzen. T2 - 41. Assistentenseminar Fügetechnik CY - Magdeburg, Germany DA - 02.09.2020 KW - WAAM PY - 2021 SN - 978-3-96144-141-9 VL - 370 SP - 1 EP - 10 PB - DVS Media GmbH CY - Düsseldorf AN - OPUS4-52902 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Ziegler, Mathias A1 - Altenburg, Simon A1 - Krankenhagen, Rainer A1 - Maierhofer, Christiane A1 - Scheuschner, Nils A1 - Marquardt, E A1 - Mühlberger, W. A1 - Nagel, F. A1 - Neumann, E. A1 - Rohwetter, P. A1 - Rutz, F. A1 - Schwake, C. A1 - Schramm, S. A1 - Schwaneberg, F. A1 - Taubert, R. D. T1 - Thermografie und Strahlungsthermometrie - Stand und Trends N2 - In vielen Umgebungen, besonders bei hohen Temperaturen, korrosiven Umgebungen oder auf bewegten oder schlecht zugänglichen Flächen, kann die Temperatur nicht oder nur mit nicht akzeptablem Aufwand mit Berührungsthermometern gemessen werden. Diese Umgebungsbedingungen sind unter anderem in der chemischen Industrie, der Lebensmittel-, Metall-, Glas-, Kunststoff- und Papierherstellung sowie bei der Lacktrocknung anzutreffen. In diesen Bereichen kommen Strahlungsthermometer zum Einsatz. Der VDI-Statusreport zeigt typische Anwendungsfelder von nicht radiometrisch kalibrierten Wärmebildkameras und von radiometrisch kalibrierten Thermografiekameras. Um verlässlich mit spezifizierten Messunsicherheiten berührungslos Temperaturen zu messen, müssen die Strahlungsthermometer und Thermografiekameras nicht nur kalibriert, sondern radiometrisch und strahlungsthermometrisch umfassend charakterisiert werden. Auch die optische Materialeigenschaft, der spektrale Emissionsgrad und die Gesamtstrahlungsbilanz (Strahlung des Messobjekts und der Umgebung) sind bei der industriellen Temperaturmessung von großer Bedeutung. In den letzten Jahrzehnten ist dazu ein umfassendes technisches Regelwerk entstanden, das wir Ihnen mit diesem VDI-Statusreport vorstellen. Manche in den Richtlinien beschriebenen Kennwerte mögen abstrakt wirken. In diesem Statusreport zeigen wir an konkreten Beispielen, was diese Kenngrößen für die berührungslose Temperaturmessung bedeuten. Beispiele von Anwendungen zeigen, wo temperaturmessende Thermografiekameras und ausschließlich bildgebende Wärmebildkameras in der Praxis eingesetzt werden. Mit einer Analyse, welche Themen und Anwendungen derzeit besonders intensiv diskutiert werden, versuchen wir Trends für zukünftige Entwicklungen herauszuarbeiten. KW - Thermografie KW - Temperaturmessung PY - 2021 UR - https://www.vdi.de/ueber-uns/presse/publikationen/details/thermografie-und-strahlungsthermometrie-stand-und-trends SP - 1 EP - 40 PB - VDI Verein Deutscher Ingenieure e.V. CY - Düsseldorf AN - OPUS4-52904 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Wilke, Marco A1 - Röder, Bettina A1 - Paul, Martin A1 - Weller, Michael G. T1 - Sintered Glass Monoliths as New Supports for Affinity Columns N2 - A novel stationary phase for affinity separations is presented. This material is based on sintered borosilicate glass readily available as semi-finished filter plates with defined porosity and surface area. The material shows fast binding kinetics and excellent long-term stability under real application conditions due to lacking macropores and high mechanical rigidity. The glass surface can be easily modified with standard organosilane chemistry to immobilize selective binders or other molecules used for biointeraction. In this paper, the manufacturing of the columns and their respective column holders by 3D printing is shown in detail. The model system protein A/IgG was chosen as an example to examine the properties of such monolithic columns under realistic application conditions. Several specifications, such as (dynamic) IgG capacity, pressure stability, long-term performance, productivity, non-specific binding, and peak shape, are presented. It could be shown that due to the very high separation speed, 250 mg antibody per hour and column can be collected, which surpasses the productivity of most standard columns of the same size. The total IgG capacity of the shown columns is around 4 mg (5.5 mg/mL), which is sufficient for most tasks in research laboratories. The cycle time of an IgG separation can be less than 1 minute. Due to the glass material's excellent pressure resistance, these columns are compatible with standard HPLC systems. This is usually not the case with standard affinity columns, limited to manual use or application in low-pressure systems. The use of a standard HPLC system also improves the ability for automation, which enables the purification of hundreds of cell supernatants in one day. The sharp peak shape of the elution leads to an enrichment effect, which might increase the concentration of IgG by a factor of 3. The final concentration of IgG can be around 7.5 mg/mL without the need for an additional nanofiltration step. The purity of the IgG was > 95% in one step and nearly 99% with a second polishing run. KW - Affinity Chromatography KW - Glass KW - Purification KW - Antibodies KW - Solid support KW - HPLC KW - FPLC KW - Separation PY - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-529117 SP - 1 PB - MDPI CY - Basel AN - OPUS4-52911 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ulbricht, Alexander A1 - Mohr, Gunther A1 - Altenburg, Simon A1 - Oster, Simon A1 - Maierhofer, Christiane A1 - Bruno, Giovanni ED - Czujko, T. ED - Benedetti, M. T1 - Can Potential Defects in LPBF Be Healed from the Laser Exposure of Subsequent Layers? A Quantitative Study N2 - Additive manufacturing (AM) of metals and in particular laser powder bed fusion (LPBF) enables a degree of freedom in design unparalleled by conventional subtractive methods. To ensure that the designed precision is matched by the produced LPBF parts, a full understanding of the interaction between the laser and the feedstock powder is needed. It has been shown that the laser also melts subjacent layers of material underneath. This effect plays a key role when designing small cavities or overhanging structures, because, in these cases, the material underneath is feed-stock powder. In this study, we quantify the extension of the melt pool during laser illumination of powder layers and the defect spatial distribution in a cylindrical specimen. During the LPBF process, several layers were intentionally not exposed to the laser beam at various locations, while the build process was monitored by thermography and optical tomography. The cylinder was finally scanned by X-ray computed tomography (XCT). To correlate the positions of the unmolten layers in the part, a staircase was manufactured around the cylinder for easier registration. The results show that healing among layers occurs if a scan strategy is applied, where the orientation of the hatches is changed for each subsequent layer. They also show that small pores and surface roughness of solidified material below a thick layer of unmolten material (>200 µm) serve as seeding points for larger voids. The orientation of the first two layers fully exposed after a thick layer of unmolten powder shapes the orientation of these voids, created by a lack of fusion. KW - Computed tomography KW - Laser Powder Bed Fusion KW - In situ monitoring KW - infrared Thermography KW - Optical Tomography KW - Additive manufacturing KW - AISI 316L PY - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-528778 VL - 11 IS - 7 SP - 1012 PB - MDPI CY - Basel AN - OPUS4-52877 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kempf, A. A1 - Agudo Jácome, Leonardo A1 - Hilgenberg, Kai T1 - Influence of process-relevant parameters and heat treatments on the microstructure and resulting mechanical behavior of additively manufactured AlSi10Mg via Laser Powder Bed Fusion N2 - Within the group of additive manufacturing (AM) technologies for metals, laser powder bed fusion (L-PBF) has a leading position. Nevertheless, reproducibility of part properties has not reached sufficient maturity hindering the use for industrial applications especially for safety-relevant components. This article presents the results of various experimental tests performed with the aluminium alloy AlSi10Mg identifying reasons for the high deviations in mechanical properties. Herein, it is discussed how microstructure is influenced by different process parameters (laser power, scanning speed, energy density, building height) and how it can be adjusted by suitable post process heat treatments. The impact of resulting changes in microstructure is shown by monotonic tensile and cyclic fatigue tests considering specimens manufactured with different L-PBF machines. T2 - LiM 2021 CY - Online meeting DA - 21.06.2021 KW - Additive manufacturing KW - AlSi10Mg KW - Laser powder bed fusion PY - 2021 AN - OPUS4-53046 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Przyklenk, A. A1 - Balsamo, A. A1 - O'Connor, D. A1 - Evans, Alexander A1 - Yandayan, T. A1 - Akgöz, S. A1 - Flys, O. A1 - Zeleny, V. A1 - Czułek, D. A1 - Meli, F. A1 - Ragusa, C. A1 - Bosse, H. T1 - New European Metrology Network for advanced manufacturing N2 - Advanced manufacturing has been identified as one of the key enabling technologies with applications in multiple industries. The growing importance of advanced manufacturing is reflected by an increased number of publications on this topic in recent years. Advanced manufacturing requires new and enhanced metrology methods to assure the quality of manufacturing processes and the resulting products. However, a high-level coordination of the metrology community is currently absent in this field and consequently this limits the impact of metrology developments on advanced manufacturing. In this article we introduce the new European Metrology Network (EMN) for Advanced Manufacturing within EURAMET, the European Association of National Metrology Institutes (NMIs). The EMN is intended to be operated sustainably by NMIs and Designated Institutes in close cooperation with Stakeholders interested in advanced manufacturing. The objectives of the EMN are to set up a permanent stakeholder dialogue, to develop a Strategic Research Agenda for the metrology input required for advanced manufacturing technologies, to create and maintain a knowledge sharing programme and to implement a web-based service desk for stakeholders. The EMN development is supported by a Joint Network Project within the European Metrology Programme for Innovation and Research. KW - Stakeholder KW - Advanced manufacturing KW - Metrology KW - European Metrology Networks (EMNs) KW - Strategic Research Agenda (SRA), PY - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-530618 VL - 32 IS - 11 SP - 111001 PB - IOP Publishing AN - OPUS4-53061 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Diener, S. A1 - Zocca, Andrea A1 - Günster, Jens T1 - Literature review: Methods for achieving high powder bed densities in ceramic powder bed based additive manufacturing N2 - In additive manufacturing the powder bed based processes binder jetting and powder bed fusion are increasingly used also for the production of ceramics. Final part properties depend to a high percentage on the powder bed density. Therefore, the aim is to use the best combination of powder deposition method and powder which leads to a high packing of the particles. The influence of flowability, powder properties and deposition process on the powder bed density is discussed and the different deposition processes including slurry-based ones are reviewed. It turns out that powder bed density reached by slurry-based layer deposition exceeds conventional powder deposition, however, layer drying and depowdering are extra steps or more time-consuming for the slurry route. Depending on the material properties needed the most suitable process for the part has to be selected. KW - Additive Manufacturing KW - Powder-based processes KW - Powder bed density PY - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-534992 VL - 8 SP - 100191 PB - Elsevier Ltd. AN - OPUS4-53499 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fritzsche, Sven A1 - Topolniak, Ievgenia A1 - Weise, Matthias A1 - Sturm, Heinz T1 - Shape deviations of DLW microstructures in dependency of fabrication parameters N2 - Deep understanding of the effects associated with fabrication parameters and their influence on the resulting structures shape is essential for the further development of direct laser writing (DLW). In particular, it is critical for development of reference materials, where structure parameters are precisely fabricated and should be reproduced with use of DLW technology. In this study we investigated the effect of various fabrication and preparation parameters on the structural precision of interest for reference materials. A well-studied photo-curable system, SZ2080 negative photo-resist with 1 wt.% Michler's ketone (Bis) photo-initiator, was investigated in this work. The correlation between applied laser power, laser velocity, fabrication direction on the deviations in the structure shape were observed by means of white light interferometry microscopy. Moreover, influence of slicing and hatching distances as well as prebake time were studied as function of sample shape. Deviations in the structure form between the theoretically expected and the one detected after DLW fabrication were observed in the range up to 15%. The observed shape discrepancies show the essential importance of fine-tuning the fabrication parameter for reference structure production. KW - Direct laser writing KW - Fabrication parameters KW - Structural precision KW - SZ2080 negative photo-resist KW - White light interferometry microscopy PY - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-535906 VL - 31 IS - 12 SP - 1 EP - 8 PB - IOP Science AN - OPUS4-53590 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hilgenberg, Kai T1 - Additive Manufacturing: Opportunities and challenges for NDT N2 - Additive manufacturing processes are increasingly being used in industrial applications. Especially powder bed fusion processes are of high interest due to their capability to economically produce individual, highly complex and functionally integrated components in small batches. However, the quality assurance of these components remains a challenge. Internal defects and undesirable microstructures and surface conditions can deteriorate the mechanical properties. Especially for use in safety-relevant applications, new design and inspection concepts are needed that take these factors into account. This talk presents typical defects and microstructure phenomena resulting from the laser powder bed fusion process and identifies challenges and opportunities for non-destructive testing from a manufacturing engineering perspective. In particular, the possibility of a process-integrated quality control is shown based on current research results. T2 - The 13th International Symposium on NDT in Aerospace 2021 CY - Online meeting DA - 05.10.2021 KW - Additive manufacturing KW - Laser powder bed fusion KW - In-situ monitoring PY - 2021 AN - OPUS4-53484 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Altenburg, Simon A1 - Maierhofer, Christiane A1 - Mohr, Gunther A1 - Hilgenberg, Kai A1 - Straße, Anne A1 - Gumenyuk, Andrey T1 - Thermografische Prozessüberwachung bei der BAM – Additive Fertigung von Metallen N2 - Vorstellung des TF-Projektes ProMoAM und von Ergebnissen des in-situ Monitorings mit Thermografie T2 - Sitzung des VDI-GPL-FA 105.2 Additive Manufacturing-Metalle CY - Online meeting DA - 27.02.2019 KW - Additive manufacturing KW - In situ Monitoring KW - Thermograhy PY - 2019 AN - OPUS4-53534 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wandtke, Karsten A1 - Schröpfer, Dirk A1 - Scharf-Wildenhain, R. A1 - Hälsig, A. A1 - Kromm, Arne A1 - Kannengießer, Thomas T1 - WAAM process influences on local microstructure and residual stresses in high-strength steels N2 - High-strength fine-grain structural steels have great potential for weight optimization of many modern engineering structures. Efficient manufacturing can be achieved here above all by Wire Arc Additive Manufacturing (WAAM). First commercial high-strength welding consumables for WAAM are already available. Due to a lack of knowledge and guidelines for the industry regarding welding residual stresses and component safety in manufacturing and operation, their application is still severely limited. Residual stresses play a crucial role here, as the special microstructure of high-strength steels is sensitive to cold cracking. For this reason, process- and material-related influences, as well as the design effects on residual stress formation, are being investigated in a project funded by the AiF (FOSTA P1380/IGF 21162 BG). This study focuses on determining the interactions between heat control during WAAM process, resulting hardness, microstructure, and residual stresses, analyzed by X-ray diffraction. Welding experiments using geometrically similar AM specimens show that, with regard to the heat input, the energy per unit length in particular leads to significantly affected cooling times and microstructures and causes pronounced localized effects in terms of residual stresses in the upper weld beads. T2 - 46th MPA-Seminar CY - Stuttgart, Germany DA - 12.10.2021 KW - Wire Arc Additive Manufacturing KW - High-strength structural steels KW - Vickers hardness KW - Residual stresses PY - 2021 VL - 46 SP - 296 EP - 306 PB - MPA-Stuttgart AN - OPUS4-53571 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Altenburg, Simon T1 - Prozessüberwachung in der additiven Fertigung von Metallen an der BAM: Das Projekt ProMoAM N2 - Vorstellung des TF-Projektes ProMoAM mit allen in-situ Verfahren und Referenzverfahren T2 - Sitzung des VDI AK Mess- und Automatisierungstechnik CY - Kassel, Germany DA - 03.03.2020 KW - Additive manufacturing KW - In situ monitoring KW - Zerstörungsfreie Prüfung PY - 2020 AN - OPUS4-53537 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wandtke, Karsten A1 - Schröpfer, Dirk A1 - Scharf-Wildenhain, R. A1 - Hälsig, A. A1 - Kromm, Arne A1 - Kannengießer, Thomas T1 - WAAM process influences on local microstructure and residual stresses in high-strength steels N2 - High-strength fine-grain structural steels have great potential for weight optimization of many modern engineering structures. Efficient manufacturing can be achieved here above all by Wire Arc Additive Manufacturing (WAAM). First commercial high-strength welding consumables for WAAM are already available. Due to a lack of knowledge and guidelines for the industry regarding welding residual stresses and component safety in manufacturing and operation, their application is still severely limited. Residual stresses play a crucial role here, as the special microstructure of high-strength steels is sensitive to cold cracking. For this reason, process- and material-related influences, as well as the design effects on residual stress formation, are being investigated in a project funded by the AiF (FOSTA P1380/IGF 21162 BG). This study focuses on determining the interactions between heat control during WAAM process, resulting hardness, microstructure, and residual stresses, analyzed by X-ray diffraction. Welding experiments using geometrically similar AM specimens show that, with regard to the heat input, the energy per unit length in particular leads to significantly affected cooling times and microstructures and causes pronounced localized effects in terms of residual stresses in the upper weld beads. T2 - 46th MPA-Seminar CY - Stuttgart, Germany DA - 12.10.2021 KW - Wire Arc Additive Manufacturing KW - High-strength structural steels KW - Vickers hardness KW - Residual stresses PY - 2021 AN - OPUS4-53567 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael A1 - Kannengießer, Thomas T1 - Joining Processes in Hydrogen Technologies - Current need and future R&D activites, a review N2 - This study gives an overview on the important field of joining processes for component fabrication in hydrogen technologies. For that reason, the current need and future research and developement activites are highlighted for the different technological field of hydrogen generation, storage, transport and use. In addition, the emerging field of additive manufacturing is included. Finally, some remarks are given for necessary changes in the standardization and its challenges. T2 - 46th Seminar - Additive Manufacturing, Hydrogen, Energy, Integrity CY - Online meeting DA - 12.10.2021 KW - Hydrogen KW - Joining process KW - Welding KW - Review KW - Research and Development PY - 2021 AN - OPUS4-53554 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Portella, Pedro Dolabella A1 - Ulbricht, Alexander A1 - Evans, Alexander A1 - Altenburg, Simon A1 - Ehlers, Henrik A1 - Hilgenberg, Kai A1 - Mohr, Gunther T1 - Monitoring additive manufacturing processes by using NDT methods N2 - In this presentation we discuss the online monitoring of metallic AM parts produced by the Laser Powder Bed Fusion (LPBF) process by using optical, thermographic and electromagnetic methods. In a first approach we present the detection of defects generated during the process and discuss how to improve these methods for the optimization of design and production of metallic AM parts. T2 - ABENDI - Workshop CY - Online meeting DA - 19.11.2020 KW - Additive Fertigung PY - 2020 AN - OPUS4-52042 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Plarre, Rüdiger A1 - Zocca, Andrea A1 - Spitzer, Andrea A1 - Benemann, Sigrid A1 - Gorbushina, Anna A1 - Li, Y. A1 - Waske, Anja A1 - Funk, Alexander A1 - Wilgig, Janka A1 - Günster, Jens T1 - Searching for biological feedstock material: 3D printing of wood particles from house borer and drywood termite frass N2 - Frass (fine powdery refuse or fragile perforated wood produced by the activity of boring insects) of larvae of the European house borer (EHB) and of drywood termites was tested as a natural and novel feedstock for 3D-printing of wood-based materials. Small particles produced by the drywood termite Incisitermes marginipennis and the EHB Hylotrupes bajulus during feeding in construction timber, were used. Frass is a powdery material of particularly consistent quality that is essentially biologically processed wood mixed with debris of wood and faeces. The filigree-like particles flow easily permitting the build-up of woodbased structures in a layer wise fashion using the Binder Jetting printing process. The Quality of powders produced by different insect species was compared along with the processing steps and properties of the printed parts. Drywood termite frass with a Hausner Ratio HR = 1.1 with ρBulk = 0.67 g/cm3 and ρTap = 0.74 g/cm3 was perfectly suited to deposition of uniformly packed layers in 3D printing. We suggest that a variety of naturally available feedstocks could be used in environmentally responsible approaches to scientific material sciences/additive manufacturing. KW - 3D printing KW - X-ray tomographic KW - SEM micrography KW - Drywood termite PY - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-521517 VL - 16 IS - 2 SP - e0246511 AN - OPUS4-52151 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hmood, F. J. A1 - Wilbig, Janka A1 - Nicolaides, Dagmar A1 - Zocca, Andrea A1 - Günster, Jens T1 - An approach to monitor the real-time deformation during heat treatment of 3D-printed glass N2 - This study suggests a tool for a better control on the sintering/crystallization of 3D-printed bioactive glassceramics bodies. A small cantilever in form of a bar with square cross section attached to a base and inclined 34◦ with the horizon, was used to monitor the viscous flow and sintering/crystallization headway of a glassceramic systems. 3D printing and sintering of bioactive glass-ceramics is of great interest for medical care applications. Viscous flow ensures sufficient densification of the typically low density printed green bodies, while crystallization prevents the structure from collapsing under the gravitational load. As a model system, a bioactive glass called BP1 (48.4 SiO2, 1 B2O3, 2 P2O5, 36.6 CaO, 6.6 K2O, 5.6 Na2O (mol%)), which has a chemical composition based on that of ICIE16, was employed in this work. In addition, ICIE16 was used as a reference glass. The results show that the suggested design is a very promising tool to track the real-time deformation of 3D printed glass-ceramic specimens and gives a good indication for the onset of crystallization as well. KW - Real-time deformation KW - Sintering KW - 3D-printing KW - Bioactive glass PY - 2021 U6 - https://doi.org/10.1016/j.ceramint.2021.03.334 VL - 47 IS - 14 SP - 20045 EP - 20050 PB - Elsevier Ltd. AN - OPUS4-53449 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael A1 - Kannengießer, Thomas T1 - Fügetechnik in Wasserstofftechnologien - Forschungsbedarf für die Branche (Kurzversion) N2 - Die Studie gibt einen kurzen Überblick über die jetzige Bedeutung der Fügetechnik in Wasserstofftechnologien und über zukünftige Forschungsbedarfe für die Branche in den einzelnen Technologiefeldern Wasserstofferzeugung, -speicherung, -transport und -nutzung. Fügetechnologien haben dabei wesentliche Bedeutung für die erfolgreiche Umsetzung von technischen Komponenten der Wasserstofftechnologien. Die Schwerpunkte bzw. Forschungsbedarfe ergeben sich bspw. durch die Erstellung neuer Infrastruktur für Wasserstoffspeicherung und -transport sowie durch Umnutzung der bestehenden Erdgasinfrastruktur. Bei der Wasserstofferzeugung und -anwendung wird z.B. die Entwicklung effiziente Massenproduktionsmethoden von Elektrolyseuren und Brennstoffzellen einen wichtigen Meilenstein bilden und laserbasierte Fügetechnologien sind hier zum Teil schon etabliert. Die additive Fertigung nimmt dabei eine Querschnittsposition ein und besitzt hohes Anwendungspotential für die Zukunft z.B. für die Fertigung von Komponenten in Gasturbinen. Aus den technischen Fragestellungen und Forschungsbedarfen ergeben sich zudem Herausforderungen für die notwendige Neu- und Weiterentwicklung von technischen Regelwerken und Normen und den Eingang in die Aus- und Weiterbildung von fügetechnischem Fachpersonal. T2 - DVS Congress 2021 CY - Online meeting DA - 14.09.2021 KW - Wasserstoff KW - Fügetechnik KW - Forschung KW - Werkstoff KW - Bedarf PY - 2021 SN - 978-3-96144-146-4 VL - 371 SP - 612 EP - 624 PB - DVS Media GmbH CY - Düsseldorf AN - OPUS4-53370 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fritsch, Tobias A1 - Farahbod-Sternahl, L. A1 - Serrano Munoz, Itziar A1 - Léonard, F. A1 - Haberland, C. A1 - Bruno, Giovanni T1 - 3D Computed Tomography Quantifies the Dependence of Bulk Porosity, Surface Roughness, and Re-Entrant Features on Build Angle in Additively Manufactured IN625 Lattice Struts N2 - Layer-by-layer additive manufacturing (AM) by means of laser-powder bed Fusion (L-PBF) offers many prospects regarding the design of lattice structures used, for example, in gas turbines. However, defects such as bulk porosity, Surface roughness, and re-entrant features are exacerbated in nonvertical structures, such as tilted struts. The characterization and quantification of these kinds of defects are essential for the correct estimation of fracture and fatigue properties. Herein, cylindrical struts fabricated by L-PBF are investigated by means of X-ray computed tomography (XCT), with the aim of casting light on the dependence of the three kinds of defects (bulk porosity, surface roughness, and re-entrant features) on the build angle. Innovative analysis methods are proposed to correlate shape and position of pores, to determine the angular-resolved Surface roughness, and to quantify the amount of re-entrant surface features, q. A meshing of the XCT surface enables the correlation of q with the classical Surface roughness Pa. This analysis leads to the conclusion that there is a linear correlation between q and Pa. However, it is conjectured that there must be a threshold of surface roughness, below which no re-entrant features can be build. KW - Additive manufacturing KW - Laser powder bed fusion KW - Computed tomography KW - Surface roughness analysis KW - Re-entrant surface feature PY - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-534728 IS - 2100689 SP - 1 EP - 8 PB - Wiley-VCH Verlag AN - OPUS4-53472 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - THES A1 - Fritsch, Tobias T1 - A Multiscale Analysis of Additively Manufactured Lattice Structures N2 - Additive Manufacturing (AM) in terms of laser powder-bed fusion (L-PBF) offers new prospects regarding the design of parts and enables therefore the production of lattice structures. These lattice structures shall be implemented in various industrial applications (e.g. gas turbines) for reasons of material savings or cooling channels. However, internal defects, residual stress, and structural deviations from the nominal geometry are unavoidable. In this work, the structural integrity of lattice structures manufactured by means of L-PBF was non-destructively investigated on a multiscale approach. A workflow for quantitative 3D powder analysis in terms of particle size, particle shape, particle porosity, inter-particle distance and packing density was established. Synchrotron computed tomography (CT) was used to correlate the packing density with the particle size and particle shape. It was also observed that at least about 50% of the powder porosity was released during production of the struts. Struts are the component of lattice structures and were investigated by means of laboratory CT. The focus was on the influence of the build angle on part porosity and surface quality. The surface topography analysis was advanced by the quantitative characterisation of re-entrant surface features. This characterisation was compared with conventional surface parameters showing their complementary information, but also the need for AM specific surface parameters. The mechanical behaviour of the lattice structure was investigated with in-situ CT under compression and successive digital volume correlation (DVC). The Deformation was found to be knot-dominated, and therefore the lattice folds unit cell layer wise. The residual stress was determined experimentally for the first time in such lattice structures. Neutron diffraction was used for the non-destructive 3D stress investigation. The principal stress directions and values were determined in dependence of the number of measured directions. While a significant uni-axial stress state was found in the strut, a more hydrostatic stress state was found in the knot. In both cases, strut and knot, seven directions were at least needed to find reliable principal stress directions. KW - Additive manufacturing KW - Laser powder bed fusion KW - Residual stress KW - Surface roughness analysis KW - Computed tomography PY - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-470418 SP - 1 EP - 97 PB - Universitätsbibliothek Potsdam CY - Potsdam AN - OPUS4-53476 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Fritsch, Tobias A1 - Mishurova, Tatiana A1 - Evseleev, Sergei A1 - Serrano Munoz, Itziar A1 - Gollwitzer, C. A1 - Bruno, Giovanni T1 - 3D Analysis of Powder for Laser Beam Melting by Synchrotron X-ray CT N2 - Additive Manufacturing (AM) in terms of laser powder-bed fusion (L-PBF) offers new prospects regarding the design of parts and enables therefore the production of complex structures. The quality of the feedstock material receives increasing attention, as it depicts the first part of the L-PBF process chain. The powder quality control in terms of flowability and powder bed packing density is therefore mandatory. In this work, a workflow for quantitative 3D powder analysis in terms of particle size, particle shape, particle porosity, inter-particle distance and packing density was established. Synchrotron computed tomography (CT) was used to correlate the packing density with the particle size and particle shape for three different powder batches. The polydisperse particle size distribution (PSD) was transformed into a statistically equivalent bidisperse PSD. The ratio of the small and large particles helped to understand the powder particle packing density. While the particle shape had a neglectable influence, the particle size distribution was identified as major contributor for the packing density. T2 - AM- Workshop BAM CY - Online meeting DA - 20.04.2021 KW - Additive manufacturing KW - Laser powder bed fusion KW - Powder KW - Particle size distribution KW - Packing density PY - 2021 AN - OPUS4-53477 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pauzon, C. A1 - Mishurova, Tatiana A1 - Evsevleev, Sergei A1 - Dubiez-Le Goff, S. A1 - Murugesan, S. A1 - Bruno, Giovanni A1 - Hryha, E. T1 - Residual stresses and porosity in Ti-6Al-4V produced by laser powder bed fusion as a function of process atmosphere and component design N2 - The influence of the process gas, laser scan speed, and sample thickness on the build-up of residual stresses and porosity in Ti-6Al-4V produced by laser powder bed fusion was studied. Pure argon and helium, as well as a mixture of those (30% helium), were employed to establish process atmospheres with a low residual Oxygen content of 100 ppm O2. The results highlight that the subsurface residual stresses measured by X-ray diffraction were significantly lower in the thin samples (220 MPa) than in the cuboid samples (645 MPa). This difference was attributed to the shorter laser vector length, resulting in heat accumulation and thus in-situ stress relief. The addition of helium to the process gas did not introduce additional subsurface residual stresses in the simple geometries, even for the increased scanning speed. Finally, larger deflection was found in the cantilever built under helium (after removal from the baseplate), than in those produced under argon and an argon-helium mixture. This result demonstrates that complex designs involving large scanned areas could be subjected to higher residual stress when manufactured under helium due to the gas’s high thermal conductivity, heat capacity, and thermal diffusivity. KW - Additive manufacturing KW - Ti-6Al-4V KW - Residual stress KW - Process atmosphere KW - Helium PY - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-534209 VL - 47 SP - 2340 PB - Elsevier B.V. AN - OPUS4-53420 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Fabry, Cagtay A1 - Hirthammer, Volker A1 - Scherer, Martin K. A1 - Pittner, Andreas A1 - Rethmeier, Michael T1 - WelDX – progress report on the welding data exchange format N2 - The presentation shows the current development status of the Welding Data Exchange (weldx) format based on the Advanced Scientific Data Format (ASDF). The use of a complete single pass arc welding experiment example stored in a single weldx file and validated against a predefined schema definition is presented. The example includes generic experimental metadata, the workpiece geometry and materials definition following associated standards, the weld process spatial movement description, the welding process parameter descriptions and welding process measurements. The inclusion of 3D scan data of the workpiece description is also included. The full code and data is available on GitHub: https://github.com/BAMWelDX/IIW2021_AA_CXII T2 - 2021 IIW Annual Assembly and International Conference on welding and Joining CY - Online meeting DA - 07.07.2021 KW - Arc welding KW - Digitalization KW - Open science KW - Research data management KW - WelDX PY - 2021 AN - OPUS4-53401 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Agea Blanco, Boris A1 - Walzel, S. A1 - Chi, J. A1 - Lüchtenborg, J. T1 - Making Binder Jetting Really Work for Technical Ceramics - Additive Manufacturing of Technical Ceramics N2 - As an alternative shaping method to the traditionally used processes, additive manufacturing (AM) can produce economical ceramic components in small lot sizes and/or with complex geometries. Powder-based additive manufacturing processes like binder jetting are popular in the field of metal AM. One reason is the increased productivity compared to other AM technologies. For ceramic materials, powder-based AM technologies result in porous ceramic parts, provided they are not infiltrated. CerAMing GmbH unites the advantages of powder-based processes with the production of dense ceramic by means of the Layerwise Slurry Deposition. By using a suspension, a high packing density of the powder bed is achieved which leads to high green body densities. Due to this advantage the approach overcomes the problems of other powder-based AM technologies. Furthermore, a very economical debinding time allows the production of parts with high wall thicknesses. KW - Additive Manufacturing KW - Binder Jetting KW - Layerwise Slurry Deposition KW - Lithography-based technologies KW - Technical Ceramics PY - 2021 SP - 49 EP - 52 PB - Göller Verlag CY - Baden-Baden AN - OPUS4-52948 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hildebrand, G. A1 - Sänger, Johanna Christiane A1 - Schirmer, U. A1 - Mantei, W. A1 - Dupuis, Y. A1 - Houbertz, R. A1 - Liefeith, K. T1 - Process Development for Additive Manufacturing of Alumina Toughened Zirconia for 3D Structures by Means of Two-Photon Absorption Technique N2 - Additive manufacturing is well established for plastics and metals, and it gets more and more implemented in a variety of industrial processes. Beside these well-established material platforms, additive manufacturing processes are highly interesting for ceramics, especially regarding resource conservation and for the production of complex three-dimensional shapes and structures with specific feature sizes in the µm and mm range with high accuracy. The usage of ceramics in 3D printing is, however, just at the beginning of a technical implementation in a continuously and fast rising field of research and development. The flexible fabrication of highly complex and precise 3D structures by means of light-induced photopolymerization that are difficult to realize using traditional ceramic fabrication methods such as casting and machining is of high importance. Generally, slurry-based ceramic 3D printing technologies involve liquid or semi-liquid polymeric systems dispersed with ceramic particles as feedstock (inks or pastes), depending on the solid loading and viscosity of the system. This paper includes all types of photo-curable polymer-ceramic-mixtures (feedstock), while demonstrating our own work on 3D printed alumina toughened zirconia based ceramic slurries with light induced polymerization on the basis of two-photon absorption (TPA) for the first time. As a proven exemplary on cuboids with varying edge length and double pyramids in the µm-range we state that real 3D micro-stereolithographic fabrication of ceramic products will be generally possible in the near future by means of TPA. This technology enables the fabrication of 3D structures with high accuracy in comparison to ceramic technologies that apply single-photon excitation. In sum, our work is intended to contribute to the fundamental development of this technology for the representation of oxide-ceramic components (proof-of-principle) and helps to exploit the high potential of additive processes in the field of bio-ceramics in the medium to long-term future. KW - Additive manufacturing KW - Ceramics 3D printing KW - Two-photon adsorption KW - Polymer-ceramic mixtures KW - Bio-ceramic engineering PY - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-526672 VL - 4 IS - 2 SP - 224 EP - 239 PB - MDPI CY - Basel AN - OPUS4-52667 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Fabry, Cagtay A1 - Hirthammer, Volker A1 - Pittner, Andreas A1 - Rethmeier, Michael T1 - WelDX – progress report on the welding data exchange format N2 - The presentation shows the current development status of the Welding Data Exchange (weldx) format based on the Advanced Scientific Data Format (ASDF). The use of a complete single pass arc welding experiment example stored in a single weldx file and validated against a predefined schema definition is presented. The example includes generic experimental metadata, the workpiece geometry and materials definition following associated standards, the weld process spatial movement description, the welding process parameter descriptions and welding process measurements. The inclusion of 3D scan data of the workpiece description is also included. The full code and data is available on GitHub: https://github.com/BAMWelDX/IIW2021_joint_intermediate_CXII T2 - IIW joint intermediate meeting Comm. I,IV,XII,SG212 2021 CY - Online meeting DA - 30.03.2021 KW - WelDX KW - Research data management KW - Open science KW - Arc welding KW - Digitalization PY - 2021 AN - OPUS4-52661 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sprengel, Maximilian A1 - Ulbricht, Alexander A1 - Evans, Alexander A1 - Kromm, Arne A1 - Sommer, Konstantin A1 - Kelleher, Joe A1 - Bruno, Giovanni A1 - Kannengießer, Thomas T1 - Towards the optimization of post laser powder bed fusion stress relieve treatments of stainless steel 316L N2 - The formation of high magnitude residual stresses is inherent in laser powder bed fused processed austenitic steel 316L. Post-process heat treatments to relieve these stresses are necessary. In this study, heat treatment temperatures of 450°C, 800°C and 900°C were applied in order to avoid excessive sensitization. This temperature range thereby encompassed the upper and lower bounds for stress relieving treatment of this material. The residual stresses were determined by neutron diffraction and the evolution of the microstructure was monitored using scanning electron microscopy and electron backscattered diffraction. The results show that a full relaxation of the residual stresses is achieved when applying 900°C for 1 hour, which seems to be closely related to the dissolution of the subgrain solidification cellular structure. T2 - 2nd Workshop on In-situ Monitoring and Microstructure Development in Additive Manufacturing CY - Online meeting DA - 19.04.2021 KW - Residual Stress KW - Additive Manufacturing KW - Steel PY - 2021 AN - OPUS4-52709 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Scheuschner, Nils A1 - Altenburg, Simon A1 - Pignatelli, Giuseppe A1 - Maierhofer, Christiane A1 - Straße, Anne A1 - Gornushkin, Igor B. A1 - Gumenyuk, Andrey T1 - Vergleich der Messungen der Schmelzbadtemperatur bei der Additiven Fertigung von Metallen mittels IR-Spektroskopie und Thermografie T1 - Comparison of measurements of the melt pool temperature during the additive production of metals by means of IR spectroscopy and thermography N2 - Im Rahmen des Themenfeldprojektes „Process Monitoring of AM“ (ProMoAM) evaluiert die Bundesanstalt für Materialforschung und -Prüfung (BAM) gegenwärtig die Anwendbarkeit verschiedenster ZfP-Verfahren zur in-situ Prozessüberwachung in der additiven Fertigung (AM) von Metallen in Hinblick auf die Qualitätssicherung. Einige der wichtigsten Messgrößen sind hierbei die Temperatur des Schmelzbades und die Abkühlrate, welche starken Einfluss auf das Gefüge und die Eigenspannung haben. Aufgrund der Zugänglichkeit zum Werkstück während des Bauprozesses bieten sich optische Verfahren zu Temperaturbestimmung an. Hierbei stellen jedoch u. a. die hohe Bandbreite der zu messenden Temperaturen, die Bestimmung der Emissivität und ihre Änderung bei Phasenübergängen der verwendeten Legierung große experimentelle Herausforderungen dar. Eine weitere Herausforderung stellt für die IR-Spektroskopie die Absorption durch das Schutzgas und weitere optische Elemente dar. Um diese auch in einem industriellen Umfeld kompensieren zu können, wurde eine Methode entwickelt, die das gemessene Spektrum bei der Verfestigung des Werkstoffes als Referenz nutzt. In diesem Beitrag wird die Anwendung dieser Methode für die IR-Spektrometrie als auch Thermografische Messungen beim Laser-Pulver-Auftragschweißen von 316L gezeigt, wobei beide Methoden weiterhin in Hinblick auf ihre individuellen Vor- und Nachteile miteinander verglichen werden. N2 - Within the topic area project “Process Monitoring of AM” (ProMoAM) the Federal Institute for Materials Research and Testing is currently evaluating the applicability of various NDT methods for in-situ process Monitoring in the additive manufacturing (AM) of metals with regard to quality assurance. Two of the most important variables to measure are the temperature of the molten pool and the cooling rate, which have a strong influence on the microstructure and the residual stress. Due to the accessibility of the workpiece during the construction process, optical methods for temperature determination are suitable. However, the wide range of temperatures to be measured, the determination of emissivity and its change during phase transitions of the alloy pose great experimental challenges. Another challenge for IR spectroscopy is the absorption by the inert gas and other optical elements. In order to be able to compensate for this in an industrial environment, a method was developed which uses the measured spectrum as a reference when the material is solidified. This paper shows the application of this method for IR spectrometry as well as thermographic measurements during laser powder cladding of 316L. Furthermore both methods are compared with respect to their individual Advantages and disadvantages. KW - Laser-Pulver-Auftragschweißen KW - Thermografie KW - Direct Energy Deposition KW - IR-Spektroskopie KW - Additive Fertigung KW - Laser metal deposition KW - Thermography KW - IR-spectroscopy KW - Additive manufacturing PY - 2021 U6 - https://doi.org/10.1515/teme-2021-0056 VL - 88 IS - 10 SP - 626 EP - 632 PB - De Gruyter CY - Oldenburg AN - OPUS4-52987 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schirdewahn, S. A1 - Spranger, Felix A1 - Hilgenberg, Kai A1 - Merklein, M. T1 - Investigation of the thermal and tribological performance of localized laser dispersed tool surfaces under hot stamping conditions N2 - In the automotive industry, hot stamping has been established as a key technology for manufacturing safety-relevant car body components with high strength-to-weight ratio. However, hot stamping tools are stressed by cyclic thermo-mechanical loads, which leads to severe wear and high friction during the forming operation. Consequently, the quality of the parts, the durability of the tools and the efficiency of the process are negatively affected. Within the scope of this work, a promising approach named laser implantation process has been investigated for improving the tribological behavior of hot stamping tools. This technique enables the fabrication of highly wear resistant, separated and elevated micro-features by embedding hard ceramic particles into the tool via pulsed laser radiation. Hence, highly stressed tool areas can be modified, which influences the thermal and tribological interactions at the blank-die interface. To clarify these cause-effect relations, numerical simulations, quenching tests as well as tribological investigations have been conducted. In this context, laser-implanted tools reveal a significantly improved tribological performance while offering the possibility to adjust the thermal properties within hot stamping. Based on these results, a tailored tool modification can be pursued in future research work, in order to enhance the effectiveness of hot stamping tooling systems. KW - Hot stamping KW - Laser Implantation KW - Surface structuring KW - Wear KW - Friction PY - 2021 U6 - https://doi.org/10.1016/j.wear.2021.203694 VL - 476 SP - 1 EP - 11 PB - Elsevier B.V. AN - OPUS4-52988 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kempf, A. A1 - Agudo Jácome, Leonardo A1 - Hilgenberg, Kai T1 - Influence of process-relevant parameters and heat treatments on the microstructure and resulting mechanical behavior of additively manufactured AlSi10Mg via Laser Powder Bed Fusion N2 - Within the group of additive manufacturing (AM) technologies for metals, laser powder bed fusion (L-PBF) has a leading position. Nevertheless, reproducibility of part properties has not reached sufficient maturity hindering the use for industrial applications especially for safety-relevant components. This article presents the results of various experimental tests performed with the aluminium alloy AlSi10Mg identifying reasons for the high deviations in mechanical properties. Herein, it is discussed how microstructure is influenced by different process parameters (laser power, scanning speed, energy density, building height) and how it can be adjusted by suitable post process heat treatments. The impact of resulting changes in microstructure is shown by monotonic tensile and cyclic fatigue tests considering specimens manufactured with different L-PBF machines. T2 - LiM 2021 CY - Online meeting DA - 21.06.2021 KW - Additive manufacturing KW - Laser powder bed fusion KW - AlSi10Mg PY - 2021 SP - 1 EP - 9 AN - OPUS4-52991 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fabry, Cagtay A1 - Pittner, Andreas A1 - Hirthammer, Volker A1 - Rethmeier, Michael T1 - Recommendations for an Open Science approach to welding process research data N2 - The increasing adoption of Open Science principles has been a prevalent topic in the welding science community over the last years. Providing access to welding knowledge in the form of complex and complete datasets in addition to peer-reviewed publications can be identified as an important step to promote knowledge exchange and cooperation. There exist previous efforts on building data models specifically for fusion welding applications; however, a common agreed upon implementation that is used by the community is still lacking. One proven approach in other domains has been the use of an openly accessible and agreed upon file and data format used for archiving and sharing domain knowledge in the form of experimental data. Going into a similar direction, the welding community faces particular practical, technical, and also ideological challenges that are discussed in this paper. Collaboratively building upon previous work with modern tools and platforms, the authors motivate, propose, and outline the use of a common file format specifically tailored to the needs of the welding research community as a complement to other already established Open Science practices. Successfully establishing a culture of openly accessible research data has the potential to significantly stimulate progress in welding research. KW - Welding KW - Research data management KW - Open science KW - Digitalization KW - Weldx KW - Open source PY - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-529332 SN - 1878-6669 SN - 0043-2288 SP - 1 EP - 9 PB - Springer CY - Heidelberg AN - OPUS4-52933 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mohr, Gunther A1 - Hilgenberg, Kai T1 - Effects of inter layer time and build height on resulting properties of 316L stainless steel processed by laser powder bed fusion N2 - Das pulverbettbasierte selektive Laserstrahlschmelzen (engl. laser powder bed fusion, L-PBF) ist die am weitesten verbreitete additive Fertigungstechnologie für die Herstellung metallischer Komponenten. Unter der Vielzahl an Einflussfaktoren auf die Qualität und die mechanischen Eigenschaften von L-PBF-Bauteilen hat die Zwischenlagenzeit (engl. inter layer time, ILT) bisher kaum Beachtung in der wissenschaftlichen Literatur gefunden, obwohl sie je nach Bauraumausnutzungsgrad stark variieren kann. In diesem Vortrag werden Ergebnisse einer Studie präsentiert, die den Einfluss der ILT in Kombination mit der Bauteilhöhe und unter Berücksichtigung verschiedener Volumenenergiedichten am Beispiel der austenitischen Stahllegierung AISI 316L untersucht. Die Fertigungsprozesse wurden in-situ mittels Thermographiekamera überwacht. Auf diese Weise konnten intrinsische Vorerwärmungstemperaturen während der Bauteilfertigung lagenweise extrahiert werden. Es wurden signifikante Effekte der ILT und der Bauteilhöhe auf Wärmeakkumulation, Mikrostruktur, Schmelzbadgeometrie und Härte festgestellt. Ferner konnte ein Anstieg von Defektdichten bei einem gegenseitigen Wechselspiel aus Bauteilhöhe und ILT aufgezeigt werden. Die Zwischenlagenzeit wurde somit als kritischer Faktor für die L-PBF-Fertigung von Realbauteilen identifiziert. T2 - 74th IIW Annual Assembly and International Conference CY - Online meeting DA - 07.07.2021 KW - Additive Manufacturing KW - Laser powder bed fusion KW - In-situ process monitoring KW - Thermography KW - Preheating temperature KW - Inter layer time PY - 2021 AN - OPUS4-52954 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Khrapov, D. A1 - Kozadayeva, M. A1 - Manabaev, K. A1 - Panin, A. A1 - Sjöström, W. A1 - Koptyug, A. A1 - Mishurova, Tatiana A1 - Evsevleev, Sergei A1 - Meinel, Dietmar A1 - Bruno, Giovanni A1 - Cheneler, D. A1 - Surmenev, R. A1 - Surmeneva, M. T1 - Different approaches for manufacturing Ti-6Al-4V alloy with triply periodic minimal surface sheet-based structures by electron beam melting N2 - Targeting biomedical applications, Triply Periodic Minimal Surface (TPMS) gyroid sheet-based structures were successfully manufactured for the first time by Electron Beam Melting in two different production Themes, i.e., inputting a zero (Wafer Theme) and a 200 µm (Melt Theme) wall thickness. Initial assumption was that in both cases, EBM manufacturing should yield the structures with similar mechanical properties as in a Wafer-mode, as wall thickness is determined by the minimal beam spot size of ca 200 µm. Their surface morphology, geometry, and mechanical properties were investigated by means of electron microscopy (SEM), X-ray Computed Tomography (XCT), and uniaxial tests (both compression and tension). Application of different manufacturing Themes resulted in specimens with different wall thicknesses while quasi-elastic gradients for different Themes was found to be of 1.5 GPa, similar to the elastic modulus of human cortical bone tissue. The specific energy absorption at 50% strain was also similar for the two types of structures. Finite element simulations were also conducted to qualitatively analyze the deformation process and the stress distribution under mechanical load. Simulations demonstrated that in the elastic regime wall, regions oriented parallel to the load are primarily affected by deformation. We could conclude that gyroids manufactured in Wafer and Melt Themes are equally effective in mimicking mechanical properties of the bones. KW - Electron beam melting KW - Scaffold KW - Lightweight structures KW - Computed tomography PY - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-531595 SN - 1996-1944 VL - 14 IS - 17 SP - 1 EP - 21 PB - MDPI CY - Basel AN - OPUS4-53159 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Baesso, Ilaria A1 - Karl, D. A1 - Spitzer, Andrea A1 - Gurlo, A. A1 - Günster, Jens A1 - Zocca, Andrea T1 - Characterization of powder flow behavior for additive manufacturing N2 - The flow behavior of powders has an essential role in many industrial processes, including powder bed additive manufacturing. The characterization of the flow behavior is challenging, as different methods are available, and their suitability for an application in additive manufacturing is still controversial. In this study, six standardized methods (measurement of bulk density by ISO 60 and by ASTM B329, angle of repose by ISO 4324, discharge time by ISO 6186 and by ASTM B964-16, and Hausner Ratio by ASTM 7481 – 18), the rotating drum method (by GranuDrum) and powder rheometry (Anton Paar powder cell), were applied to five size fractions of a crushed quartz sand powder and compared. A statistical approach is proposed and discussed to correlate the obtained flowability indexes with the packing density of powder beds deposited layer-by-layer, and these correlations are compared between methods. Overall, the measurement of bulk density by ASTM B329 that showed the best correlation with the powder bed density. Advanced methods such as the rotating drum method and powder rheometry did not demonstrate particularly good correlations, however they provided complementary information which can be useful to assess the dynamic behavior of powders. KW - Powder flow KW - Flowability KW - Powder bed additive manufacturing KW - Powder rheology PY - 2021 U6 - https://doi.org/10.1016/j.addma.2021.102250 SN - 2214-8604 VL - 47 SP - 1 EP - 14 PB - Elsevier CY - Amsterdam AN - OPUS4-53229 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mohr, Gunther A1 - Altenburg, Simon A1 - Hilgenberg, Kai T1 - Effects of inter layer time and build height on resulting properties of 316L stainless steel processed by laser powder bed fusion N2 - Das pulverbettbasierte selektive Laserstrahlschmelzen (engl. laser powder bed fusion, L-PBF) ist die am weitesten verbreitete additive Fertigungstechnologie für die Herstellung metallischer Komponenten. Unter der Vielzahl an Einflussfaktoren auf die Qualität und die mechanischen Eigenschaften von L PBF-Bauteilen hat die Zwischenlagenzeit (engl. inter layer time, ILT) bisher kaum Beachtung in der wissenschaftlichen Literatur gefunden, obwohl sie je nach Bauraumausnutzungsgrad stark variieren kann. In diesem Vortrag werden Ergebnisse einer Studie präsentiert, die den Einfluss der ILT in Kombination mit der Bauteilhöhe und unter Berücksichtigung verschiedener Volumenenergiedichten am Beispiel der austenitischen Stahllegierung AISI 316L untersucht. Die Fertigungsprozesse wurden in situ mittels Thermographiekamera überwacht, sodass Informationen über das Abkühlverhalten der Bauteile während des Prozesses gewonnen werden konnten. Es wurden signifikante Effekte der ILT und der Bauteilhöhe auf Wärmeakkumulation, Mikrostruktur, Schmelzbadgeometrie und Härte festgestellt. Ferner konnte ein Anstieg von Defektdichten bei einem gegenseitigen Wechselspiel aus Bauteilhöhe und ILT aufgezeigt werden. Die Zwischenlagenzeit wurde somit als kritischer Faktor für die L-PBF-Fertigung von Realbauteilen identifiziert. T2 - Workshop In-situ Monitoring and Microstructure Development in Additive Manufactured Alloys CY - Online meeting DA - 19.04.2021 KW - Infrared thermography KW - Laser Powder Bed Fusion (L-PBF) KW - Selective Laser Melting (SLM) KW - Additive Manufacturing (AM) KW - Process monitoring PY - 2021 AN - OPUS4-52699 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ehlers, Henrik A1 - Pelkner, Matthias A1 - Thewes, R. T1 - Online ET with MR Sensor Arrays for LPBF Parts N2 - In this presentation we discuss the online monitoring of LPFB parts using eddy current testing with magenoresistive sensor arrays. The underlying principle, the developed hardware and the results of the firt online monitoring are described in the presentation. T2 - 2. Online-Workshop "In-situ Monitoring and Microstructure Development in Additive Manufactured Alloys " CY - Online meeting DA - 19.04.2021 KW - Eddy current testing KW - LPBF KW - GMR KW - SLM KW - Haynes282 KW - Additive manufacturing PY - 2021 AN - OPUS4-52700 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ulbricht, Alexander A1 - Altenburg, Simon A1 - Mohr, Gunther A1 - Oster, Simon A1 - Sprengel, Maximilian T1 - Tales from Within: Residual Stress and Void Formation in LPBF 316L N2 - An unusual microstructure, inherent residual stresses and void formation are the three key aspects to control when assessing metallic parts made by LPBF. This talk explains an experiment to unravel the interlinked influence of the two mechanisms for the formation of residual stresses in LPBF: the temperature gradient mechanism and constricted solidification shrinkage. The impact of each mechanism on the shape and magnitudes of the residual stress distribution is described. Combined results from neutron diffraction, X-ray diffraction, computed tomography and in-situ thermography are presented. Also, influence of scan strategies as well as surface roughness of subjacent layers on void formation is shown. Results from computed tomography and in-situ thermography of a specimen dedicated to study the interaction of the melt pool with layers of powder underneath the currently illuminated surface are presented. T2 - 2nd Workshop on In-situ Monitoring and Microstructure Development in Additive Manufacturing CY - Online meeting DA - 19.04.2021 KW - Neutron diffraction KW - Laser powder bed fusion KW - In-situ thermography KW - Computed tomography KW - X-ray diffraction KW - Residual stress KW - Pore formation KW - AISI 316L PY - 2021 AN - OPUS4-52819 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Maierhofer, Christiane A1 - Altenburg, Simon A1 - Scheuschner, Nils ED - Meyendorf, N. ED - Ida, N. ED - Singh, R. ED - Vrana, J. T1 - In Situ Real-Time Monitoring Versus Post NDE for Quality Assurance of Additively Manufactured Metal Parts N2 - In this chapter, the current state-of-the-art of in situ monitoring and in situ NDE methods in additive manufacturing is summarized. The focus is set on methods, which are suitable for making statements about the quality and usability of a component currently being manufactured. This includes methods which can be used to determine state properties like temperature or density, other physical properties like electrical or thermal conductivity, the microstructure, the chemical composition, the actual geometry, or which enable the direct detection of defects like cracks, voids, delaminations, or inclusions. Thus, optical, thermographic, acoustic, and electromagnetic methods, as well as methods being suitable for investigating particle and fume emission are presented. The requirements of in situ monitoring methods with a focus on thermographic methods are discussed by considering different additive manufacturing processes like laser powder bed fusion (PBF-LB/M) and direct energy deposition (DED-LB/M). Examples of the successful implementation and applications of such monitoring methods at BAM are given. The in situ monitoring and NDE methods are compared against post-process NDE methods. The advantages and challenges of in situ methods concerning real-time data analysis and the application of AI algorithms are addressed and discussed. KW - Additive manufacturing KW - In situ monitoring KW - In situ NDE KW - Post NDE KW - Thermography KW - Laser powder bed fusion KW - Direct energy deposition PY - 2021 SN - 978-3-030-48200-8 U6 - https://doi.org/10.1007/978-3-030-48200-8_51-1 SP - 1 EP - 37 PB - Springer Nature Switzerland AG CY - Cham, Switzerland ET - 1 AN - OPUS4-52824 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Khimich, M. A. A1 - Prosolov, K. A. A1 - Mishurova, Tatiana A1 - Evsevleev, Sergei A1 - Monforte, X. A1 - Teuschl, A. H. A1 - Slezak, P. A1 - Ibragimov, E. A. A1 - Saprykin, A. A. A1 - Kovalevskaya, Z. G. A1 - Dmitriev, A. I. A1 - Bruno, Giovanni A1 - Sharkeev, Y. P. T1 - Advances in Laser Additive Manufacturing of Ti-Nb Alloys: From Nanostructured Powders to Bulk Objects N2 - The additive manufacturing of low elastic modulus alloys that have a certain level of porosity for biomedical needs is a growing area of research. Here, we show the results of manufacturing of porous and dense samples by a laser powder bed fusion (LPBF) of Ti-Nb alloy, using two distinctive fusion strategies. The nanostructured Ti-Nb alloy powders were produced by mechanical alloying and have a nanostructured state with nanosized grains up to 90 nm. The manufactured porous samples have pronounced open porosity and advanced roughness, contrary to dense samples with a relatively smooth surface profile. The structure of both types of samples after LPBF is formed by uniaxial grains having micro- and nanosized features. The inner structure of the porous samples is comprised of an open interconnected system of pores. The volume fraction of isolated porosity is 2 vol. % and the total porosity is 20 vol. %. Cell viability was assessed in vitro for 3 and 7 days using the MG63 cell line. With longer culture periods, cells showed an increased cell density over the entire surface of a porous Ti-Nb sample. Both types of samples are not cytotoxic and could be used for further in vivo studies. KW - Additive manufacturing KW - Biomaterials KW - Ti-Nb alloy KW - Nanostructured powder KW - Laser methods KW - Powder methods KW - Laser powder bed fusion PY - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-525344 VL - 11 IS - 5 SP - 1159 PB - MDPI AN - OPUS4-52534 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Oster, Simon A1 - Maierhofer, Christiane A1 - Mohr, Gunther A1 - Hilgenberg, Kai A1 - Ulbricht, Alexander A1 - Altenburg, Simon T1 - Investigation of the thermal history of L-PBF metal parts by feature extraction from in-situ SWIR thermography N2 - Laser powder bed fusion is used to create near net shape metal parts with a high degree of freedom in geometry design. When it comes to the production of safety critical components, a strict quality assurance is mandatory. An alternative to cost-intensive non-destructive testing of the produced parts is the utilization of in-situ process monitoring techniques. The formation of defects is linked to deviations of the local thermal history of the part from standard conditions. Therefore, one of the most promising monitoring techniques in additive manufacturing is thermography. In this study, features extracted from thermographic data are utilized to investigate the thermal history of cylindrical metal parts. The influence of process parameters, part geometry and scan strategy on the local heat distribution and on the resulting part porosity are presented. The suitability of the extracted features for in-situ process monitoring is discussed. T2 - Thermosense: Thermal Infrared Applications XLIII CY - Online meeting DA - 12.04.2021 KW - SWIR camera KW - Additive manufacturing (AM) KW - Selective laser melting (SLM) KW - Laser beam melting (LBM) KW - In-situ monitoring KW - Infrared thermography PY - 2021 SN - 978-1-5106-4324-6 U6 - https://doi.org/10.1117/12.2587913 VL - 11743 SP - 1 EP - 11 PB - SPIE - The international society for optics and photonics AN - OPUS4-52535 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maierhofer, Christiane A1 - Scheuschner, Nils A1 - Altenburg, Simon T1 - Summary of in-situ monitoring in additive manufacturing - ProMoAM N2 - The quality of additively manufactured components is significantly influenced by the process parameters used during production. Thus, sensors and measuring systems are already commercially available for process monitoring, at least in metal-based additive manufacturing. However, it is not yet possible to detect defects and inhomogeneities directly or indirectly during the building process. The aim of the project ProMoAM is to develop spectroscopic and non-destructive testing methods for the in-situ evaluation of the quality of additively manufactured metal components in laser- or arc-based AM processes. In addition to passive and active methods of thermography, this includes optical tomography, optical emission spectroscopy, eddy current testing, laminography (radiography), X-ray backscattering, particle emission spectroscopy and photoacoustic methods. T2 - 2nd Workshop on In-situ Monitoring and Microstructure Development in Additive Manufactured Alloys CY - Online meeting DA - 19.04.2021 KW - In-situ monitoring KW - Additive manufacturing KW - Metals KW - Thermography PY - 2021 AN - OPUS4-52539 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Oster, Simon A1 - Maierhofer, Christiane A1 - Mohr, Gunther A1 - Hilgenberg, Kai A1 - Ulbricht, Alexander A1 - Altenburg, Simon T1 - Investigation of the thermal history of L-PBF metal parts by feature extraction from in-situ SWIR thermography N2 - Laser powder bed fusion is used to create near net shape metal parts with a high degree of freedom in geometry design. When it comes to the production of safety critical components, a strict quality assurance is mandatory. An alternative to cost-intensive non-destructive testing of the produced parts is the utilization of in-situ process monitoring techniques. The formation of defects is linked to deviations of the local thermal history of the part from standard conditions. Therefore, one of the most promising monitoring techniques in additive manufacturing is thermography. In this study, features extracted from thermographic data are utilized to investigate the thermal history of cylindrical metal parts. The influence of process parameters, part geometry and scan strategy on the local heat distribution and on the resulting part porosity are presented. The suitability of the extracted features for in-situ process monitoring is discussed. T2 - Thermosense: Thermal Infrared Applications XLIII CY - Online meeting DA - 12.04.2021 KW - SWIR camera KW - Additive manufacturing (AM) KW - Selective laser melting (SLM) KW - Laser beam melting (LBM) KW - In-situ monitoring KW - Infrared thermography PY - 2021 UR - https://www.spiedigitallibrary.org/conference-proceedings-of-spie/11743/117430C/Investigation-of-the-thermal-history-of-L-PBF-metal-parts/10.1117/12.2587913.short?SSO=1&tab=ArticleLink AN - OPUS4-52540 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Zerbst, Uwe A1 - Madia, Mauro ED - Yadroitsev, I. ED - Yadroitsava, I. ED - Du Plessies, A. ED - McDonald, E. T1 - Structural integrity II: fatigue properties N2 - If a component is cyclically loaded, its load carrying capacity is considerably lower than in the monotonic loading case. This general observation applies in particular to L-PBF parts. The causes of this are mainly material defects such as pores and unwelded regions (Chapter 8) and a pronounced surface roughness in the as-built condition (Chapter 9). In addition, effects due to the anisotropy of the microstructure (Chapter 6) and a complex residual stress pattern (Chapter 7) play an important role. A consequence is that common strategies of fatigue assessment cannot be transferred to L-PBF applications without modifications. Due to the inhomogeneity of the material, the determination of representative material properties and the transfer to the component is a problem, and this is also the case with regard to the consideration of defects, surface roughness and residual stresses. The chapter gives a brief introduction to these problem areas. KW - Fatigue crack propagation stagesdefects KW - Fatigue strength KW - Fatigue life KW - Fracture mechanics PY - 2021 SN - 978-0-12-824090-8 U6 - https://doi.org/10.1016/B978-0-12-824090-8.00015-9 SP - 377 EP - 394 PB - Elsevier Inc. CY - Amsterdam ET - 1 AN - OPUS4-52854 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bruno, Giovanni T1 - Assessing the safety of new technologies: Summary of Project AGIL N2 - In Additive Manufacturing everybody is talking about Free Form, Unconventional Design, Re-thinking Components, “Think out of the box”. However, there are a few outstanding question: a) What are the material properties ? They certainly differ from literature values for conventional materials; b) How about the microstructure? It is different from conventional materials. Does it stay so with ageing? How does it form? c) Do we properly take residual stress into account? We often blame them for our ignorance about failure scenarios. d) Do we apply tailored heat treatments? Very often, we follow conventional schedules… This talk describes the summary of the efforts carried out within the BAM Project AGIL. At BAM, we aimed to thoroughly investigate the microstructure and how it evolves as a function of load and temperature (service), to determine the material properties after different process and service conditions, to properly determine residual stress and the way it impacts mechanical properties and component performance, to properly quantify the impact of (unavoidable?) defects, and to determine heat treatments tailored to the process-specific material (stress relieve, microstructure homogenization etc.). The Project AGIL was and is intimately coupled with the project ProMoAM, dealing with online monitoring of AM processes. T2 - Workshop In-situ Monitoring and Microstructure Development in Additive Manufactured Alloys CY - Online meeting DA - 19.04.2021 KW - Mechanical properties KW - Additive manufacturing KW - Residual Stress KW - Microstructure KW - Fatigue KW - Creep PY - 2021 AN - OPUS4-52581 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Werner, Tiago A1 - Madia, Mauro A1 - Zerbst, Uwe T1 - Short fatigue crack propagation in additively manufactured stainless steel 316L N2 - Fracture mechanics is a key to fatigue assessment in AM metal components. Short fatigue cracks are initiated at defects and pronounced surface roughness intrinsic to AM. The subsequent crack-propagation is strongly influenced by microstructural interactions and the build-up of crack-closure. The aim of the present study is to give an insight into short-crack propagation in AM-metals. Fatigue crack propagation resistance curves were determined experimentally for AISI 316L manufactured by Laser Powder Bed Fusion (L-PBF) which was heat treated at three different temperatures. Differences in the build-up of the fatigue-crack propagation threshold in between the L-PBF specimens and compared to wrought material are due to the residual stress states, a pronounced roughness of the crack-faces in the L-PBF specimens and phase transformation in the vicinity of the crack-tip, resulting in increased crack-closure. This, together with crack-branching found along the crack path, enhances the resistance to the propagation of fatigue cracks. T2 - In-situ Monitoring and Microstructure Development in Additive Manufactured Alloys CY - Online meeting DA - 19.04.2021 KW - AM KW - Cyclic R-Curve KW - Fatigue Crack Propagation PY - 2021 AN - OPUS4-52587 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Scheuschner, Nils A1 - Altenburg, Simon A1 - Pignatelli, Giuseppe A1 - Straße, Anne A1 - Maierhofer, Christiane A1 - Gornushkin, Igor B. A1 - Gumenyuk, Andrey T1 - In-situ Monitoring der Additiven Fertigung von Metallen im LPA Prozess mittels Optischer Emissionsspektrometrie (OES) und Thermografie (TT) N2 - Einer der aussichtsreichsten Ansätze, die Qualität und Sicherheit der gefertigten Teile in der metallbasierten additiven Fertigung (AM) zu erhöhen und die Notwendigkeit aufwändiger und zeitintensiver, zerstörender oder zerstörungsfreier Prüfungen (ZfP) nach der Fertigung zu verringern, liegt in dem Einsatz von in-situ Prozessüberwachungstechniken. Viele wichtige Prozessgrößen bei der additiven Fertigung sind thermischer Natur, wie z.B. die Temperatur des Schmelzbades. Aufgrund der Zugänglichkeit zum Werkstück während des Bauprozesses bieten sich optische Verfahren zur Temperaturbestimmung an. Für die Thermografie und Optische Emissionsspektrometrie im IR-Bereich, welche für die in-situ Anwendung prinzipiell als geeignet angesehen werden können, gibt es allerdings noch wenig konkrete praktische Umsetzungen, da die Möglichkeiten und individuellen Grenzen dieser Methoden, angewendet auf AM, noch nicht ausreichend erforscht sind. Aus diesem Grund verfolgt die BAM mit dem Projekt „Process Monitoring of AM“ (ProMoAM) im Themenfeld Material das Ziel, Verfahren des Prozessmonitorings zur in-situ Bewertung der Qualität additiv gefertigter Metallbauteile weiterzuentwickeln. Im Beitrag wird der Fokus auf eine Versuchsserie gelegt, bei der Aufbau von Probekörpern aus dem austenitischen Edelstahl 316L mittels Laser-Pulver-Auftragschweißen (LPA) durch od. mit Hilfe von IR-Spektrometrie und Thermografie in-situ überwacht wurde. Hierbei stellen u.a. die hohe Bandbreite der zu messenden Temperaturen, die Bestimmung der Emissivität und ihre Änderung bei Phasenübergängen des Metalls große experimentelle Herausforderungen dar, wobei jede Methode individuelle Vor- und Nachteile aufweist, welche verglichen werden. T2 - DGZfP-Jahrestagung 2021 CY - Online meeting DA - 10.05.2021 KW - Additive Manufacturing KW - Thermography KW - Direct Energy Deposition KW - Additive Fertigung KW - Thermografie KW - Laserauftragschweißen PY - 2021 AN - OPUS4-52744 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Charmi, Amir T1 - Mechanical anisotropy of LPBF 316L: a modeling approach N2 - The underlying cause of mechanical anisotropy in additively manufactured (AM) parts is not yet fully understood and has been attributed to several different factors like microstructural defects, residual stresses, melt pool boundaries, crystallographic and morphological textures. To better understand the main contributing factor to the mechanical anisotropy of AM stainless steel 316L, bulk specimens were fabricated via laser powder bed fusion (LPBF). Tensile specimens were machined from these AM bulk materials for three different inclinations relative to the build plate. Dynamic Young's modulus measurements and tensile tests were used to determine the mechanical anisotropy. Some tensile specimens were also subjected to residual stress measurement via neutron diffraction, porosity determination with X-ray micro-computed tomography, and texture analysis with electron backscatter diffraction (EBSD). A crystal plasticity model was used to analyze the elastic anisotropy and the anisotropic yield behavior of the AM specimens, and it was able to capture and predict the experimental behavior accurately. Overall, it was shown that the mechanical anisotropy of the tested specimens was mainly influenced by the crystallographic texture. T2 - 2. Online-Workshop "In-situ Monitoring and Microstructure Development in Additive Manufactured Alloys " CY - Online meeting DA - 20.04.2021 KW - Anisotropy KW - Crystal plasticity KW - Additive manufacturing PY - 2021 AN - OPUS4-52603 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wilke, Marco A1 - Röder, Bettina A1 - Paul, Martin A1 - Weller, Michael G. T1 - Sintered glass monoliths as supports for affinity columns N2 - A novel stationary phase for affinity separations is presented. This material is based on sintered borosilicate glass readily available as semi-finished filter plates with defined porosity and surface area. The material shows fast binding kinetics and excellent long-term stability under real application conditions due to lacking macropores and high mechanical rigidity. The glass surface can be easily modified with standard organosilane chemistry to immobilize selective binders or other molecules used for biointeraction. In this paper, the manufacturing of the columns and their respective column holders by 3D printing is shown in detail. The model system protein A/IgG was chosen as an example to examine the properties of such monolithic columns under realistic application conditions. Several specifications, such as (dynamic) IgG capacity, pressure stability, long-term performance, productivity, non-specific binding, and peak shape, are presented. It could be shown that due to the very high separation speed, 250 mg antibody per hour and column can be collected, which surpasses the productivity of most standard columns of the same size. The total IgG capacity of the shown columns is around 4 mg (5.5 mg/mL), which is sufficient for most tasks in research laboratories. The cycle time of an IgG separation can be less than 1 min. Due to the glass material’s excellent pressure resistance, these columns are compatible with standard HPLC systems. This is usually not the case with standard affinity columns, limited to manual use or application in low-pressure systems. The use of a standard HPLC system also improves the ability for automation, which enables the purification of hundreds of cell supernatants in one day. The sharp peak shape of the elution leads to an enrichment effect, which might increase the concentration of IgG by a factor of 3. The final concentration of IgG can be around 7.5 mg/mL without the need for an additional nano-filtration step. The purity of the IgG was > 95% in one step and nearly 99% with a second polishing run. KW - Affinity Chromatography KW - Affinity Extraction KW - Affinity Separation KW - Protein Purification KW - Down Stream Processing KW - Antibody Purification KW - Diagnostic Antibodies KW - Therapeutic Antibodies KW - Automated Purification KW - HPLC KW - FPLC KW - IgG determination KW - Concentration step KW - Monoclonal Antibodies KW - Polyclonal Antibodies KW - Human Plasma KW - Glass Support KW - Borosilicate Glass KW - Monolith KW - Sintered Material KW - Additive Manufacturing KW - Column holder KW - Construction KW - Open Science KW - Citizen Science KW - Protein A KW - Regeneration KW - High-Speed Separations KW - Robustness PY - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-527581 SN - 2297-8739 VL - 8 IS - 5 SP - 1 EP - 16 PB - MDPI CY - Basel AN - OPUS4-52758 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ávila Calderón, Luis Alexander T1 - Creep behavior and microstructural evolution of LPBF 316L N2 - This presentation shows some experimental results of the characterization of the creep behavior of LPBF 316L, which has been poorly studied and understood to date. The presentation includes results regarding the mechanical properties, the initial microstructural state and its evolution under loading, and the damage mechanism. This work was done within the BAM focus area materials project AGIL. As a benchmark to assess the material properties of the LPBF 316L, a conventionally manufactured variant was also tested. T2 - 2nd Workshop on In-situ Monitoring and Microstructure Development in Additive Manufactured alloys at BAM CY - Online Meeting DA - 19.04.2021 KW - 316L KW - Additive Manufacturing KW - Creep behavior PY - 2021 AN - OPUS4-52682 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kupsch, Andreas A1 - Schob, D. A1 - Léonard, Fabien A1 - Müller, Bernd R. A1 - Sagradov, I. A1 - Roszak, R. A1 - Sparr, H. A1 - Franke, R. A1 - Ziegenhorn, M. A1 - Bruno, Giovanni T1 - Bestimmung der Mikrostruktur und Simulation des Schädigungsverhaltens von lasergesintertem Polyamid 12 unter quasistatischer Zugbelastung N2 - Um das Material- und Schädigungsverhalten von additiv gefertigtem Polyamid 12 (PA12) unter quasistatischer Belastung zu charakterisieren, wurden mechanische Tests und Röntgenverfahren zur Bestimmung der Mikrostruktur eingesetzt. Die Proben wurden nach dem Prinzip des Selektiven Lasersinterns (SLS) hergestellt. Unter quasistatischer Belastung mit Haltezeiten ergab sich ein viskoplastisches Materialverhalten. Im Zugversuch wurde eine maximale Zugfestigkeit von 40.6 MPa und eine Bruchdehnung von 7.4% beobachtet. Mittels Röntgenrefraktion wurde eine Erhöhung von inneren Oberflächen beobachtet, die senkrecht zur Zugrichtung orientiert sind. Die Analyse der Gesamtporosität aus Computertomographie-Messungen ergab keine Änderung infolge der Zugbelastung. Jedoch wurde eine bimodale Porengrößenverteilung und eine steigende Sphärizität festgestellt. Das Materialverhalten wurde mit dem Chaboche-Modell simuliert und ergab eine sehr gute Übereinstimmung mit den experimentellen Ergebnissen. Allerdings gestattet dieses Modell nicht, das Schädigungsverhalten abzubilden. Daher wurde zur Simulation des Schädigungsverhaltens das Modell gemäß dem Ansatz von Gurson, Tvergaard und Needleman unter Berücksichtigung der mikrostrukturellen Parameter erweitert. Der Schwerpunkt des Beitrags liegt auf den Röntgenverfahren zur experimentellen Bestimmung der Mikrostruktur. T2 - DGZfP-Jahrestagung 2021 CY - Online meeting DA - 10.05.2021 KW - Additive Fertigung (AM) KW - Polyamid 12 KW - Röntgenrefraktion KW - Computertomographie KW - Numerische Simulation PY - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-526833 UR - https://jahrestagung.dgzfp.de/Portals/jt2021/bb/P16.pdf SP - 1 EP - 8 PB - Deutsche Gesellschaft für Zerstörungsfreie Prüfung (DGZfP) CY - Berlin AN - OPUS4-52683 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Serrano Munoz, Itziar A1 - Ulbricht, Alexander A1 - Fritsch, Tobias A1 - Mishurova, Tatiana A1 - Kromm, Arne A1 - Hofmann, M. A1 - Wimpory, R. C. A1 - Evans, Alexander A1 - Bruno, Giovanni T1 - Scanning Manufacturing Parameters Determining the Residual Stress State in LPBF IN718 Small Parts N2 - The influence of scan strategy on the residual stress (RS) state of an as-built IN718 alloy produced by means of laser powder bed fusion (LPBF) is investigated. Two scan vector rotations (90°-alternation and 67°-rotation), each produced following two different scan vector lengths (long and short), are used to manufacture four rectangular prisms. Neutron diffraction (ND) and laboratory X-ray diffraction (XRD) techniques are used to map the bulk and surface RS state, respectively. The distortion induced upon removal from the baseplate is measured via profilometry. XRD measurements show that the two long scan vector strategies lead to higher RS when compared with the equivalent short scan vector strategies. Also, the 67°-rotation strategies generate lower RS than their 90°-alternation counterparts. Due to the lack of reliable stress-free d0 references, the ND results are analyzed using von Mises stress. In general, ND results show significant RS spatial non-uniformity. A comparison between ND and distortion results indicates that the RS component parallel to the building direction (Z-axis) has a predominant role in the Z-displacement. The use of a stress balance scheme allows to discuss the d0 variability along the length of the specimens, as well as examine the absolute RS state. KW - As-built LPBF IN718 alloy KW - Scan strategy influence KW - Neutron diffraction KW - Residual stress state KW - Stress balance condition KW - Distortion PY - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-526360 VL - 23 IS - 7 SP - 158 PB - Wiley AN - OPUS4-52636 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schröder, Jakob A1 - Mishurova, Tatiana A1 - Fritsch, Tobias A1 - Serrano Munoz, Itziar A1 - Evans, Alexander A1 - Sprengel, Maximilian A1 - Klaus, M. A1 - Genzel, C. A1 - Schneider, J. A1 - Bruno, Giovanni T1 - On the influence of heat treatment on microstructure and mechanical behavior of laser powder bed fused Inconel 718 N2 - Since additive manufacturing processes typically introduce heterogeneous microstructures and residual stresses, the applicability of parts produced in an as-built state is limited. Therefore, often different post-processing treatments are necessary to obtain the desired stress state and properties. For additively manufactured Inconel 718, the recently developed standard ASTM F3301 provides guidance for the heat treatment of powder bed fusion specimens. Although this standard is based on standards developed for wrought Inconel 718, it does not include the direct aging variant. In this study, we characterized the microstructure and tensile behavior of Inconel 718 specimens produced by a laser powder bed fusion process. The specimens were heat-treated according to two different routines after stress relieving: a full heat treatment cycle versus a one-step aging process. Differences in the resulting texture and grain morphology were observed. Although these differences prevail, the ex-situ tensile behavior was broadly similar. Minor differences were observed in yield strength and work hardening rate for the direct aged specimen. In order to understand this behavior, investigations with in-situ tensile testing during synchrotron energy-dispersive X-ray diffraction measurements revealed differences in the load partitioning among different crystal directions. This was attributed to microstructural differences between the heat treatment variants. Further analysis emphasized that the various strengthening mechanisms are present to a different extent depending on the heat-treatment cycle applied. In addition, the elastic anisotropy expressed by the differences in the diffraction elastic constants displayed a dependence on the microstructure. Importantly, a precise knowledge of such constants is indispensable to reliably determine residual stresses in parts. T2 - EUROMAT 2021 - European Congress and Exhibition on Advanced Materials and Processes CY - Online meeting DA - 13.09.2021 KW - Electron microscopy KW - X-ray analysis KW - Inconel 718 KW - Additive manufacturing (AM) KW - Mechanical behavior KW - Diffraction elastic constants (DECs) PY - 2021 AN - OPUS4-53301 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wandtke, Karsten A1 - Kannengießer, Thomas A1 - Schröpfer, Dirk T1 - Generative Fertigung und Kaltrisssicherheit N2 - Hochfeste Feinkornbaustähle verfügen über ein großes Potenzial für gewichtsoptimierte, effiziente Strukturen in vielen modernen Stahlkonstruktion. Weitere Effizienzsteigerungen können durch additives Fertigen sowie bionische Bauweisen erreicht werden. In dieser Präsentation werden erste Ergebnisse der Eigenspannungsanalysen von additiv gefertigten Bauteilen aus hochfestem Stahl vorgestellt. T2 - Bachelor-, Master-, Doktoranden-Kolloquium CY - Online meeting DA - 10.06.2021 KW - Additive Fertigung KW - Wärmeführung KW - Hochfester Stahl KW - Eigenspannungen KW - Härteprüfung nach Vickers PY - 2021 AN - OPUS4-53326 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wandtke, Karsten A1 - Hälsig, André A1 - Schröpfer, Dirk A1 - Scharf-Wildenhain, R. A1 - Kannengießer, Thomas T1 - Erste Untersuchungen auf dem Weg zum WAAM-Kaltrisstest für hochfeste Stähle N2 - Hochfeste Feinkornbaustähle verfügen über ein großes Potenzial für gewichtsoptimierte, effiziente Strukturen in vielen modernen Stahlkonstruktion. Weitere Effizienzsteigerungen können durch additives Fertigen sowie bionische Bauweisen erreicht werden. In dieser Präsentation werden erste Analysen des Einflusses der Fertigungsstrategie auf die Härte in additiv gefertigten Bauteilen aus hochfestem Stahl vorgestellt. T2 - NA 092-00-05 GA (DVS AG Q 4/Q 4.1) CY - Online meeting DA - 10.03.2021 KW - Additive Fertigung KW - Hochfester Stahl KW - Härteprüfung nach Vickers PY - 2021 AN - OPUS4-53327 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schröpfer, Dirk A1 - Scharf-Wildenhain, R. A1 - Hälsig, A. A1 - Wandtke, Karsten A1 - Kromm, Arne A1 - Kannengießer, Thomas T1 - Process-related influences and correlations in wire arc additive manufacturing of high-strength steels N2 - High-strength fine-grained structural steels have great potential for weight-optimized, efficient structures in many modern steel applications. Further advances in efficiency can be achieved through additive manufacturing and bionic design. Commercial high-strength filler materials for wire arc additive manufacturing (WAAM) are already provided by the consumable producers. Today, application would be strictly limited due to absence of quantitative findings or any guidelines for the industry regarding welding-related stresses and component safety during manufacturing and service. Hence, process- and material-related influences and design-related restraint conditions associated with formation of residual stresses and cold cracking risk are investigated. The aim is the accessibility of special WAAM self-restraining cold cracking tests and easy applicable processing recommendations, enabling an economical, fit-for-purpose and crack-safe WAAM of high-strength steels. This first study focuses on determination of interactions between WAAM process parameters, resulting layer geometry, microstructure and residual stresses, analyzed via X-ray diffraction. Defined reference specimens are automated welded using a special WAAM solid wire (yield strength >820 MPa). Geometric properties can be specifically adjusted by wire feed and welding speed, but cannot be varied arbitrarily, since a high heat input causes local overheating, inadmissible changes of microstructure and mechanical properties, defects and comparable high tensile residual stresses. T2 - 22. Werkstofftechnischen Kolloquium der TU Chemnitz CY - Online meeting DA - 24.03.2021 KW - Additive Manufacturing KW - High-strength steel KW - Residual stresses PY - 2021 AN - OPUS4-53328 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schröpfer, Dirk A1 - Scharf-Wildenhain, R. A1 - Hälsig, A. A1 - Wandtke, Karsten A1 - Kromm, Arne A1 - Kannengießer, Thomas T1 - Process-related influences and correlations in wire arc additive manufacturing of high-strength steels N2 - High-strength fine-grained structural steels have great potential for weight-optimized, efficient structures in many modern steel applications. Further advances in efficiency can be achieved through additive manufacturing and bionic design. Commercial high-strength filler materials for wire arc additive manufacturing (WAAM) are already provided by the consumable producers. Today, application would be strictly limited due to absence of quantitative findings or any guidelines for the industry regarding welding-related stresses and component safety during manufacturing and service. Hence, process- and material-related influences and design-related restraint conditions associated with formation of residual stresses and cold cracking risk are investigated. The aim is the accessibility of special WAAM self-restraining cold cracking tests and easy applicable processing recommendations, enabling an economical, fit-for-purpose and crack-safe WAAM of high-strength steels. This first study focuses on determination of interactions between WAAM process parameters, resulting layer geometry, microstructure and residual stresses, analyzed via X-ray diffraction. Defined reference specimens are automated welded using a special WAAM solid wire (yield strength >820 MPa). Geometric properties can be specifically adjusted by wire feed and welding speed, but cannot be varied arbitrarily, since a high heat input causes local overheating, inadmissible changes of microstructure and mechanical properties, defects and comparable high tensile residual stresses. T2 - 22. Werkstofftechnischen Kolloquium der TU Chemnitz CY - Online meeting DA - 24.03.2021 KW - Residual stresses KW - Additive Manufacturing KW - High-strength steel PY - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-533300 VL - 1147 SP - 012002 PB - IOP Publishing Ltd AN - OPUS4-53330 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mishurova, Tatiana A1 - Artzt, K. A1 - Rehmer, Brigit A1 - Avila, Luis A1 - Haubrich, J. A1 - Serrano Munoz, Itziar A1 - Requena, G. A1 - Bruno, Giovanni T1 - Separation of the impact of residual stress and microstructure on the fatigue performance of LPBF Ti-6Al-4V at elevated temperature (Keynote) N2 - Ti-6Al-4V alloy is intensively used in the aerospace industry because of its high specific strength. However, the application of Laser Powder Bed Fusion (LPBF) Ti-6Al-4V alloy for structurally critical load-bearing components is limited. One of the main limiting factors affecting the structural integrity, are manufacturing defects. Additionally, the high cooling rates associated with LPBF process result in the formation of large residual stress (RS) with complex fields. Such RS can cause cracking and geometrical distortions of the part even right after production. Also, the microstructure of LPBF Ti-6Al-4V in the as-built condition is significantly different from that of the conventionally produced alloy. All these factors affect the mechanical behavior of the material. Therefore, to improve the material performance it is important to evaluate the individual effect of RS, defects, and microstructure on fatigue life. To this aim Ti-6Al-4V LPBF material in as-built condition and subjected to different post-processing, including two heat treatments (for stress relief and microstructural modification) and Hot Isostatic Pressing (HIP, for densification), were investigated. Prior to fatigue tests at elevated temperature, the microstructure, the mesostructure, and subsurface RS on the fatigue samples were investigated. It was found that the fatigue performance of HIPped samples is similar to that of conventionally produced Ti-6Al-4V. The tensile RS found at the surface of as-built samples decreased the fatigue life compared to heat-treated samples. Additionally, the modification of the microstructure (by heat treatment) did not affect the fatigue performance in the regime of mostly elastic strain. This shows that in the absence of tensile RS the manufacturing defects solely control the failure of LPBF components and densification has the strongest effect on the improvement of the mechanical performance. T2 - EUROMAT 2021 CY - Online meeting DA - 12.09.2021 KW - Additive manufacturing KW - Ti-6Al-4V KW - Residual stress KW - Fatigue performance PY - 2021 AN - OPUS4-53278 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Altenburg, Simon T1 - Prozessüberwachung in der additiven Fertigung von Metallen an der BAM - Das Projekt ProMoAM N2 - Im Vortrag werden die verschiedenen Verfahren zum in-situ Monitoring und zur zerstörungsfreien Prüfung vorgestellt. T2 - 27. Sitzung des DGZfP Fachausschusses Materialcharakterisierung CY - Berlin, Germany DA - 14.11.2019 KW - Additive manufacturing KW - In situ Monitoring KW - Zerstörungsfreie Prüfung KW - Laserstrahlschmelzen im Pulverbett KW - Laserauftragschweißen PY - 2019 AN - OPUS4-53259 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Serrano Munoz, Itziar A1 - Evans, Alexander A1 - Mishurova, Tatiana A1 - Sprengel, Maximilian A1 - Pirling, T. A1 - Kromm, Arne A1 - Bruno, Giovanni T1 - The importance of subsurface residual stress in laser powder bed fusion IN718 N2 - The residual stress (RS) in laser powder bed fusion (LPBF) IN718 alloy samples produced using a 67°-rotation scan strategy is investigated via laboratory X-ray diffraction (XRD) and neutron diffraction (ND). The location dependence of the strain-free (d₀) lattice spacing in ND is evaluated using a grid array of coupons extracted from the far-edge of the investigated specimen. No compositional spatial variation is observed in the grid array. The calculated RS fields show considerable non-uniformity, significant stress gradients in the region from 0.6 to 2 mm below the surface, as well as subsurface maxima that cannot be accounted for via XRD. It is concluded that failure to determine such maxima would hamper a quantitative determination of RS fields by means of the stress balance method. KW - Laser powder bed fusion KW - Neutron and X-ray diffraction KW - Residual stress analysis KW - Strain-free lattice references KW - Stress balance PY - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-532707 SN - 1615-7508 SN - 1527-2648 VL - 24 IS - 6 SP - 1 EP - 7 PB - Wiley-VCH CY - Weinheim AN - OPUS4-53270 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Meyer, Lena A1 - Günster, Jens T1 - Powder based Additive Manufacturing in Space N2 - Abstract of the event: 'The area of New Space is a vastly growing and dynamic field with a high innovative potential and many exciting ideas. After decades where activities in space were dominated and funded mainly by governmental agencies, a new industry is forming and new business models are being developed around ideas like satellite-based internet, space travel, space mining, geo-monitoring etc. For space applications, lightweight design is crucial to keep the costs at a minimum. This Innovation Day will introduce the field of New Space and present the variety of exciting opportunities that arise for composites based on their excellent lightweight potential.' Another research area is now arising in the field of 3D printing or additive manufacturing of fiber composite materials in space. At the event, we presented on the opportunities and our experiences of using a powder based additive manufacturing process for in-space manufacturing applications. T2 - CU Innovation Day - New opportunities and applications in space with composites CY - Online meeting DA - 29.03.2022 KW - μ-gravity KW - In-space manufacturing KW - Additive manufacturing KW - Microgravity KW - Powder PY - 2022 AN - OPUS4-54559 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Scheuschner, Nils A1 - Heinrichsdorff, F. A1 - Gordei, A. A1 - Ehlers, Henrik A1 - Kochan, J. A1 - Jahangir, H. A1 - Pelkner, Matthias A1 - Maierhofer, Christiane A1 - Hilgenberg, Kai T1 - In-situ Prozessüberwachung in der additiven Fertigung von Metallen (PBF-LB /M) mittels TT und ET N2 - Durch die additive Fertigung ergeben sich durch die nun mögliche wirtschaftliche Fertigung hochgradig individueller und komplexer metallischer Bauteile in kleinen Stückzahlen bis hinunter zum Einzelstück für viele Industriebereiche ganz neue Möglichkeiten. Gleichzeitig entstehen jedoch neue Herausforderungen im Bereich der Qualitätssicherung, da sich auf statistischen Methoden beruhende Ansätze nicht anwenden lassen, ohne wiederum die Vorteile der Fertigung massiv einzuschränken. Eine mögliche Lösung für dieses Problem liegt in der Anwendung verschiedener In-situ-Überwachungstechniken während des Bauprozesses. Jedoch sind nur wenige dieser Techniken kommerziell verfügbar und noch nicht so weit erforscht, dass die Einhaltung strenger Qualitäts- und Sicherheitsstandards gewährleistet werden kann. In diesem Beitrag stellen wir die Ergebnisse einer Studie über mittels L-PBF gefertigte Probekörper aus der Nickelbasis-Superlegierung Haynes 282 vor, bei denen die Bildung von Defekten durch lokale Variationen der Prozessparameter wie der Laserleistung provoziert wurde. Die Proben wurden in-situ mittels Thermographie, optischer Tomographie, Schmelzbadüberwachung und Wirbelstromprüfung sowie ex-situ mittels Computertomographie (CT) überwacht, mit dem Ziel, die Machbarkeit und die Aussichten der einzelnen Methoden für die zuverlässige Erkennung der Bildung relevanter Defekte zu bewerten. T2 - DGZfP Jahrestagung 2022 CY - Kassel, Germany DA - 23.05.2022 KW - Additive Manufacturing KW - Thermografie KW - Additive Fertigung KW - Thermography PY - 2022 AN - OPUS4-55851 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Scheuschner, Nils A1 - Heinrichsdorff, F. A1 - Gordei, A. A1 - Ehlers, Henrik A1 - Kochan, J. A1 - Jahangir, H. A1 - Pelkner, Matthias A1 - Maierhofer, Christiane A1 - Hilgenberg, Kai T1 - In-situ Monitoring of PBF-LB/M by thermography, optical tomography, melt-pool-monitoring and eddy current N2 - The formation of defects such as keyhole pores is a major challenge for the production of metal parts by Laser Powder Bed Fusion (LPBF). The LPBF process is characterized by a large number of influencing factors which can be hard to quantify. Machine Learning (ML) is a prominent tool to predict the outcome of complex processes on the basis of different sensor data. In this study, a ML model for defect prediction is created using thermographic image features as input data. As a reference, the porosity information calculated from an x-ray Micro Computed Tomography (µCT) scan of the produced specimen is used. Physical knowledge about the keyhole pore formation is incorporated into the model to increase the prediction accuracy. From the prediction result, the quality of the input data is evaluated and future demands on in-situ monitoring of LPBF processes are formulated. T2 - AM Bench 2022 CY - Bethesda, Washingthon DC, USA DA - 15.08.2022 KW - Additive Manufacturing KW - Thermography KW - Additive Fertigung KW - Thermografie PY - 2022 AN - OPUS4-55854 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Merz, Benjamin A1 - Knobloch, Tim A1 - Mohr, Gunther A1 - Hilgenberg, Kai T1 - Concepts for bridging voids in metal additive manufacturing for repair of gas turbine blades using laser powder bed fusion N2 - One of the main advantages of additive manufacturing (AM) processes such as laser powder bed fusion (PBF-LB/M) is the possibility to manufacture complex near-net-shape components. Therefore, the PBF-LB/M process is becoming increasingly important for the manufacturing and repair of gas turbine blades. Despite the great freedom in design, there are also limitations to the process. Manufacturing overhangs or bridging voids are some of the main challenges. In the conventional PBF-LB/M process, overhangs with angles up to 45° can be manufactured. However, gas turbine blades feature voids for cooling, which have to be bridged when using PBF-LB/M. In this work, different concepts for bridging voids are developed for future application in gas turbine blade repair. For this purpose, a test geometry is derived from the tip area of a gas turbine blade as a reference. By changing the initial geometry of the reference body, different designs for bridging voids are developed based on the PBF-LB/M requirements. Subsequently, these distinct designs are manufactured by PBF-LB/M. The different approaches are compared with respect to their volume increase. In addition, the specimens are visually inspected for warpage, shrinkage and imperfections by overheating. Out of the seven concepts developed, three concepts can be recommended for gas turbine blade repair based on low volume increase, distortion and shrinkage. T2 - Metal Additive Manufacturing Conference - MAMC 2022 CY - Graz, Austria DA - 26.09.2022 KW - Repair of gas turbine blades KW - Laser Powder Bed Fusion (PBF-LB/M) KW - Selective Laser Melting (SLM) KW - Design for Additive Manufacturing (DfAM) KW - Bridging voids KW - Supportless PY - 2022 SP - 19 EP - 28 PB - TU Graz CY - Graz AN - OPUS4-55868 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Merz, Benjamin A1 - Knobloch, Tim A1 - Mohr, Gunther A1 - Hilgenberg, Kai T1 - Concepts for bridging voids in metal additive manufacturing for repair of gas turbine blades using laser powder bed fusion N2 - One of the main advantages of additive manufacturing (AM) processes such as laser powder bed fusion (PBF-LB/M) is the possibility to manufacture complex near-net-shape components. Therefore, the PBF-LB/M process is becoming increasingly important for the manufacturing and repair of gas turbine blades. Despite the great freedom in design, there are also limitations to the process. Manufacturing overhangs or bridging voids are some of the main challenges. In the conventional PBF-LB/M process, overhangs with angles up to 45° can be manufactured. However, gas turbine blades feature voids for cooling, which have to be bridged when using PBF-LB/M. In this work, different concepts for bridging voids are developed for future application in gas turbine blade repair. For this purpose, a test geometry is derived from the tip area of a gas turbine blade as a reference. By changing the initial geometry of the reference body, different designs for bridging voids are developed based on the PBF-LB/M requirements. Subsequently, these distinct designs are manufactured by PBF-LB/M. The different approaches are compared with respect to their volume increase. In addition, the specimens are visually inspected for warpage, shrinkage and imperfections by overheating. Out of the seven concepts developed, three concepts can be recommended for gas turbine blade repair based on low volume increase, distortion and shrinkage. T2 - Metal Additive Manufacturing Conference - MAMC 2022 CY - Graz, Austria DA - 26.09.2022 KW - Laser Powder Bed Fusion (PBF-LB/M) KW - Selective Laser Melting (SLM) KW - Design for Additive Manufacturing (DfAM) KW - Repair of gas turbine blades KW - Bridging voids KW - Supportless PY - 2022 AN - OPUS4-55869 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Roveda, Ilaria A1 - Serrano Munoz, Itziar A1 - Madia, Mauro T1 - Effect of heat treatment on the microstructure, residual stress state and fatigue properties of PBF-LB/M AlSi10Mg N2 - Al-Si alloys produced by Laser Powder Bed Fusion (PBF-LB/M) techniques allow the fabrication of lightweight free-shape components. Due to the extremely heterogeneous cooling and heating, PBF-LB/M induces high magnitude residual stress (RS) and a fine Si microstructure. As the RS can be deleterious to the fatigue resistance of engineering components, great efforts are focused on understanding their evolution before and after post-process heat treatments (HT). T2 - Alloys for Additive Manufacturing Symposium 2022 (AAMS22) CY - Munich, Germany DA - 12.09.2022 KW - Neutron diffraction KW - X-ray diffraction KW - Crack propagation PY - 2022 AN - OPUS4-55871 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Simon, Sebastian A1 - Bertmer, M. A1 - Gluth, Gregor T1 - Sol–gel synthesis and characterization of lithium aluminate (L–A–H) and lithium aluminosilicate (L–A–S–H) gels N2 - Hydrous lithium aluminosilicate (L–A–S–H) and lithium aluminate (L–A–H) gels are candidate precursors for glass-ceramics and ceramics with potential advantages over conventional processing routes. However, their structure before calcination remained largely unknown, despite the importance of precursor structure on the properties of the resulting materials. In the present study, it is demonstrated that L–A–S–H and L–A–H gels with Li/Al ≤ 1 can be produced via an organic steric entrapment route, while higher Li/Al ratios lead to crystallization of gibbsite or nordstrandite. The composition and the structure of the gels was studied by thermogravimetric analysis, X-ray diffraction, 27Al and 29Si magic-angle spinning nuclear magnetic resonance, and Raman spectroscopy. Aluminium was found to be almost exclusively in six-fold coordination in both the L–A–H and the L–A–S–H gels. Silicon in the L–A–S–H gels was mainly in Q4 sites and to a lesser extent in Q3 sites (four-fold coordination with no Si–O–Al bonds). The results thus indicate that silica-rich and aluminium-rich domains formed in these gels. KW - Lithium aluminosilicates KW - Raman spectroscopy KW - Sol-gel PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-558756 SN - 1546-542X VL - 19 IS - 6 SP - 3179 EP - 3190 PB - Wiley AN - OPUS4-55875 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Strobl, Dominic A1 - Robens-Radermacher, Annika A1 - Ghnatios, C. A1 - Pittner, Andreas A1 - Rethmeier, Michael A1 - Unger, Jörg F. T1 - Real-time Bead-on-Plate weld Simulation for Wire Arc Additive Manufacturing using Reduced Order modelling coupled with stochastic model Calibration N2 - Numerical simulations are essential in predicting the behavior of systems in many engineering fields and industrial sectors. The development of accurate virtual representations of actual physical products or processes (also known as digital twins) allows huge savings in cost and resources. In fact, digital twins would allow reducing the number of real, physical prototypes, tests, and experiments, thus also increasing the sustainability of production processes and products’ lifetime. Standard numerical methods fail in providing real time simulations, especially for complex processes such as additive manufacturing applications. This work aims to use a reduced order model for efficient wire arc additive manufacturing simulations, calibrations and real-time process control. Model reduction, e.g. the proper generalized decomposition [1,2] method, is a popular concept to decrease the computational effort. A new mapping approach [3] was applied to simulate a moving heat source with the proper generalized decomposition. Using this procedure even complex models can be simulated in real-time. The physical model is later on calibrated with the use of a stochastic model updating process and the reduced order model, leading to an optimized real-time simulation. In this contribution, a proper generalized decomposition model for a bead-on-plate wire arc additive manufacturing is presented. It is also coupled with a stochastic model updating process identifying the heat source characteristics as well as the boundary conditions of the transient thermal problem, whereas the heat source shape is simulated using a Goldak heat source T2 - 15th World Congress on Computational Mechanics (WCCM-XV) CY - Yokohama, Japan DA - 31.07.2022 KW - Wire arc additive manufacturing KW - Reduced order modelling KW - Model calibration PY - 2022 AN - OPUS4-55576 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Diener, S. A1 - Schubert, Hendrik A1 - Held, A. A1 - Katsikis, N. A1 - Günster, Jens A1 - Zocca, Andrea T1 - Influence of the dispersant on the parts quality in slurry-based binder jetting of SiC ceramics N2 - Binder jetting is establishing more and more in the ceramic industry to produce large complex shaped parts. A parameter with a great impact on the quality of the parts is the binder–powder interaction. The use of ceramic slurries as feedstock for this process, such as in the layerwise slurry deposition–print technology, allows a great flexibility in the composition. Such slurries are typically composed of ceramic powder, water, and small amounts of various additives. The understanding of the effect of these components on the printing quality is thus essential for the feedstock development. Four models were developed regarding the impact of additives, such as dispersants on printing. These models were confirmed or rebutted by experiments performed for an SiC slurry system with two different concentrations of a dispersant and a commercial phenolic resin used as a binder. It is shown that for this system the influence of the dispersant on the curing behavior and the clogging of the pores by dispersant can be neglected. The redispersion of the dispersant after the curing of the resin has no or only a minor effect. However, the wetting behavior determined by the surface energies of the system seem to be most crucial. In case the surface energy of the slurry additive is significantly lower than the surface energy of the binder, the strength of the green parts and the printing quality will be low. This was shown by inverse gas chromatography, contact angle measurement, rheological characterization, and mechanical tests with casted samples. KW - Additive Manufacturing KW - Binder Jetting KW - Layerwise slurry deposition KW - Silicon carbide KW - Wetting PY - 2022 U6 - https://doi.org/10.1111/jace.18693 SN - 1551-2916 VL - 2022 SP - 1 EP - 15 PB - Wiley-Blackwell CY - Oxford AN - OPUS4-55542 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zocca, Andrea A1 - Schubert, Hendrik A1 - Günster, Jens T1 - Additive Manufacturing of advanced ceramics by layerwise slurry deposition and binder jetting (LSD-print) N2 - Powder bed technologies are amongst the most successful Additive Manufacturing (AM) techniques. Powder bed fusion and binder jetting especially are leading AM technologies for metals and polymers, thanks to their high productivity and scalability. The application of these techniques to most ceramics has been difficult so far, because of the challenges related to the deposition of homogeneous powder layers when using fine powders. In this context, the "layerwise slurry deposition" (LSD) has been developed as a layer deposition method which enables the use of powder bed AM technologies also for advanced ceramic materials. The layerwise slurry deposition consists of the layer-by-layer deposition of a ceramic slurry by means of a doctor blade, in which the slurry is deposited and dried to achieve a highly packed powder layer. This offers high flexibility in the ceramic feedstock used, especially concerning material and particle size. The LSD technology can be combined with binder jetting to develop the so-called “LSDprint” process for the additive manufacturing of ceramics. The LSDprint technology combines the high-speed printing of binder jetting with the possibility of producing a variety of high-quality ceramics with properties comparable to those achieved by traditional processing. In this presentation, the LSD process will be introduced and several examples of application ranging from silicate to high-performance ceramics will be shown. Recent developments towards the scale-up and industrialization of this process will be discussed, alongside future perspectives for the multi-material additive manufacturing. T2 - Ceramics in Europe 2022 CY - Krakow, Poland DA - 10.07.2022 KW - Layerwise slurry deposition KW - Laser induced slipcasting KW - Additive Manufacturing KW - Ceramics PY - 2022 AN - OPUS4-55543 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Oster, Simon A1 - Becker, Tina A1 - Breese, Philipp Peter A1 - Scheuschner, Nils A1 - Maierhofer, Christiane A1 - Ulbricht, Alexander A1 - Fritsch, Tobias A1 - Mohr, Gunther A1 - Altenburg, Simon T1 - Defect prediction on the Base of Thermographic features in Laser Powder Bed Fusion Utilizing Machine Learning Algorithms N2 - Avoiding the formation of defects such as keyhole pores is a major challenge for the production of metal parts by Laser Powder Bed Fusion (LPBF). The use of in-situ monitoring by thermographic cameras is a promising approach to detect defects, however the data is hard to analyze by conventional algorithms. Therefore, we investigate the use of Machine Learning (ML) in this study, as it is a suitable tool to model complex processes with many influencing factors. A ML model for defect prediction is created based on features extracted from process thermograms. The porosity information calculated from an x-ray Micro Computed Tomography (µCT) scan is used as reference. Physical characteristics of the keyhole pore formation are incorporated into the model to increase the prediction accuracy. Based on the prediction result, the quality of the input data is inferred and future demands on in-situ monitoring of LPBF processes are derived. T2 - Additive Manufacturing Benchmarks 2022 CY - Bethesda, MA, USA DA - 14.08.2022 KW - Laser Powder Bed Fusion KW - Thermography KW - In-situ Monitoring KW - Machine Learning KW - Defect prediction PY - 2022 AN - OPUS4-55591 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Simón Muzás, Juan A1 - Brunner-Schwer, C. A1 - Rethmeier, Michael A1 - Hilgenberg, Kai T1 - Mitigation of liquation cracking in laser welding of pairs of L-PBF processed and wrought plates of Inconel 718 N2 - Laser welding is an appropriate technique for joining Laser Powder Bed Fusion (L-PBF) parts together and to conventional wrought ones. The potential consists of profiting from synergies between additive and conventional manufacturing methods and overcoming the existing limitations of both. On the one hand, L-PBF is a widely spread metal-based additive manufacturing technique suitable for generating complex parts which can present intrinsic designed cavities, conformal cooling channels, and filigree structures contributing to sustainable manufacturing and efficiency-oriented designs. On the other hand, chamber sizes for producing L-PBF parts are limited, and the process is time-consuming. Thus, its employment is not for every geometry justified. Additionally, they are in most cases individual elements of a larger assembly and need to be joined together to conventionally fabricated parts. The present research suggests laser welding parameters to adequately bond pairs of wrought and L-PBF processed plates and two L-PBF plates of Inconel 718 in butt position. L-PBF samples are printed in three different build-up orientations. Additionally, the influence of as-built L-PBF roughness qualities and usual pre-weld preparations such as edge milling are examined. The effect of normed pre-weld heat treatments is also contemplated. Identified cracks are analyzed by means of EDS in order to confirm the present phases on the areas of interest. EBSD is also employed to obtain a clear depiction of the crystallographic texture and distribution of the hot cracks. The quality of the weldment was examined according to existing standards. Substantial differences in seam geometry and microstructure across different edge’s surface qualities and build directions of stress relieved L-PBF parts have not been detected. Nevertheless, even if no other irregularities are present in the seam, variability in liquation cracking susceptibility has been confirmed. This defect is prone to happen when parts made of this nickel-based superalloy are welded together when not enough precautions are taken. It has been determined that grain size and ductility of the material before welding play a crucial role and mitigating or intensifying these imperfections. Moreover, recommendations are presented to avoid this potential welding defect. T2 - International Welding Conference CY - Tokyo, Japan DA - 17.07.2022 KW - Hybrid Part KW - Liquation Cracking KW - Build-up Orientation KW - Pre-weld Preparation KW - Heat Treatment KW - Selective Laser Melting (SLM) KW - Inconel 718 KW - Laser Powder Bed Fusion (L-PBF) KW - Laser Welding (LW) PY - 2022 AN - OPUS4-55515 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Räpke, Toni A1 - Heinze, C. A1 - Hilgenberg, Kai A1 - Xu, Hongwu A1 - Scheuchner, Nils A1 - Mühlenweg, A. A1 - Odabasi, E. A1 - Rule, D. A1 - Hajduk, M. T1 - Geometrie- und Prozesseinflüsse auf lokale Bauteileigenschaften in der metallischen additiven Fertigung mittels Laserstrahlschmelzen N2 - Die mechanischen Eigenschaften und die Standardparametersätze werden im additiven Fertigungsverfahren Laser Powder Bed Fusion (L-PBF) zumeist an Körpern ermittelt, die unter festen Randbedingungen gefertigt werden. In der Literatur wird allerdings von verschiedenen Autoren auf einen Einfluss von Geometrie und Prozess auf die resultierenden Eigenschaften hingewiesen [1, 2, 3]. Aufgrund des häufig großen Komplexitätsgrads von L-PBF Bauteilen und Prozessen, ist eine Abweichung angenommener Eigenschaften daher nicht auszuschließen. Das kann besonders für tragende und sicherheitsrelevante Komponenten kritisch sein und ist eine Herausforderung für die Qualitätssicherung. Aufwendige Trial-and-Error Versuche sind zumeist die Folge. Ein einheitliches und umfassendes Verständnis der Einflussfaktoren auf die resultierenden Eigenschaften im L-PBF Prozess ist zum aktuellen Stand nicht vorhanden. In diesem Vortrag werden erste Ergebnisse einer Studie vorgestellt, in der systematisch die Bandbreite möglicher Defekt- und Mikrostrukturvariationen in L-PBF Bauteilen am Beispiel der Nickelbasislegierung Haynes 282 untersucht wird. Aufbauend auf einer modellbasierten Beschreibung des lokalen Wärmehaushalts wurden Versuchspläne entwickelt, die eine Vielzahl möglicher Prozess- und Geometriekonfigurationen realer Anwendungen abbilden können. Zur Untersuchung des Geometrieeinflusses wurden typische Geometrieelemente komplexer Strukturen und deren Ausprägungen identifiziert. Prozessseitig wurden die Position im Bauraum, Schwankungen der Laserleistung, die Zwischenlagenzeit und die Belichtungsstrategie innerhalb der Schicht als typische Faktoren berücksichtigt. Die Zwischenlagenzeit bildet dabei Variationen im Bauraumfüllgrad ab. Die Belichtungsstrategie untersucht Effekte wie die Zwischenvektorzeit (engl. inter vector time, IVT) oder die lokale Vektorlänge. Die verschiedenen Konfigurationen wurden metallografisch bewertet. Die bisherigen Ergebnisse können einen Einfluss der Geometrie und des Prozesses auf die Defektbildung und die Mikrostruktur in L-PBF Bauteilen aufzeigen. Durch prozessbegleitende thermografische in situ Messungen konnte außerdem eine Abhängigkeit von lokalen und globalen Temperaturfeldern identifiziert werden. Die Erkenntnisse zeigen zudem, dass der geometrische Einfluss auf den lokalen Wärmehaushalt von Anordnung, Gestalt und Dimensionen der zweidimensionalen Belichtungsbereiche über die Aufbauhöhe abhängt. Das gewonnene Verständnis soll in die Entwicklung von Konstruktionsrichtlinien und Prüfkörpern einfließen, um Variationen lokaler Bauteileigenschaften in der zukünftigen Bauteil- und Prozessauslegung berücksichtigen zu können. T2 - 3. Fachtagung Werkstoffe und Additive Fertigung 2022 CY - Dresden, Germany DA - 11.05.2022 KW - Additive Fertigung KW - L-PBF PY - 2022 AN - OPUS4-55516 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Böhne, C. A1 - Meschut, G. A1 - Biegler, M. A1 - Rethmeier, Michael T1 - The Influence of Electrode Indentation Rate on LME Formation during RSW N2 - During resistance spot welding of zinc-coated advanced high-strength steels (AHSSs) for automotive production, liquid metal embrittlement (LME) cracking may occur in the event of a combination of various unfavorable influences. In this study, the interactions of different welding current levels and weld times on the tendency for LME cracking in third-generation AHSSs were investigated. LME manifested itself as high penetration cracks around the circumference of the spot welds for welding currents closely below the expulsion limit. At the same time, the observed tendency for LME cracking showed no direct correlation with the overall heat input of the investigated welding processes. To identify a reliable indicator of the tendency for LME cracking, the local strain rate at the origin of the observed cracks was analyzed over the course of the welding process via finite element simulation. While the local strain rate showed a good correlation with the process-specific LME cracking tendency, it was difficult to interpret due to its discontinuous course. Therefore, based on the experimental measurement of electrode displacement during welding, electrode indentation velocity was proposed as a descriptive indicator for quantifying cracking tendency. KW - Liquid Metal Embrittlement (LME) KW - Crack KW - Resistance Spot Welding (RSW) KW - Advanced High-Strength Steel (AHSS) KW - Welding Current KW - Heat Input KW - Simulation PY - 2022 U6 - https://doi.org/10.29391/2022.101.015 SN - 0043-2296 VL - 101 IS - 7 SP - 197-s EP - 207-s PB - American Welding Society CY - New York, NY [u.a.] AN - OPUS4-55600 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gook, S. A1 - Midik, A. A1 - Biegler, M. A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - Joining 30 mm Thick Shipbuilding Steel Plates EH36 Using a Process Combination of Hybrid Laser Arc Welding and Submerged Arc Welding N2 - This article presents a cost-effective and reliable method for welding 30 mm thick sheets of shipbuilding steel EH36. The method proposes to perform butt welding in a two-run technique using hybrid laser arc welding (HLAW) and submerged arc welding (SAW). The HLAW is performed as a partial penetration weld with a penetration depth of approximately 25 mm. The SAWis carried out as a second run on the opposite side. With a SAWpenetration depth of 8 mm, the weld cross-section is closed with the reliable intersection of both passes. The advantages of the proposed welding method are: no need for forming of the HLAW root; the SAW pass can effectively eliminate pores in the HLAWroot; the high stability of the welding process regarding the preparation quality of the weld edges. Plasma cut edges can be welded without lack of fusion defects. The weld quality achieved is confirmed by destructive tests. KW - Shipbuilding steel KW - Hybrid laser arc welding KW - Submerged arc welding KW - Hardness KW - Bending test KW - Two-run welding technique KW - Microstructure PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-556090 SN - 2504-4494 VL - 6 IS - 4 SP - 1 EP - 11 PB - MDPI CY - Basel AN - OPUS4-55609 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Schumacher, David A1 - Waske, Anja T1 - XCT data of metallic feedstock powder with pore size analysis N2 - X-Ray computed tomography (XCT) scan of 11 individual metallic powder particles, made of (Mn,Fe)2(P,Si) alloy. The data set consists of 4 single XCT scans which have been stitched together [3] after reconstruction. The powder material is an (Mn,Fe)2(P,Si) alloy with an average density of 6.4 g/cm³. The particle size range is about 100 - 150 µm with equivalent pore diameters up to 75 µm. The powder and the metallic alloy are described in detail in [1, 2]. KW - Additive Manufacturing KW - Feedstock powder KW - Powder Characterization KW - X-Ray Computed Tomography PY - 2022 U6 - https://doi.org/10.5281/zenodo.5796487 PB - Zenodo CY - Geneva AN - OPUS4-55556 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Chaudry, Mohsin A1 - Blasón, Sergio A1 - Mohr, Gunther A1 - Madia, Mauro A1 - Hilgenberg, Kai T1 - Simulation of heat accumulation during laser powder bed fusion of 316L stainless steel N2 - In this talk, a numerical study of the heat accumulation during LPBF based manufacturing of 316L steel parts is presented. For the simulation, a computationally efficient FEM model is used, where several layers are simultaneously exposed to a volumetric heat source. For the validation of the model, the temperature field from simulation is compared with emissivity-corrected temperature measurements, which are obtained using thermography during experiments. T2 - ACEX 2022 CY - Florence, Italy DA - 05.07.2022 KW - FEM KW - LPBF KW - Inter layer time PY - 2022 AN - OPUS4-55523 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Brunner-Schwer, C. A1 - Simón Muzás, Juan A1 - Biegler, M. A1 - Hilgenberg, Kai A1 - Rethmeier, Michael T1 - Laser Welding of L-PBF AM components out of Inconel 718 N2 - With regard to efficient production, it is desirable to combine the respective advantages of additively and conventionally manufactured components. Particularly in the case of large-volume components that also include filigree or complex structures, it makes sense to divide the overall part into individual elements, which afterwards have to be joined by welding. The following research represents a first step in fundamentally investigating and characterizing the joint welding of Laser Powder Bed Fusion (L-PBF) components made of Inconel 718. For this purpose, bead-on-plate welds were performed on plates manufactured using the L-PBF process and compared with the conventionally manufactured material. Conventional laser beam welding was used as welding process. The weld geometry was investigated as a function of the L-PBF build-up orientation. It was found that the welding depth and weld geometry differ depending on this orientation and in comparison to the conventional material. T2 - 12th CIRP Conference on Photonic Technologies [LANE 2022] CY - Fürth, Germany DA - 04.09.2022 KW - Laser Welding KW - L-PBF KW - PBF-LB/M KW - Seam geometry KW - Bead-on-plate welds PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-560012 SN - 2212-8271 VL - 111 SP - 92 EP - 96 PB - Elsevier B.V. AN - OPUS4-56001 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Evans, Alexander A1 - Sprengel, Maximilian A1 - Kromm, Arne A1 - Bruno, Giovanni A1 - Kannengießer, Thomas T1 - Eigenspannungsrelaxation in additiv gefertigem austenitischem Stahl 316L: Einsatz moderner Beugungsmethoden N2 - In Hinblick auf den austenitischen Stahl AISI 316L erzeugt das pulverbettbasierte selektive Laserstrahlschmelzen, als ein additives Fertigungsverfahren, kristallographisch texturierte und Multiskalige Mikrostruktur. Einerseits können diese Mikrostrukturen zu einer Verbesserung der statischen mechanischen Eigenschaften führen (z. B. zu einer höheren Streckgrenze). Andererseits stehen diesen Verbesserungen der mechanischen Eigenschaften hohe Eigenspannungen gegenüber, die sich nachteilig auf das Ermüdungsverhalten auswirken können. Zur Reduzierung der Eigenspannungen und der daraus resultierenden negativen Auswirkungen auf die Ermüdungseigenschaften, werden Bauteile nach der Herstellung typischerweise wärmebehandelt. In dieser Studie wurde eine niedrige Wärmebehandlungstemperatur von 450°C höher temperierten Behandlungen bei 800 °C und 900 °C gegenübergestellt. Diese Wärmebehandlungstemperaturen bilden die oberen und die untere Grenze ein Spannungsarmglühendes Materials, ohne die prozessinduzierte Mikrostruktur signifikant zu verändern. Zusätzlich bieten diese Temperaturen den Vorteil, dass sie eine übermäßige intergranulare Ausscheidung von Karbiden und TCP-Phasen vermeiden, die zu einer Sensibilisierung des Werkstoffes gegen korrosive Umgebungen führen würden. Die Auswirkungen der Wärmebehandlung auf das Gefüge wurden mittels Rasterelektronenmikroskopie (BSE und EBSD) untersucht. Die Relaxation der Eigenspannungen wurde vor und nach den jeweiligen Wärmebehandlungen bei 800°C und 900°C mittels Neutronenbeugung charakterisiert. Die Ergebnisse zeigen, dass die Proben nach der Wärmebehandlung bei 900 °C nahezu spannungsfrei sind, was mit der Auflösung der zellularen Substruktur korreliert. T2 - AWT-Konferenz Additive Fertigung CY - Bremen, Germany DA - 29.06.2022 KW - Neutronbeugungsverfahren KW - Additive Fertigung KW - L-PBF 316L KW - Eigenspannung PY - 2022 AN - OPUS4-55788 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Marquardt, R. A1 - Biegler, M. A1 - Rethmeier, Michael T1 - Funktional gradierte Materialien auf Basis von Stellite und Stahl im Laserpulver-Auftragschweißen N2 - Das Hinzufügen von Stellite auf Stahl ist eine typische Vorgehensweise um Bauteile gegen Verschleiß und Korrosion zu schützen. Der Sprung in den Materialeigenschaften kann jedoch zu Rissen und somit zum Versagen der Beschichtung führen. Um die Lebensdauer von Beschichtungen zu erhöhen wird daher ein gradierter Übergang mit verschiedenen Materialpaarungen untersucht. T2 - 13. Fachtagung Verschleiss- und Korrosionsschutz von Bauteilen durch Auftragschweißen CY - Haale (Saale), Germany DA - 22.06.2022 KW - FGM KW - DED KW - AM KW - Functionally Graded Materials KW - Additive Manufacturing KW - Directed Energy Deposition PY - 2022 SP - 66 EP - 73 AN - OPUS4-55504 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Marko, A. A1 - Bähring, S. A1 - Raute, J. A1 - Biegler, M. A1 - Rethmeier, Michael T1 - Quality Prediction in Directed Energy Deposition Using Artificial Neural Networks Based on Process Signals N2 - The Directed Energy Deposition process is used in a wide range of applications including the repair, coating or modification of existing structures and the additive manufacturing of individual parts. As the process is frequently applied in the aerospace industry, the requirements for quality assurance are extremely high. Therefore, more and more sensor systems are being implemented for process monitoring. To evaluate the generated data, suitable methods must be developed. A solution, in this context, was the application of artificial neural networks (ANNs). This article demonstrates how measurement data can be used as input data for ANNs. The measurement data were generated using a pyrometer, an emission spectrometer, a camera (Charge-Coupled Device) and a laser scanner. First, a concept for the extraction of relevant features from dynamic measurement data series was presented. The developed method was then applied to generate a data set for the quality prediction of various geometries, including weld beads, coatings and cubes. The results were compared to ANNs trained with process parameters such as laser power, scan speed and powder mass flow. It was shown that the use of measurement data provides additional value. Neural networks trained with measurement data achieve significantly higher prediction accuracy, especially for more complex geometries. KW - DED KW - Artificial neural network KW - Data preparation KW - Quality assurance KW - Process monitoring PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-555063 SN - 2076-3417 VL - 12 IS - 8 SP - 1 EP - 13 PB - MDPI CY - Basel AN - OPUS4-55506 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Üstündag, Ömer A1 - Bakir, Nasim A1 - Gook, S. A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - Hybrid Laser-Arc Welding of Thick-Walled, Closed, Circumferential Pipe Welds N2 - The application of hybrid laser-arc welding (HLAW) for joining closed circumferential welds is a challenge due to the high risk of forming a defective overlap area with a shrinkage void or solidification cracks in the material thickness. A series of HLAW experiments were performed to understand the development of a faulty overlap area when closing the circumferential weld. Welding trials on flat specimens and pipe segments were supported by numerical analyses in which the thermomechanical behavior of the welds in the overlap area was investigated. Different process control strategies were tested, including variations in defocusing levels and the overlap length. The newly developed HLAW head, including laser optics with a motor-driven collimation system, made it possible to defocus the laser beam during welding without disturbing the stability of the welding process. High-level defocusing of the laser beam of more than 40 mm relative to the specimen surface with a resulting beam diameter of > 2.9 mm, and in combination with a short overlap length of 15 mm, was promising with respect to the formation of a desired cup-shaped weld profile that is resistant to solidification cracks. KW - Hybrid Laser-Arc Welding KW - Thick-Walled Steel KW - High-Power Welding KW - Crater KW - Pipe Welding PY - 2022 U6 - https://doi.org/10.29391/2022.101.002 SN - 0043-2296 VL - 101 IS - 1 SP - 15 EP - 26 PB - American Welding Society CY - New York, NY AN - OPUS4-55508 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Straße, Anne A1 - Bakir, Nasim A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael ED - Schmidt, M. ED - Vollertsen, F. ED - Schmidt, B. M. T1 - Preliminary study to investigate the applicability of optical strain measurement technique for the detection of hot cracks in laser metal deposited layers N2 - Laser metal deposition (LMD) as an additive manufacturing technique became increasingly important in recent years and thus the demand for component safety. This is the reason, for the need for reliable in-situ defect detection techniques. For laser beam weld seams an optical measurement technique based on an optical flow algorithm was successfully used to define the critical straining conditions that lead to hot cracking. This algorithm was adapted for bead-on-plate weld seams on LMD deposited layers of IN718 alloy while performing external strain on the specimen in an externally loaded hot cacking test facility. The resulting transversal hot cracks along the weld seam were localized via X-Ray inspection and the type of cracking confirmed by Scanning Electron Microscopy (SEM). The strain distribution was measured in the vicinity of the solidification front and correlated to the detected hot cracks. Based on the results this technique could be adopted for LMD experiments. T2 - 12th CIRP Conference on Photonic Technologies [LANE 2022] CY - Fürth, Germany DA - 04.09.2022 KW - Laser Metal Deposition (LMD) KW - Strain measurement KW - Optical flow KW - Critical strain PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-556445 VL - 111 SP - 335 EP - 339 PB - Elsevier B.V. CY - Amsterdam AN - OPUS4-55644 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Fabry, Cagtay A1 - Hirthammer, Volker A1 - Scherer, Martin K. A1 - Pittner, Andreas A1 - Rethmeier, Michael T1 - Multi-Layer welding data analysis and open data approach using WelDX N2 - The talk motivates and introduces the WelDX project and the proposed solutions for current challenges in the field of research data management and Open Science practices in welding research. Using an exemplary welding dataset based on the joint and welding process design of offshore structures, advanced data fusion and analysis capabilities are demonstrated. The dataset shown consists of a complex welding sequence covering multiple weld layers with varying process parameters and adaptive weaving motions to cover manufacturing tolerances. In the presentation, an interactive exploration of the dataset contents in the spatial domain is presented. Furthermore, transformation between spatial and time domain of the data is demonstrated. In addition to data gathered during the welding process, the integration of downstream testing data and results is also explained. For demonstration, integration of weld seam cross section images and Vickers hardness mapping test results into the dataset are explained an demonstrated. The testing data is set into context with the welding process information. Finally, implications for advancements in research data management for WAAM and AI applications are discussed. T2 - The 75th IIW Annual Assembly and International Conference CY - Tokyo, Japan DA - 17.07.2022 KW - WelDX KW - Research data management KW - Open science KW - Arc welding KW - Digital transformation PY - 2022 AN - OPUS4-55354 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Cestari, F. A1 - Yang, Y. A1 - Wilbig, Janka A1 - Günster, Jens A1 - Motta, A. A1 - Sglavo, V. T1 - Powder 3D printing of bone scaffolds with uniform and gradient pore sizes using cuttlebone-derived calcium phosphate and glass-ceramic N2 - The pore geometry of bone scaffolds has a major impact on their cellular response; for this reason, 3D printing is an attractive technology for bone tissue engineering, as it allows for the full control and design of the porosity. Calcium phosphate materials synthesized from natural sources have recently attracted a certain interest because of their similarity to natural bone, and they were found to show better bioactivity than synthetic compounds. Nevertheless, these materials are very challenging to be processed by 3D printing due to technological issues related to their nanometric size. In this work, bone scaffolds with different pore geometries, with a uniform size or with a size gradient, were fabricated by binder jetting 3D printing using a biphasic calcium phosphate (BCP) nanopowder derived from cuttlebones. To do so, the nanopowder was mixed with a glass-ceramic powder with a larger particle size (45–100 µm) in 1:10 weight proportions. Pure AP40mod scaffolds were also printed. The sintered scaffolds were shown to be composed mainly by hydroxyapatite (HA) and wollastonite, with the amount of HA being larger when the nanopowder was added because BCP transforms into HA during sintering at 1150 ◦C. The addition of bio-derived powder increases the porosity from 60% to 70%, with this indicating that the nanoparticles slow down the glass-ceramic densification. Human mesenchymal stem cells were seeded on the scaffolds to test the bioactivity in vitro. The cells’ number and metabolic activity were analyzed after 3, 5 and 10 days of culturing. The cellular behavior was found to be very similar for samples with different pore geometries and compositions. However, while the cell number was constantly increasing, the metabolic activity on the scaffolds with gradient pores and cuttlebone-derived powder decreased over time, which might be a sign of cell differentiation. Generally, all scaffolds promoted fast cell adhesion and proliferation, which were found to penetrate and colonize the 3D porous structure. KW - Bioactivity KW - Cuttlefish KW - Biphasic calcium phosphate KW - Binder jetting KW - Scaffold geometry KW - Hausner ratio PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-553627 SN - 1996-1944 VL - 15 IS - 15 SP - 1 EP - 16 PB - MDPI CY - Basel AN - OPUS4-55362 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Straße, Anne A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - Study on Duplex Stainless Steel Powder Compositions forthe Coating of Thick Plates for Laser Beam Welding N2 - Duplex stainless steels combine the positive properties of its two phases, austenite and ferrite. Due to its good corrosion resistance, high tensile strength and good ductility it has multiple applications. But laser beam welding of duplex steels changes the balanced phase distribution in favor of ferrite. This results in a higher vulnerability to corrosion and a lower ductility. In this study different powder combinations consisting of duplex and nickel for coating layers by laser metal deposition are investigated. Afterwards laser tracks are welded, and the temperature cycles measured. The ferrite content of the tracks are analyzed by feritscope, metallographic analysis and Electron Backscatter Diffraction. The goal is the development of a powder mixture allowing for a duplex microstructure in a two-step process, where firstly the edges of the weld partners are coated with the powder mixture by LMD and secondly those edges are laser beam welded. The powder mixture identified by the pretests is tested in the two-step process and analyzed by metallographic analysis, energy dispersive X-ray spectroscopy and Vickers hardness tests. The resulting weld seams show a balanced duplex microstructure with a homogenous nickel distribution and a hardness of the weld seam similar to the base material. KW - Duplex AISI 2205 KW - Stainless Steel KW - Laser Beam Welding KW - Nickel KW - Laser Metal Deposition PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-554663 SN - 1438-1656 VL - 24 IS - 6 SP - 1 EP - 11 PB - Wiley-VCH CY - Weinheim AN - OPUS4-55466 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Przyklenk, A. A1 - Evans, Alexander A1 - Bosse, H. A1 - Balsamo, A. A1 - O'Connor, D. A1 - Favre, G. A1 - Phillips, D. T1 - Progress of the European Metrology Network for Advanced Manufacturing N2 - The European Metrology Network (EMN) for Advanced Manufacturing has been established in June 2021. Currently nine EMNs focussing on different important topics of strategic importance for Europe exist and form an integral part of EURAMET, the European Association of National Metrology Institutes (NMI). EMNs are tasked to ▪ develop a high-level coordination of the metrology community in Europe in a close dialogue with the respective stakeholders (SH) ▪ develop a strategic research agenda (SRA) within their thematic areas ▪ provide contributions to the European Partnership on Metrology research programme Based on the analysis of existing metrology infrastructures and capabilities of NMIs, the metrology research needs for advanced manufacturing are identified in close cooperation with academic, governmental and industrial stakeholders. Here, we report on the progress of the EMN for Advanced Manufacturing. T2 - Euspen 22nd International Conference & Exhibition (Euspen 2022) CY - Genf, Switzerland DA - 30.05.2022 KW - JNP AdvManuNet KW - Metrology KW - Advanced manufacturing KW - European Metrology Network KW - EMN PY - 2022 AN - OPUS4-55805 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Simón Muzás, Juan A1 - Brunner-Schwer, C. A1 - Biegler, M. A1 - Hilgenberg, Kai A1 - Rethmeier, Michael T1 - Laser Welding of L PBF AM Components of Inconel 718 N2 - With regard to efficient production, it is desirable to combine the respective advantages of additively and conventionally manufactured components. Particularly in the case of large-volume components that also include filigree or complex structures, it makes sense to divide the overall part into individual elements, which afterwards have to be joined by welding. The following research represents a first step in fundamentally investigating and characterizing the joint welding of Laser Powder Bed Fusion (L-PBF) components made of Inconel 718. For this purpose, bead-on-plate welds were performed on plates manufactured using the L-PBF process and compared with the conventionally manufactured material. Conventional laser beam welding was used as welding process. The weld geometry was investigated as a function of the L-PBF build-up orientation. It was found that the welding depth and weld geometry differ depending on this orientation and in comparison to the conventional material. T2 - LANE-2022 Conference. 12th CIRP Conference on Photonic Technologies CY - Fürth, Germany DA - 04.09.2022 KW - Bead-on-plate welds KW - Laser Welding KW - L-PBF KW - Inconel 718 KW - Weld geometry PY - 2022 AN - OPUS4-55745 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Junge, P. A1 - Stargardt, Patrick A1 - Kober, D. A1 - Greinacher, M. A1 - Rupprecht, C. T1 - Thermally Sprayed Al2O3 Ceramic Coatings for Electrical Insulation Applications N2 - Thermal spraying enables a fast and propelling way to additively deposit various ceramics as electric insulators, which are used in conditions where polymers are not suitable. Alumina (Al2O3) is among the most employed materials in the coating industry since it exhibits good dielectric properties, high hardness, high melting point while still being cost-effective. Various parameters (e.g. feedstock type, plasma gas mixture, plasma power) significantly influence the resulting coating in terms of microstructure, porosity, crystallinity, and degree of un-or molten particles. As a consequence, these parameters need to be investigated to estimate the impact on the electrical insulating properties of thermally sprayed alumina. This study focuses on the development of a novel electric insulation coating from Al2O3 feedstock powders deposited via atmospheric plasma spray (APS). The microstructure, porosity, and corresponding crystallographic phases have been analyzed with optical microscopy, XRD, and SEM images. To achieve an understanding of the parameters influencing the electrical insulation performance of the manufactured coatings, an in-depth analysis of the fundamental dielectric parameters e.g., DC resistance, breakdown strength, dielectric loss tangent, permittivity is presented. T2 - International Thermal Spray Conference and Exposition 2022 CY - Vienna, Austria DA - 04.05.2022 KW - Thermal Spray KW - Alumina KW - Dielectric properties PY - 2022 SP - 1 EP - 8 AN - OPUS4-55821 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pacheco, V. A1 - Marattukalam, J. J. A1 - Karlsson, D. A1 - Dessieux, L. A1 - Tran, K. V. A1 - Beran, P. A1 - Manke, I. A1 - Kardjilov, N. A1 - Markötter, Henning A1 - Sahlberg, M. A1 - Woracek, R. T1 - On the relationship between laser scan strategy, texture variations and hidden nucleation sites for failure in laser powder-bed fusion N2 - While laser powder-bed fusion has overcome some of the design constraints of conventional manufacturing methods, it requires careful selection of process parameters and scan strategies to obtain favorable properties. Here we show that even simple scan strategies, complex ones being inevitable when printing intricate designs, can inadvertently produce local alterations of the microstructure and preferential grain orientation over small areas – which easily remain unnoticed across the macroscale. We describe how a combined usage of neutron imaging and electron backscatter diffraction can reveal these localized variations and explain their origin within cm-sized parts. We explain the observed contrast variations by linking the neutron images to simulated data, pole figures and EBSD, providing an invaluable reference for future studies and showing that presumably minor changes of the scan strategy can have detrimental effects on the mechanical properties. In-situ tensile tests reveal that fracture occurs in a region that was re-melted during the building process. KW - Laser powder-bed fusion KW - Texture KW - Preferential orientation KW - Diffraction contrast neutron imaging KW - Bragg-edge PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-568054 VL - 26 SP - 1 EP - 9 PB - Elsevier B.V. AN - OPUS4-56805 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Breese, Philipp Peter A1 - Becker, Tina A1 - Oster, Simon A1 - Metz, C. A1 - Altenburg, Simon T1 - In-situ Prüfung additiv gefertigter L-PBF-Bauteile mit aktiver Laserthermografie N2 - Die additive Fertigung von metallischen Bauteilen (Additive Manufacturing - AM; auch 3D-Druck genannt) bietet eine Vielzahl an Vorteilen gegenüber konventionellen Fertigungsmethoden. Durch den schichtweisen Auftrag und das selektive Aufschmelzen von Metallpulver im Laser Powder Bed Fusion Prozess (L-PBF) sind u.a. optimierte und flexibel anpassbare Designs und die Nutzung von neuartigen Materialien möglich. Aufgrund der Komplexität des AM-Prozesses und der Menge an Einflussfaktoren ist eine Qualitätssicherung der gefertigten Bauteile unabdingbar. Verschiedene in-situ Monitoringansätze werden bereits angewendet, jedoch findet eine dedizierte Prüfung erst im Nachgang der Fertigung ex-situ statt. Der Grund dafür ist, dass die Entstehung von geometrischen Abweichungen und Defekten auch zeitversetzt zum eigentlichen Materialauftrag und damit auch zum Monitoring stattfinden kann. Die Notwendigkeit geeigneter in-situ Prüfmethoden für L-PBF, um die Erforderlichkeit einer Nacharbeitung frühzeitig festzustellen und Ausschuss zu vermeiden ist angesichts kostenintensiver Ausgangsstoffe und einer oftmals mehrstündigen bis mehrtägigen Prozessdauer besonders hoch. Daraus motiviert wird im Rahmen des Projektes ATLAMP die Möglichkeit der aktiven Laserthermografie mit Hilfe des defokussierten Fertigungslasers untersucht. Damit ist, bei vergleichsweise geringer Laserleistung, eine zerstörungsfreie Prüfung mittels Flying Spot Thermografie möglich. Diese findet jeweils anschließend an die Fertigung einer Schicht statt, womit der reale Status des Bauteils im Verlauf des AM-Prozesses geprüft wird. Als Grundlage dafür werden im Rahmen dieser Arbeit mit AM gefertigte, defektbehaftete Probekörper zunächst losgelöst vom Fertigungsprozess untersucht. Damit werden die Grundlagen für den neuartigen Ansatz der aktiven in-situ Laserthermografie im L-PBF-Prozess mittels des Fertigungslasers geschaffen. Auf diese Weise lassen sich auch zeitversetzt auftretende Defekte zerstörungsfrei im Prozessverlauf feststellen und eine aussagekräftige Qualitätssicherung des Ist-Zustands des Bauteils erreichen. T2 - Thermographie-Kolloquium 2022 CY - Saarbrücken, Germany DA - 28.09.2022 KW - Additive Manufacturing KW - Laser Powder Bed Fusion KW - Defekte KW - Zerstörungsfreie Prüfung KW - Aktive Laserthermografie PY - 2022 UR - https://www.dgzfp.de/Portals/thermo2022/BB178/Inhalt/18.pdf SN - 978-3-947971-27-5 AN - OPUS4-56810 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Scharf-Wildenhain, R. A1 - Hälsig, A. A1 - Hensel, J. A1 - Wandtke, Karsten A1 - Schröpfer, Dirk A1 - Kannengießer, Thomas T1 - Heat control and design‑related effects on the properties and welding stresses in WAAM components of high‑strength structural steels N2 - Commercial high-strength fller metals for wire arc additive manufacturing (WAAM) are already available. However, widespread industrial use is currently limited due to a lack of quantitative knowledge and guidelines regarding welding stresses and component safety during manufacture and operation for WAAM structures. In a joint research project, the process- and material-related as well as design infuences associated with residual stress formation and the risk of cold cracking are being investigated. For this purpose, reference specimens are welded fully automated with defned dimensions and systematic variation of heat control using a special, high-strength WAAM fller metal (yield strength>790 MPa). Heat control is varied by means of heat input (200–650 kJ/m) and interlayer temperature (100–300 °C). The ∆t8/5 cooling times correspond with the recommendations of fller metal producers (approx. 5–20 s). For this purpose, additional thermo-physical forming simulations using a dilatometer allowed the complex heat cycles to be reproduced and the resulting ultimate tensile strength of the weld metal to be determined. Welding parameters and AM geometry are correlated with the resulting microstructure, hardness, and residual stress state. High heat input leads to a lower tensile stress in the component and may cause unfavorable microstructure and mechanical properties. However, a sufciently low interlayer temperature is likely to be suitable for obtaining adequate properties at a reduced tensile stress level when welding with high heat input. The component design afects heat dissipation conditions and the intensity of restraint during welding and has a signifcant infuence on the residual stress. These complex interactions are analyzed within this investigation. The aim is to provide easily applicable processing recommendations and standard specifcations for an economical, appropriate, and crack-safe WAAM of high-strength steels. KW - GMA welding KW - Additive manufacturing KW - Residual stresses KW - High-strength steel KW - Cold cracking safety KW - Heat control KW - Wind energy PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-567397 SN - 1878-6669 VL - 2022 SP - 1 EP - 11 PB - Springer CY - Berlin AN - OPUS4-56739 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Scharf-Wildenhain, R. A1 - Hälsig, A. A1 - Schröpfer, Dirk A1 - Wandtke, Karsten A1 - Kannengießer, Thomas T1 - Wire Arc Additive Manufacturing (WAAM) mit hochfesten Feinkornbaustählen N2 - Die additive Verarbeitung hochfester Feinkornbaustähle mittels Wire Arc Additive Manufacturing (WAAM) ist ein komplexes, aber zugleich auch effizientes Verfahren, bei dem Werkstoff, Bauteilgeometrie und Schweißprozess gezielt aufeinander abgestimmt sein müssen. Ziel dieser Studie war es, einen Zusammenhang zwischen den Prozessparametern und der generierten Schichtgeometrie zu ermitteln. Dazu wurden definierte Referenzkörper mit einem robotergestützten Schweißsystem additiv gefertigt und hinsichtlich Schichthöhe, Wandstärke und Mikrostruktur analysiert. Fokus der Untersuchung waren sowohl konventionelle als auch für die WAAM-Fertigung speziell entwickelte hochfeste Schweißzusatzwerkstoffe. Die geometrischen Eigenschaften additiv gefertigter Bauteile lassen sich insbesondere durch die Faktoren Drahtvorschubgeschwindigkeit und Schweißgeschwindigkeit gezielt einstellen. Jedoch können diese Parameter nicht beliebig variiert werden, auch aufgrund der rheologischen Eigenschaften der Zusatzwerkstoffe. Zu hohe Streckenenergien führen zu lokalen Überhitzungen und Fehlstellen in der generierten Schicht. Undefinierte Fließ- und Erstarrungsvorgänge im überhitzten Bereich erschweren die maßhaltige Fertigung. Deshalb wird bei speziellen WAAM-Schweißdrähten das Fließverhalten gezielt modifiziert, sodass es über einen größeren Temperaturbereich hinweg konstant ist. Erst die Kenntnis über die komplexen Zusammenhänge zwischen den Prozessparametern und der Bauteilgeometrie ermöglicht die Erzeugung exakter Schichtmodelle für die additive Fertigung. Dies bildet die Grundlage für die Bearbeitung weiterer Fragestellungen auf dem Gebiet der additiven Fertigung mit hochfesten Zusatzwerkstoffen und insbesondere deren Anwendung in modernen hochfesten Bauteilen. T2 - 41. Assistentenseminar Fügetechnik CY - Magdeburg, Germany DA - 03.09.2020 KW - MAG-Schweißen KW - Eigenspannungen KW - Additive Fertigung KW - Hochfester Stahl KW - Kaltrisssicherheit PY - 2021 SN - 978-3-96144-141-9 VL - 370 IS - 41 SP - 113 EP - 124 PB - DVS Media GmbH CY - Düsseldorf AN - OPUS4-56641 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Scharf-Wildenhain, R. A1 - Hälsig, A. A1 - Härtel, S. A1 - Wandtke, Karsten A1 - Schröpfer, Dirk A1 - Kromm, Arne A1 - Kannengießer, Thomas T1 - Einfluss der Wärmeführung auf die Eigenschaften und fertigungsbedingten Beanspruchungen additiv geschweißter hochfester Feinkornbaustähle N2 - Hochfeste Feinkornbaustähle verfügen über ein großes Potenzial für gewichtsoptimierte, effiziente Strukturen in vielen modernen Stahlkonstruktion. Weitere Effizienzsteigerungen können durch additives Fertigen sowie bionische Bauweisen erreicht werden. Kommerzielle hochfeste Zusatzwerkstoffe für additives MSG-Schweißen (engl.: Wire Arc Additive Manufacturing, WAAM) sind bereits von den Schweißzusatzherstellern lieferbar. Derzeit ist jedoch eine breite industrielle Anwendung insbesondere für KMU aufgrund fehlender quantitativer Erkenntnisse und Richtlinien bezüglich schweißbedingter Beanspruchungen und Bauteilsicherheit während der Herstellung und des Betriebs stark limitiert. In einem gemeinsamen Forschungsprojekt (FOSTA-P1380/IGF21162BG) der BAM und der TU Chemnitz werden die mit Eigenspannungsausbildung und der Gefahr einer Kaltrissbildung verbundenen prozess- und werkstoffbedingten sowie konstruktiven Einflüsse untersucht. Im Fokus dieser Analysen steht die Bestimmung der Wechselwirkungen zwischen WAAM-Prozessparametern bzw. der Wärmeführung auf das Gefüge und die Eigenspannungen. Hierfür werden Referenzproben als offene Hohlquader mit definierten Abmessungen vollautomatisiert mit einem speziellen, hochfesten WAAM-Massivdraht (Streckgrenze >790 MPa) geschweißt. Die gezielte Einstellung der geometrischen Eigenschaften erfolgt durch Schweißparameter und Nahtaufbau bei ca. 4 kg/h mittlerer Abschmelzleistung. Die Wärmeführung wird innerhalb eines statistischen Versuchsplanes mittels Streckenenergie (200 kJ/m bis 650 kJ/m) und Zwischenlagentemperatur (100 °C bis 300 °C) so variiert, dass die t8/5-Abkühlzeiten dem empfohlenen Verarbeitungsbereich entsprechen (ca. 5 s bis 20 s). Ziel ist es bei konstanten geometrisch-konstruktiven Randbedingungen, den Einfluss der Wärmeführung auf Gefüge und resultierende Eigenspannungen zu analysieren. Darüber hinaus erfolgt die Bestimmung des Einflusses der t8/5-Abkühlzeit auf die mechanisch-technologischen Eigenschaften des speziellen, hochfesten WAAM-Massivdrahts mithilfe von Dilatometeranalysen. Für die Streckenenergie können neben den Gefügeeinflüssen aufgrund der resultierenden Abkühlzeit deutliche Effekte insbesondere auf die lokalen Eigenspannungen im Bauteil belegt werden. Das Schweißen mit zu hoher Wärmeeinbringung bzw. Abschmelzleistung kann zu ungünstigen Gefüge- und Bauteileigenschaften führen, gleichzeitig jedoch niedrigere Zugeigenspannungsniveaus bewirken. Die Dilatometeranalysen zeigen für den untersuchten WAAM-Schweißzusatzwerkstoff eine großes t8/5-Zeitfenster mit einer vergleichsweise geringen Abnahme der Zugfestigkeit mit zunehmender t8/5-Abkühlzeit. Solche komplexen Wechselwirkungen gilt es letztlich mit diesen Untersuchungen zu klären, um leicht anwendbare Verarbeitungsempfehlungen und Normvorgaben für ein wirtschaftliches, anforderungsgerechtes und risssicheres WAAM von hochfesten Stählen den Anwendern zur Verfügung zu stellen. T2 - 42. Assistentenseminar Fügetechnik CY - Brunswick, Germany DA - 06.10.2021 KW - MAG-Schweißen KW - Hochfester Stahl KW - Eigenspannungen KW - Additive Fertigung KW - Kaltrisssicherheit PY - 2022 SN - 978-3-96144-210-2 VL - 385 IS - 42 SP - 94 EP - 101 PB - DVS Media GmbH CY - Düsseldorf AN - OPUS4-56642 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Fritzsche, S. A1 - Weimann, Christiane A1 - Pauw, Brian Richard A1 - Sturm, Heinz T1 - 2PP-TestArtifact N2 - This repository contains a test artifact (TA), also called test structure, designed for two-photon polymerization (also known as Direct Laser Writing (DLW) or Two/Multi-photon lithography (2PA/MPA)). Test artifacts can be used to compare structures, to check options used by the slicer, check the state of the 2PP machine itself or to get a construction guidelines for a certain combination of power, velocity and settings. The associated paper can be found here: https://dx.doi.org/10.1088/1361-6501/acc47a General ideas behind the test artifact: 1. optimized for 2PP-DLW 2. should be fast and easy to analyse with optical microscopy or 3. scanning electron microscopy without tilt. 3. short time to fabricate 4. include a reasonable amount of different features 5. bulk and small structures on the substrate KW - Reference structure KW - Calibration structure KW - Test structure KW - Laser writing KW - Two-photon polymerization KW - 3D printing KW - Additive manufacturing KW - Microprinting KW - Multi-photon light structuring PY - 2023 U6 - https://doi.org/10.6084/m9.figshare.22285204.v2 PB - Digital Science CY - Cambridge, MA, USA AN - OPUS4-57165 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Lüchtenborg, Jörg A1 - Mühler, T. A1 - Zocca, Andrea A1 - Günster, Jens T1 - Additive Manufacturing of Dense Ceramics with Laser Induced Slip Casting (LIS) N2 - The possibility to produce dense monolithic ceramic parts with additive manufacturing is at the moment restricted to small parts with low wall thickness. Up to now, the additive manufacturing of voluminous ceramic parts is realized by powder bed based processes which, however, generate parts with residual porosity. Via infiltration these parts can be processed to dense parts like for example SiC but this is not possible for all ceramics like for example Si3N4. There is a lack of methods for the additive manufacturing of dense voluminous parts for most ceramics. We have developed a new additive manufacturing technology, the Laser Induced Slip casting (LIS), based on the layerwise deposition of slurries and their local drying by laser radiation. Laser Induced Slip casting generates ceramic green bodies which can be sintered to dense ceramic components like traditional formed ceramic powder compacts. We will introduce the LIS technology, green bodies and sintered parts will be shown and their microstructure and mechanical properties will be discussed. T2 - 42nd International Conference and Expo on Advanced Ceramics and Composites CY - Daytona Beach, FL, USA DA - 21.01.2018 KW - Additive Manufacturing KW - Ceramics PY - 2018 AN - OPUS4-44182 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Farahbod, L. A1 - Thiede, Tobias A1 - Rule, D. A1 - Haberland, C. A1 - Piegert, S. A1 - Witt, G. T1 - Assessment of SLM-Manufactured Single Struts as Major Elements of Complex Lattice Structures N2 - Additive Manufacturing (AM) enables the unique capability of building highly complex parts with integrated functional design. One particular advantageous design feature is known as lattice structures, which provide opportunities for innovative applications in the high-temperature regime of gas turbines. Generally, manufacturing of these structures is already known to be achievable with AM, however proof of structural integrity and geometrical accuracy is not yet reliably established. In this investigation, a systematic design-follows-complexity approach is utilized to pursue a holistic assessment of Ni based high temperature lattice. As the major element of lattice structures, single struts of different build orientations are investigated at first. This approach includes the application of Computed Tomography (CT), which allows for a non destructive assessment of quality criteria such as porosity and inner geometries as well as the parts’ metrology at a micrometre scale. The applied laboratory CT benefits from high magnification factors around 100 and voxel sizes down to a thousandth of the specimens’ diameter. Preliminary results show a correlation between the inclination angle and the struts’ quality, which indicate a dependency of geometrical accuracy and structural properties to the AM process setup. Consequently, lattice structures require the development of reliable manufacturing to produce dependable characteristics. While there is large potential for use of lattice structures in gas turbine and high temperature applications, the results indicate the strong need for an increased understanding of manufacturing and design as well as of the validation methods for these complex lattice structures. T2 - DDMC CY - Berlin, Germany DA - 14.03.2018 KW - Lattice Structures KW - AM KW - SLM KW - Porosity PY - 2018 AN - OPUS4-44512 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Thiede, Tobias A1 - Farahbod, L. A1 - Léonard, Fabien A1 - Bruno, Giovanni T1 - Computed Tomography of SLM Produced IN625 Parts: From Powder Grains to Lattice Structures N2 - The layer-by-layer Additive Manufacturing (AM) by means of Selective Laser Melting (SLM) offers many prospects regarding the design of a part used in aeroplane components and gas turbines. However, structural deviations from the nominal morphology are unavoidable. The cooling of the finished part leads to shrinkage and a high surface roughness is induced by attached powder particles affecting the part volume too. The integrity and load-bearing capacity of a SLM produced lattice structure has been investigated by means of in-situ X-ray computed tomography during compression. The lattice structure was compressed by 10 % in height with an applied maximum force of 5 kN. Additionally, a single strut has been investigated ex-situ as a component of the lattice structure. With the higher resolution achieved on the single strut, the pore distribution (size and location) as well as the surface roughness were assessed. The particle and pore size distribution of the raw powder have been investigated, too. One of the main results coming from the in-situ analysis was that the nodes were identified as the weakest points in the lattice structure. T2 - Inno Testing CY - Wildau, Germany DA - 22.02.2018 KW - Additive Manufacturing KW - Selective Laser Melting KW - Computed Tomography KW - Lattice Structures KW - Porosity PY - 2018 AN - OPUS4-44515 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Thiede, Tobias A1 - Farahbod, L. A1 - Léonard, Fabien A1 - Bruno, Giovanni T1 - In-situ compression CT on additively manufactured IN 625 lattice structures N2 - The layer-by-layer Additive Manufacturing (AM) by means of Selective Laser Melting (SLM) offers many prospects regarding the design of a part used in aeroplane components and gas turbines. However, structural deviations from the nominal morphology are unavoidable. The cooling of the finished part leads to shrinkage and a high surface roughness is induced by attached powder particles affecting the part volume too. The integrity and load-bearing capacity of a SLM produced lattice structure (see Fig.1) has been investigated by means of in-situ X-ray computed tomography during compression. The lattice structure was compressed by 10 % in height with an applied maximum force of 5 kN. Additionally, a single strut has been investigated ex-situ as a component of the lattice structure. With the higher resolution achieved on the single strut, the pore distribution (size and location) as well as the surface roughness were assessed. One of the main results coming from the in-situ analysis was that the nodes were identified as the weakest points in the lattice structure. T2 - iCT 2018 CY - Wels, Austria DA - 06.02.2018 KW - Additive manufacturing KW - Selective laser melting KW - Computed tomography KW - Lattice structure KW - In-situ compression CT KW - IN 625 PY - 2018 AN - OPUS4-44516 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Metz, Christian A1 - Franz, Philipp A1 - Maierhofer, Christiane A1 - Wachtendorf, Volker A1 - Fischer, C. T1 - Additiv gefertigte Kunststoffteile: Untersuchung der Beständigkeit durch künstliche Bewitterung und zerstörungsfreie Charakterisierung N2 - Es wird ein Verfahren zur Charakterisierung der Beständigkeit und Langzeitstabilität von additiv gefertigten Kunststoff-Bauteilen vorgestellt. Dabei sollen die Prüfkörper über 2000 Stunden künstlich bewittert und währenddessen die Änderungen der Eigenschaften der Bauteile zerstörungsfrei untersucht werden. Die Erkenntnisse dienen für die Entwicklung einer Strategie für eine Qualitätskontrolle von additiv gefertigten Kunststoffteilen. T2 - 47. Jahrestagung der GUS CY - Stutensee-Blankenloch, Germany DA - 21.03.2018 KW - Additive Fertigung KW - Additive manufacturing KW - Beständigkeit von Kunststoffen KW - Zerstörungsfreie Prüfung KW - Künstliche Bewitterung PY - 2018 AN - OPUS4-44589 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Altenburg, Simon A1 - Maierhofer, Christiane A1 - Straße, Anne A1 - Gumenyuk, Andrey T1 - Comparison of MWIR and NIR thermography in a laser metal deposition (LMD) process N2 - Additive manufacturing (AM) offers a range of novel applications. However, the manufacturing process is complex and the production of defect-free parts with a high reliability is still a challenge. Thermography is a valuable tool for process surveillance, especially in metal AM processes. The high process temperatures allow one to use cameras usually operating in the visible spectral range. Here, we compare the results of first measurements during the manufacturing process of a commercial laser metal deposition (LMD) setup using a MWIR camera with those from a VIS high-speed camera with band pass filter in the NIR range. T2 - 14th Quantitative InfraRed Thermography Conference CY - Berlin, Germany DA - 25.06.2018 KW - Thermography KW - Additive manufacturing KW - Laser metal deposition KW - ProMoAM PY - 2018 AN - OPUS4-45408 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Altenburg, Simon A1 - Maierhofer, Christiane A1 - Straße, Anne A1 - Gumenyuk, Andrey A1 - Mohr, Gunther A1 - Hilgenberg, Kai T1 - Thermography in metal AM: Comparison of high-speed NIR thermography and MWIR thermography N2 - Additive manufacturing (AM) opens the route to a range of novel applications.However, the complexity of the manufacturing process poses a challenge for the production of defect-free parts with a high reliability. Since process dynamics and resulting microstructures of AM parts are strongly influenced by the involved temperature fields, thermography is a valuable tool for process surveillance. The high process temperatures in metal AM processes allow one to use cameras usually operating in the visible spectral range to detect the thermally emitted radiation from the process. In our work, we compare the results of first measurements during the manufacturing processes of a commercial laser metal deposition (LMD) setup and a laser beam melting (LBM) setup using a MWIR camera with those from a VIS high-speed camera with band pass filter in the NIR range. T2 - Additive Manufacturing Benchmarks 2018 CY - Gaithersburg, MA, USA DA - 18.06.2018 KW - Thermography KW - Additive manufacturing KW - Laser metal deposition KW - Laser beam melting KW - ProMoAM PY - 2018 AN - OPUS4-45401 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Metz, Christian A1 - Franz, Philipp A1 - Fischer, C. A1 - Wachtendorf, Volker A1 - Maierhofer, Christiane T1 - Active thermography for quality assurance of 3D-printed polymer structures N2 - Additively manufactured test specimens made of polyamide 12 (PA 12) by Laser Sintering (LS) as well as of acrylnitril-butadien-styrol (ABS) by Fused Layer Modeling (FLM), were tested with active thermography. For this, two different excitation methods (flash and impulse excitation) were used and compared, regarding the suitability for the detection of constructed and imprinted defects. To increase the quality of the thermograms, data processing methods like thermal signal reconstruction (TSR) and Fourier-Transformation were applied. Furthermore, the long-term stability of the probes towards environmental stress, like UV-radiation, heat, water contact and frost is being investigated in the presented project with artificial weathering tests. T2 - 14th Quantitative InfraRed Thermography Conference CY - Berlin, Germany DA - 25.06.2018 KW - Additive manufacturing KW - Active thermography KW - Artificial weathering PY - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-453919 SP - Tu.3.A.2, 1 EP - 9 AN - OPUS4-45391 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Thiede, Tobias A1 - Cabeza, Sandra A1 - Mishurova, Tatiana A1 - Nadammal, Naresh A1 - Kromm, Arne A1 - Bode, Johannes A1 - Haberland, C. A1 - Bruno, Giovanni T1 - An assessment of bulk residual stress in selective laser melted Inconel 718 N2 - Additive Manufacturing (AM) of metals has become industrially viable for a large variety of applications, including aerospace, automotive and medicine. Powder bed techniques such as Selective Laser Melting (SLM) based on layer-by-layer deposition and laser melt enable numerous degrees of freedom for the geometrical design. Developing during the manufacturing process, residual stresses may limit the application of SLM parts by reducing the load bearing capacity as well as induce unwanted distortion depending on the boundary conditions specified in manufacturing. The residual stress distribution in the bulk of IN718 elongated prisms produced by SLM was studied non-destructively by means of neutron diffraction. The samples with different scanning strategies, i.e. hatching length, were measured in as-build condition (on a build plate) and after removal from the build plate. The absolute values of all stress components decreased after removal from the build plate. Together with surface scan utilizing a coordinate-measuring machine (CMM), it is possible to link the stress release to the sample distortion. Obtained results indicated different residual stress states for each of the transversal, longitudinal and normal component depending on the thermal gradient in the respective direction. T2 - ECNDT 2018 CY - Göteborg, Sweden DA - 11.06.2018 KW - Residual stress KW - Selective laser melting KW - Neutron diffraction KW - IN718 PY - 2018 UR - http://cdn.ecndt2018.com/wp-content/uploads/2018/05/ecndt-0315-2018-File001.pdf SP - 1 AN - OPUS4-45325 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mishurova, Tatiana A1 - Cabeza, Sandra A1 - Artzt, Katia A1 - Bruno, Giovanni A1 - Haubrich, Jan A1 - Requena, Guillermo T1 - Subsurface Residual Stress Analysis in Ti-6Al-4V Additive Manufactured Parts by Synchrotron X-ray Diffraction N2 - Synchrotron X-ray diffraction is a powerful non-destructive technique for the analysis of the material stress-state. High cooling rates and heterogeneous temperature distributions during additive manufacturing lead to high residual stresses. These high residual stresses play a crucial role in the ability to achieve complex geometries with accuracy since they can promote distortion of parts during manufacturing. Furthermore, residual stresses are critical for the mechanical performance of parts in terms of durability and safety. In the present study, Ti-6Al-4V bridge-like specimens were manufactured additively by selective laser melting (SLM) under different laser scanning speed conditions in order to compare the effect of process energy density on the residual stress state. Subsurface residual stress analysis was conducted by means of synchrotron X-ray diffraction in energy dispersive mode for three conditions: as-built on base plate, released from base plate, and after heat treatment on the base plate. The quantitative residual stress characterization shows a correlation with the qualitative bridge curvature method. Computed tomography (CT) was carried out to ensure that no stress relief took place owing to the presence of porosity. CT allows obtaining spatial and size pores distribution which helps in optimization of the SLM process. High tensile residual stresses were found at the lateral surface for samples in the as-built conditions. We observed that higher laser energy density during fabrication leads to lower residual stresses. Samples in released condition showed redistribution of the stresses due to distortion. T2 - ECNDT 2018 CY - Göteborg, Sweden DA - 11.06.2018 KW - Additive manufacturing KW - Selective laser melting KW - Residual stress KW - Computed tomography KW - Ti-6Al-4V PY - 2018 AN - OPUS4-45202 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Altenburg, Simon A1 - Maierhofer, Christiane A1 - Straße, Anne A1 - Gumenyuk, Andrey T1 - Comparison of MWIR thermography and high-speed NIR thermography in a laser metal deposition (LMD) process N2 - Additive manufacturing (AM) offers a range of novel applications. However, the manufacturing process is complex and the production of defect-free parts with high reliability and durability is still a challenge. Thermography is a valuable tool for process surveillance, especially in metal AM processes. The high process temperatures allow one to use cameras usually operating in the visible spectral range. Here, we compare the results of measurements during the manufacturing process of a commercial laser metal deposition setup using a mid-wavelength-IR camera with those from a visual spectrum high-speed camera with band pass filter in the near-IR range. T2 - Conference QIRT 2018 CY - Berlin, Germany DA - 25.06.2018 KW - Additive manufacturing KW - Laser metal deposition KW - ProMoAM KW - Thermography PY - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-454993 UR - http://www.qirt.org/archives/qirt2018/papers/p35.pdf SP - 1 EP - 5 PB - QIRT Council CY - Quebec, Canada AN - OPUS4-45499 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Serrano Munoz, Itziar A1 - Laquai, René A1 - Müller, Bernd R. A1 - Mishurova, Tatiana A1 - Thiede, Tobias A1 - Bruno, Giovanni T1 - Microstructural characterization of the influence of SLM scan parameters by means of X ray and neutrons sources N2 - An overview of the main Non-Destructive activities conducted at BAM for the microstructural characterization of Additive Manufacturing (AM) materials will be presented. Focus is made on the study of the influence of Selective Laser Melted (SLM) scan strategies on the defect population of a Ti-6Al-4V alloy using the Analyzer Based Imaging (ABI) technique available at the BAMline (BESSY II synchrotron facility). ABI technique takes advantage of X Ray refraction at interfaces to enable the determination of porosity features (orientation, homogeneity, etc.) within large volumes, otherwise not possible to image by means X ray micro Computed Tomography. Additionally, for a SLM IN718 material, Energy Dispersive X Ray Diffraction (subsurface measurements at 100 µm depth) and neutrons diffraction (internal measurements at 3 mm depth) are combined with distortion measurements to produce a 3D description of the Residual Stress distribution throughout the entire sample. T2 - TMS (The Minerals, Metals & Materials Society) CY - Gaithersburg, Maryland, USA DA - 18.06.2018 KW - X-Ray refraction KW - Selective laser melted materials KW - Energy dispersive X Ray diffraction KW - Neutrons diffraction PY - 2018 AN - OPUS4-45435 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hilgenberg, Kai T1 - Anlagen zur Additiven Fertigung und Einfluss auf die Bauteilqualität N2 - Kurzüberblick zur AM-Anlagentechnik bei metallischen Werkstoffen und Betriebseinflüssen auf die Bauteilqualität am Beispiel Selective-Laser-Melting T2 - Round-Table Zertifizierung additiv gefertigter Druckgeräte CY - Berlin, Germany DA - 04.07.2018 KW - Additive Fertigung KW - Anlagen PY - 2018 AN - OPUS4-45437 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Laquai, René A1 - Müller, Bernd R. A1 - Kasperovich, G. A1 - Requena, G. A1 - Bruno, Giovanni T1 - Unterscheidung verschiedener charakteristischer Defekte in mittels selektivem Laserschmelzen hergestelltem Ti-6Al-4V durch Röntgen-Refraktionsradiographie N2 - Das selektive Laserschmelzen (SLM) ist eine pulverbasierte, additive Fertigungsmethode, welche die Herstellung von komplex und individuell geformten Bauteilen ermöglicht. Im Laufe der vergangenen Jahre haben verschiedene Branchen, unter anderem die Luft- und Raumfahrt Industrie, begonnen diese Technologie intensiv zu erforschen. Insbesondere die Titanlegierung Ti-6Al-V4, welche aufgrund ihrer Kombination von mechanischen Eigenschaften, geringer Dichte und Korrosionsbeständigkeit häufig in der Luft- und Raumfahrt eingesetzt wird, eignet sich für die Herstellung mittels SLM. Allerdings können durch nicht optimal gewählte Prozessparameter, welche für gewöhnlich in einer Energiedichte zusammengefasst werden, Defekte in den Bauteilen entstehen. In dieser Studie wurde untersucht, in wie weit Röntgen-Refraktionsradiographie geeignet ist diese Defekte zu detektieren und zu charakterisieren. Bei der Röntgen-Refraktionsradiographie wird die Röntgenstrahlung, nachdem sie die Probe transmittiert hat, über einen Analysatorkristall gemäß der Bragg-Bedingung in den 2D-Detektor reflektiert und dabei nach ihrer Ausbreitungsrichtung gefiltert. Dadurch wird neben der Schwächung auch die Ablenkung der Röntgenstrahlung durch Refraktion im inneren der Probe zur Bildgebung ausgenutzt. Aus den aufgenommen Refraktionsradiogrammen kann der Refraktionswert berechnet werden. Dieser ist ein Maß für die Menge an inneren Oberflächen in der Probe. Zum einen konnte gezeigt werden, dass die Röntgen-Refraktionsradiographie Defekte detektieren kann, die kleiner sind als die Ortsauflösung des verwendeten 2D-Detektors. Zum anderen können zwei verschiedene Typen von Defekten unterschieden werden. Bei dem ersten Typ handelt es sich um runde Poren mit geringer innerer Oberfläche. Diese, sogenannten „keyhole pores“ sind charakteristisch für eine zu hohe Energiedichte während des SLM Prozesses. Bei dem zweiten Typ handelt es sich um nicht komplett aufgeschmolzenes Pulver. Diese Defekte zeichnen sich durch eine hohe innere Oberfläche aus und sind charakteristisch für eine zu geringe Energiedichte. Vergleichende Messungen mit hochauflösender Synchrotron CT und optischer Mikroskopie bestätigen die charakteristischen Formen der verschiedenen Defekte. T2 - DGZfP-Jahrestagung 2018 CY - Leipzig, Germany DA - 07.05.2018 KW - Röntgen-Refraktion KW - Additive Fertigung KW - Porosität PY - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-449524 SN - 978-3-940283-92-4 VL - DGZfP BB166 SP - Mo.2.A.2., 1 EP - 7 AN - OPUS4-44952 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Laquai, René A1 - Müller, Bernd R. A1 - Kasperovich, G. A1 - Requena, G. A1 - Bruno, Giovanni T1 - Unterscheidung verschiedener charakteristischer Defekte in mittels selektivem Laserschmelzen hergestelltem Ti-6Al-4V durch Röntgen-Refraktionsradiographie N2 - Das selektive Laserschmelzen (SLM) ist eine pulverbasierte, additive Fertigungsmethode, welche die Herstellung von komplex und individuell geformten Bauteilen ermöglicht. Im Laufe der vergangenen Jahre haben verschiedene Branchen, unter anderem die Luft- und Raumfahrt Industrie, begonnen diese Technologie intensiv zu erforschen. Insbesondere die Titanlegierung Ti-6Al-V4, welche aufgrund ihrer Kombination von mechanischen Eigenschaften, geringer Dichte und Korrosionsbeständigkeit häufig in der Luft- und Raumfahrt eingesetzt wird, eignet sich für die Herstellung mittels SLM. Allerdings können durch nicht optimal gewählte Prozessparameter, welche für gewöhnlich in einer Energiedichte zusammengefasst werden, Defekte in den Bauteilen entstehen. In dieser Studie wurde untersucht, in wie weit Röntgen-Refraktionsradiographie geeignet ist diese Defekte zu detektieren und zu charakterisieren. Bei der Röntgen-Refraktionsradiographie wird die Röntgenstrahlung, nachdem sie die Probe transmittiert hat, über einen Analysatorkristall gemäß der Bragg-Bedingung in den 2D-Detektor reflektiert und dabei nach ihrer Ausbreitungsrichtung gefiltert. Dadurch wird neben der Schwächung auch die Ablenkung der Röntgenstrahlung durch Refraktion im inneren der Probe zur Bildgebung ausgenutzt. Aus den aufgenommen Refraktionsradiogrammen kann der Refraktionswert berechnet werden. Dieser ist ein Maß für die Menge an inneren Oberflächen in der Probe. Zum einen konnte gezeigt werden, dass die Röntgen-Refraktionsradiographie Defekte detektieren kann, die kleiner sind als die Ortsauflösung des verwendeten 2D-Detektors. Zum anderen können zwei verschiedene Typen von Defekten unterschieden werden. Bei dem ersten Typ handelt es sich um runde Poren mit geringer innerer Oberfläche. Diese, sogenannten „keyhole pores“ sind charakteristisch für eine zu hohe Energiedichte während des SLM Prozesses. Bei dem zweiten Typ handelt es sich um nicht komplett aufgeschmolzenes Pulver. Diese Defekte zeichnen sich durch eine hohe innere Oberfläche aus und sind charakteristisch für eine zu geringe Energiedichte. Vergleichende Messungen mit hochauflösender Synchrotron CT und optischer Mikroskopie bestätigen die charakteristischen Formen der verschiedenen Defekte. T2 - DGZfP-Jahrestagung 2018 CY - Leipzig, Germany DA - 07.05.2018 KW - Röntgen-Refraktion KW - Additive Fertigung KW - Porosität PY - 2018 AN - OPUS4-44953 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zocca, Andrea A1 - Lima, Pedro A1 - Lüchtenborg, Jörg A1 - Mühler, T. A1 - Diener, S. A1 - Katsikis, N. A1 - Günster, Jens T1 - LSD- 3D printing: Powder based Additive Manufacturing, from porcelain to technical ceramics N2 - Powder based Additive Manufacturing (AM) processes are widely used for metallic and polymeric materials, but rarely commercially used for ceramic materials, especially for technical ceramics. This seemingly contradicting observation is explained by the fact that in powder based AM, a dry flowable powder needs to be used. Technical ceramics powders are in fact typically very fine and poorly flowable, which makes them not suitable for AM. The layerwise slurry deposition (LSD) is an innovative process for the deposition of powder layers with a high packing density for powder based AM. In the LSD process, a ceramic slurry is deposited to form thin powder layers, rather than using a dry powder This allows the use of fine powders and achieves high packing density (55-60%) in the layers after drying. When coupled with a printing head or with a laser source, the LSD enables novel AM technologies which are similar to *Denotes Presenter 42nd International Conference & Exposition on Advanced Ceramics & Composites 127 Abstracts the 3D printing or selective laser sintering, but taking advantage of having a highly dense powder bed. The LSD -3D printing, in particular, offers the potential of producing large (> 100 mm) and high quality ceramic parts, with microstructure and properties similar to traditional processing. This presentation will give an overview of the milestones in the development of this technology, with focus on the latest results applied both to silicate and to technical ceramics. T2 - 42nd International Conference & Exposition on Advanced Ceramics and Composites CY - Daytona, FL, USA DA - 21.01.2018 KW - Additive Manufacturing KW - 3D printing KW - Ceramic KW - Alumina KW - Porcelain KW - Silicon Carbide PY - 2018 AN - OPUS4-44017 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Léonard, Fabien A1 - Bruno, Giovanni T1 - Metrology for additively manufactured medical implants N2 - Additive manufacturing (AM) offers an effective solution to the medical sector. It enables the production, on demand, of customised implants which match the patient’s anatomy, with grafts that promote bone growth, as well as surgical guides that help the surgeons. The objective of this project is to provide a comprehensive basis to enable the safe use of medical AM products with traceable and reliable dimensionalmeasurements. This will guarantee the reliability of medical AM products to notified bodies and facilitate acceptance of AM in the medical sector for a better quality of life. T2 - 8th iCT 2018 conference CY - Wels, Austria DA - 06.02.2018 KW - Implants KW - Metrology KW - Additive manufacturing PY - 2018 AN - OPUS4-44400 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mishurova, Tatiana A1 - Artzt, Katia A1 - Bruno, Giovanni A1 - Requena, Guillermo A1 - Haubrich, Jan T1 - Subsurface residual stress analysis in Ti-6Al-4V additive manufactured parts by synchrotron x-ray diffraction N2 - Synchrotron X-ray diffraction is a powerful non-destructive technique for the analysis of the material stress-state. High cooling rates and heterogeneous temperature distributions during additive manufacturing lead to high residual stresses. These high residual stresses play a crucial role in the ability to achieve complex geometries with accuracy since they can promote distortion of parts during manufacturing. Furthermore, residual stresses are critical for the mechanical performance of parts in terms of durability and safety. In the present study, Ti-6Al-4V bridge-like specimens were manufactured additively by selective laser melting (SLM) under different laser scanning speed conditions in order to compare the effect of process energy density on the residual stress state. Subsurface residual stress analysis was conducted by means of synchrotron X-ray diffraction in energy dispersive mode for three conditions: as-built on base plate, released from base plate, and after heat treatment on the base plate. The quantitative residual stress characterization shows a correlation with the qualitative bridge curvature method. Computed tomography (CT) was carried out to ensure that no stress relief took place owing to the presence of porosity. CT allows obtaining spatial and size pores distribution which helps in optimization of the SLM process. High tensile residual stresses were found at the lateral surface for samples in the as-built conditions. We observed that higher laser energy density during fabrication leads to lower residual stresses. Samples in released condition showed redistribution of the stresses due to distortion. T2 - 12th ECNDT 2018 CY - Göteborg, Sweden DA - 11.06.2018 KW - Additive manufacturing KW - Selective laser melting KW - Residual stress KW - Synchrotron X-ray diffraction KW - Ti-6Al-4V PY - 2018 UR - http://cdn.ecndt2018.com/wp-content/uploads/2018/05/ecndt-0213-2018-File001.pdf SP - 1 EP - 8 AN - OPUS4-45217 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Spranger, Felix A1 - Graf, B. A1 - Schuch, M. A1 - Hilgenberg, Kai A1 - Rethmeier, Michael T1 - Build-up strategies for additive manufacturing of three dimensional Ti-6Al-4V-parts produced by laser metal deposition N2 - Laser metal deposition (LMD) has been applied as a coating technology for many years. Today, the technologies capacity to produce 3D depositions leads to a new field of application as additive manufacturing method. In this paper, 3D laser metal deposition of titanium alloy Ti-6Al-4V is studied with special regard to the demands of additive manufacturing. Therefore, only the coaxial LMD powder nozzle is used to create the shielding gas atmosphere, which ensures high geometric flexibility. Furthermore, specimen with high aspect ratio and hundreds of layers are manufactured, which represent typical features in additive manufacturing. The presented study contains the following steps: First, cylindrical specimens are manufactured with a standard shell-core build-up strategy and mechanical properties as well as fracture mechanisms are determined. Based on the results, experiments are conducted to improve the build-up strategy and new tensile test specimens are built with the improved strategy. The improved strategy incorporates variable track overlap ratios to achieve a constant growth in the shell and core area. As blanks, lean cylinders comprising more than 240 layers and a height of more than 120mm are manufactured. The specimens are analyzed by X-ray inspection for material defects. Fractured surfaces are observed via scanning electron microscopy and the composition of the surfaces is determined using energy dispersive X-ray spectroscopy. The tensile test results prove mechanical properties close to ASTM F1108 specification for wrought material. KW - Laser metal deposition KW - Ti-6Al-4V KW - Additive manufacturing KW - Titanium alloy KW - Turbine components PY - 2018 U6 - https://doi.org/10.2351/1.4997852 SN - 1938-1387 SN - 1042-346X VL - 30 IS - 2 SP - UNSP 022001, 1 EP - 13 PB - Laser Institute of America AN - OPUS4-44655 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bruno, Giovanni A1 - Thiede, Tobias A1 - Mishurova, Tatiana A1 - Kromm, Arne A1 - Nadammal, Naresh A1 - Bode, Johannes A1 - Cabeza, Sandra T1 - Influence of deposition hatch length on residual stress in selective laser melted Inconel 718 N2 - The present study aims to evaluate the bulk residual stresses in SLM parts by using neutron diffraction measurements performed at E3 line -BER II neutron reactor- of Helmholtz-Zentrum für Materialien und Energie (HZB) Berlin. Together with microstructure characterization and distortion measurements, it is possible to describe the stress state throughout the whole sample. The sample was measured in as-build condition (on a build plate) and after releasing from the build plate. The used material is the nickel based superalloy 718. This alloy is widely used in aerospace and chemical industries due to its superior corrosion and heat resistant properties. Obtained results indicated different residual stress states for each of the transversal, longitudinal and normal component. The normal and transversal component exhibits a rather compressive behavior while the longitudinal was tensile in the center part of the sample and became compressive towards the tip. As expected, the absolute values of all stress components decreased after releasing the sample from the building plate. A surface scan utilizing a coordinate-measuring machine (CMM) allowed us to present top surface distortion before and after releasing. The top surface showed a distortion around ±80µm after releasing. Microstructure evolution in the scanning-building cross-section is largely dominated by columnar grains. In addition, many small random orientated grains are prominent in the regions of a laser overlap during SLM. In summary, for the sample of superalloy 718 manufactured by SLM, a small distortion occurred when removing the sample from the build plate whereby the residual stress state decreases. Moreover, the observed columnar grains in the building direction could give a reason for the lowest stress values in that normal direction. However, the most important parameter controlling the residual stresses is the temperature gradient. Hence, future investigations are planned for a different scan strategy to distribute the laser impact in a more homogenous manner. T2 - WAM2018 CY - Grenoble, France DA - 09.04.2018 KW - Additive manufacturing KW - SLM KW - Residual stress KW - In718 PY - 2018 AN - OPUS4-44694 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Petrat, T. A1 - Graf, B. A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - Build-up Strategies for Laser Metal Deposition in Additive Manufacturing N2 - Laser Metal Deposition (LMD) as a technology for additive manufacturing allows the production of large components outside of closed working chambers. Industrial applications require a stable process as well as a constant deposition of the filler material in order to ensure uniform volume growth and reproducible mechanical properties. This paper deals with the influence of travel path strategies on temperature profile and material deposition. Meandering and spiral hatching strategies are used in the center as well as in the edge of a specimen. The temperature is measured with thermocouples attatched to the backside of the specimen. The tests are carried out on the materials S235JR and 316L. The results show a strong dependence of the maximum temperatures on the travel path strategy and the welding position on the component. T2 - Fraunhofer Direct Digital Manufacturing Conference (DDMC) CY - Berlin, Germany DA - 14.03.2018 KW - Additive Manufacturing KW - Temperature behavior KW - Laser Metal Deposition KW - Stainless Steel KW - 316L KW - Edge effects PY - 2018 SN - 978-3-8396-1320-7 VL - 1 SP - 1 EP - 6 PB - Fraunhofer-Gesellschaft CY - München AN - OPUS4-44719 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Metz, Christian A1 - Franz, Philipp A1 - Wachtendorf, Volker A1 - Maierhofer, Christiane A1 - Fischer, C. ED - Ziegahn, K.-F. T1 - Additiv gefertigte Polymerbauteile: Untersuchung der Beständigkeit durch künstliche Bewitterung und zerstörungsfreie Charakterisierung N2 - Es wird ein Verfahren zur Charakterisierung der Beständigkeit und Langzeitstabilität von additiv gefertigten Kunststoff-Bauteilen vorgestellt. Dabei sollen die Prüfkörper über 2000 Stunden künstlich bewittert und währenddessen die Änderungen der Eigenschaften der Bauteile zerstörungsfrei untersucht werden. T2 - 47. Jahrestagung der Gesellschaft für Umweltsimulation e.V. CY - Stutensee, Germany DA - 21.03.2018 KW - Additive Fertigung KW - Künstliche Bewitterung KW - Thermografie KW - Additive manufacturing PY - 2018 VL - 47. SP - 99 EP - 105 PB - Gesellschaft für Umweltsimulatin e.V. AN - OPUS4-44638 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Blaeß, Carsten A1 - Müller, Ralf A1 - Feldmann, Ines A1 - Brauer, D.S. T1 - Sintering ability of fluoride-containing bioactive glass powder N2 - Sintered bioactive glass scaffolds of defined shape and porosity, e.g. made via additive manufacturing, must provide sufficient bioactivity and sinterability. As higher bioactivity is often linked to high corrosion and crystallization tendency, a certain compromise between sintering ability and bioactivity is therefore required. Groh et al. developed a fluoride-containing bioactive glass (F3), which allows fiber drawing and shows a bioactivity well comparable to that of Bioglass®45S5. To study whether and to what extent the sinterability of F3 glass powder is controlled by particle size, coarse and fine F3 glass powders (300-310µm and 0-32µm) were prepared by crushing, sieving and milling. Sintering, degassing and phase transformation during heating were studied with heating microscopy, vacuum hot extraction (VHE), DTA, XRD, and SEM. For the coarse glass powder, sintering proceeds slowly and is limited by surface crystallization of primary Na2CaSi2O6 crystals. Although the crystallization onset of Na2CaSi2O6 is shifted to lower temperature, full densification is attained for the fine powder. This finding indicate that certain porosity might be tuned via particle size variation. Above 900°C, intensive foaming is evident for the fine powder. VHE studies revealed that carbon species are the main foaming source. T2 - 92. Glastechnische Tagung CY - Bayreuth, Germany DA - 28.05.2018 KW - Sintering KW - Bioactive glass KW - Crystallization PY - 2018 AN - OPUS4-45568 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Müller, Bernd R. A1 - Kupsch, Andreas A1 - Laquai, René A1 - Nellesen, J. A1 - Tillmann, W. A1 - Kasperovich, G. A1 - Requena, G. A1 - Bruno, Giovanni T1 - Microstructure characterisation of advanced materials via 2D and 3D X-ray refraction techniques N2 - 3D imaging techniques have an enormous potential to understand the microstructure, its evolution, and its link to mechanical, thermal, and transport properties. In this conference paper we report the use of a powerful, yet not so wide-spread, set of X-ray techniques based on refraction effects. X-ray refraction allows determining internal specific surface (surface per unit volume) in a non-destructive fashion, position and orientation sensitive, and with a nanometric detectability. We demonstrate showcases of ceramics and composite materials, where microstructural parameters could be achieved in a way unrivalled even by high-resolution techniques such as electron microscopy or computed tomography. We present in situ analysis of the damage evolution in an Al/Al2O3 metal matrix composite during tensile load and the identification of void formation (different kinds of defects, particularly unsintered powder hidden in pores, and small inhomogeneity’s like cracks) in Ti64 parts produced by selective laser melting using synchrotron X-ray refraction radiography and tomography. T2 - THERMEC'2018 CY - Paris, France DA - 09.07.2018 KW - X-ray-refraction KW - Damage evolution KW - Additive manufacturing KW - Composites KW - Creep PY - 2018 AN - OPUS4-45572 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Thiel, Erik A1 - Altenburg, Simon A1 - Mohr, Gunther A1 - Thiede, Tobias A1 - Maierhofer, Christiane A1 - Bruno, Giovanni A1 - Rethmeier, Michael A1 - Hilgenberg, Kai A1 - Mishurova, Tatiana A1 - Straße, Anne T1 - AM activities at BAM with focus on process monitoring N2 - The presentation gives an overview of current projects in additive manufacturing at BAM. In particular, the results of the ProMoAm project were presented. T2 - VAMAS - Materials Issues in Additive Manufacturing CY - Berlin, Germany DA - 25.06.2018 KW - Additive Manufacturing KW - Laser Metal Deposition KW - Thermography KW - Data Fusion KW - In-situ monitoring PY - 2018 AN - OPUS4-45620 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Thiel, Erik A1 - Altenburg, Simon A1 - Myrach, P. A1 - Mohr, Gunther A1 - Gumenyuk, Andrey T1 - Crack detection in metal additive manufacturing with laser thermography N2 - BAM ensures and represents high standards for safety in technology and chemistry. Additive manufacturing (AM) changes the requirements for conventional non-destructive testing (NDT) as new processes of defect creation occur. Especially in safety critical areas, such as aerospace and automotive, new manufacturing processes and materials always require reliability tests and new standards which is a big challenge for NDT. T2 - Internationales Laser- und Fügesymposium CY - Dresden, Germany DA - 27.02.2018 KW - Laser Beam Melting KW - Laser Metal Deposition KW - Thermography KW - In-situ monitoring PY - 2018 AN - OPUS4-45619 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Graf, B. A1 - Marko, A. A1 - Petrat, T. A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - 3D laser metal deposition: process steps for additive manufacturing N2 - Laser metal deposition (LMD) is an established technology for two-dimensional surface coatings. It offers high deposition rates, high material flexibility, and the possibility to deposit material on existing components. Due to these features, LMD has been increasingly applied for additive manufacturing of 3D structures in recent years. Compared to previous coating applications, additive manufacturing of 3D structures leads to new challenges regarding LMD process knowledge. In this paper, the process steps for LMD as additive manufacturing technology are described. The experiments are conducted using titanium alloy Ti-6Al-4Vand Inconel 718. Only the LMD nozzle is used to create a shielding gas atmosphere. This ensures the high geometric flexibility needed for additive manufacturing, although issues with the restricted size and quality of the shielding gas atmosphere arise. In the first step, the influence of process parameters on the geometric dimensions of single weld beads is analyzed based on design of experiments. In the second step, a 3D build-up strategy for cylindrical specimen with high dimensional accuracy is described. Process parameters, travel paths, and cooling periods between layers are adjusted. Tensile tests show that mechanical properties in the as-deposited condition are close to wrought material. As practical example, the fir-tree root profile of a turbine blade is manufactured. The feasibility of LMD as additive technology is evaluated based on this component. KW - Laser metal deposition KW - Build-up strategy KW - Deposition rate KW - Additive manufacturing PY - 2018 U6 - https://doi.org/10.1007/s40194-018-0590-x SN - 0043-2288 SN - 1878-6669 VL - 62 IS - 4 SP - 877 EP - 883 PB - Springer Berlin Heidelberg CY - Heidelberg AN - OPUS4-44868 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bruno, Giovanni T1 - Starting new adventures at BAM. The focus area projects PROMOAM and AGIL N2 - While additive manufacturing (AM) is blossoming in nearly every industrial field, and the most different process are being used to produce components and materials, little attention is paid on the safety concerns around AM materials and processes. Leveraging on our leading expertise in non-destructive testing (NDT) and materials characterization, we approach AM at BAM under two important viewpoints: first the on-line monitoring of the process and of the product, second the evolution of the (unstable) microstructure of AM materials under external loads. These two subjects are the core of the two new-born internal projects ProMoAM and AGIL, respectively. A detailed view of the goals and the organization of these two projects will be given, together with the expected output, and some preliminary results. T2 - Vortragsveranstaltung Bauhaus Universität, im Rahmen der Kolloquien der Fakultät Bauwesen. CY - Weimar, Germany DA - 01.06.2018 KW - Thermography KW - Additive Manufacturing KW - Non-destructive testing KW - On-line monitoring KW - Residual stress PY - 2018 AN - OPUS4-45118 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mishurova, Tatiana A1 - Cabeza, Sandra A1 - Thiede, Tobias A1 - Nadammal, Naresh A1 - Kromm, Arne A1 - Klaus, Manuela A1 - Genzel, Christoph A1 - Haberland, Christoph A1 - Bruno, Giovanni T1 - The influence of the support structure on residual stress and distortion in SLM Inconel 718 parts N2 - The effect of support structure and of removal from the base plate on the residual stress state in selective laser melted IN718 parts was studied by means of synchrotron X-ray diffraction. The residual stresses in subsurface region of two elongated prisms in as-built condition and after removal from the base plate were determined. One sample was directly built on a base plate and another one on a support structure. Also, the distortion on the top surface due to stress release was measured by contact profilometry. High tensile residual stress values were found, with pronounced stress gradient along the hatching direction. In the sample on support, stress redistribution took place after removal from the base plate, as opposed to simple stress relaxation for the sample without support. The sample on support structure showed larger distortion compared to sample without support. We conclude that the use of a support decreases stress values but stress-relieving heat treatments are still needed. KW - Additive manufacturing KW - SLM KW - Residual stress KW - Synchrotron X-ray diffraction KW - IN718 PY - 2018 U6 - https://doi.org/10.1007/s11661-018-4653-9 SN - 1073-5623 VL - 49A IS - 7 SP - 3038 EP - 3046 PB - Springer Sciences & Business Media CY - New York, NY AN - OPUS4-45100 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Elsayed, H. A1 - Zocca, Andrea A1 - Schmidt, J. A1 - Günster, Jens A1 - Colombo, P. A1 - Bernardo, E. T1 - Bioactive glass-ceramic scaffolds by additive manufacturing and sinter-crystallization of fi ne glass powders N2 - Wollastonite (CaSiO 3 ) – diopside (CaMgSi 2 O 6 ) glass-ceramic scaffolds have been successfully fabricated using two different additive manufacturing techniques: powder-based 3D printing (3DP) and digital light processing (DLP), coupled with the sinter-crystallization of glass powders with two different compositions. The adopted manufacturing process depended on the balance between viscous flow sintering and crystallization of the glass particles, in turn in fluenced by the powder size and the sensitivity of CaO – MgO – SiO 2 glasses to surface nucleation. 3DP used coarser glass powders and was more appropriate for low temperature firing (800 – 900 °C), leading to samples with limited crystallization. On the contrary, DLP used finer glass powders, leading to highly crystallized glass-ceramic samples. Despite the differences in manufacturing technology and crystallization, all samples featured very good strength-to-density ratios, which bene fit theiruse for bone tissue engineering applications. The bioactivity of 3D-printed glass-ceramics after immersion in simulated body fluid and the similarities, in terms of ionic releases and hydroxyapatite formation with already validated bioactive glass-ceramics, were preliminarily assessed. KW - 3D-Printing KW - Bio Ceramic KW - Additive manufacturing PY - 2018 U6 - https://doi.org/10.1557/jmr.2018.120 SN - 2044-5326 SN - 0884-2914 VL - 33 IS - 14 SP - 1960 EP - 1971 PB - Cambridge University Press AN - OPUS4-45718 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Günster, Jens A1 - Zocca, Andrea A1 - Lima, Pedro A1 - Acchar, W. T1 - 3D printing of porcelain by layerwise slurry deposition N2 - The Layerwise Slurry Deposition is a technology for the deposition of highly packed powder layers. A powder bed is achieved by depositing and drying layers of a ceramic suspension by means of a doctor blade. This deposition technique was combined with the binder jetting technology to develop a novel Additive Manufacturing technology, named LSD-print. The LSD-print was applied to a porcelain ceramic. It is shown that it was possible to produce parts with high definition, good surface finish and at the same time having physical and mechanical properties close to those of traditionally processed porcelain, e.g. by slip casting. This technology shows high future potential for being integrated alongside traditional production of porce-lain, as it is easily scalable to large areas while maintaining a good definition. Both the Layerwise Slurry Deposition method and the binder jetting technologies are readily scalable to areas as large as > 1 m2. KW - Binder jetting KW - Additive Manufacturing KW - 3D printing KW - Porcelain PY - 2018 U6 - https://doi.org/10.1016/j.jeurceramsoc.2018.03.014 SN - 0955-2219 VL - 38 IS - 9 SP - 3395 EP - 3400 PB - Elsevier Ltd. AN - OPUS4-45713 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Chi, Jinchun A1 - Zocca, Andrea A1 - Agea Blanco, Boris A1 - Melcher, J. A1 - Sparenberg, M. A1 - Günster, Jens T1 - 3D Printing of Self-Organizing Structural Elements for Advanced Functional Structures N2 - A shape evolution approach based on the thermally activated self-organization of 3D printed parts into minimal surface area structures is presented. With this strategy, the present communication opposes currently established additive manufacturing strategies aiming to stipulate each individual volumetric element (voxel) of a part. Instead, a 3D structure is roughly defined in a 3D printing process, with all its advantages, and an externally triggered self-organization allows the formation of structural elements with a definition greatly exceeding the volumetric resolution of the printing process. For enabling the self-organization of printed objects by viscous flow of material, functionally graded structures are printed as rigid frame and melting filler. This approach uniquely combines the freedom in design, provided by 3D printing, with the mathematical formulation of minimal surface structures and the knowledge of the physical potentials governing self-organization, to overcome the paradigm which strictly orrelates the geometrical definition of 3D printed parts to the volumetric resolution of the printing process. Moreover, a transient liquid phase allows local programming of functionalities, such as the alignment of functional particles, by means of electric or magnetic fields. KW - Additive Manufacturing KW - Self-Assembly KW - 3D-Printing KW - Polymeric Materials PY - 2018 U6 - https://doi.org/10.1002/admt.201800003 SN - 2365-709X VL - 3 IS - 5 SP - 1800003-1 EP - 1800003-7 PB - Wiley-VCH CY - Weinheim AN - OPUS4-45714 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bernardino, R. A1 - Wirth, C. A1 - Stares, S.L. A1 - Salmoria, G.V. A1 - Hotza, D. A1 - Günster, Jens T1 - Manufacturing of SiO2-Coated b-TCP Structures by 3D Printing using a Preceramic Polymer as Printing Binder and Silica Source N2 - Tricalcium phosphate (b-TCP) can be used as bone graft, exhibiting suitable bioabsorption and osteoconduction properties. The presence of silica may induce the formation of a hydroxyapatite layer, enhancing the integration between implant and bone tissue. Preceramic polymers present silicon in their composition, being a source of SiO2 after thermal treatment. Using the versatility of 3D printing, b-TCP and a polysiloxane were combined to manufacture a bulkb-TCP with a silica coating. For the additive manufacturing process, PMMA powder was used as passive binder for the b-TCP particles, and polymethylsilsesquioxane (MK), dissolved in an organic solvent, was used both as a printing binder (ink) and as the source of SiO2 for the coating. Five distinct coating compositions were printed with increasing amounts of MK. The structures were then submitted to heat treatment at 1180 °C for 4 h. XRD and FTIR showed no chemical reaction between the calcium phosphate and silica. SEM allowed observation of a silicon-based ating on the structure surface. Mechanical strength of the sintered porous structures was within the range of that of trabecular bones. KW - Tricalcium Phosphate KW - 3D-Printing KW - Preceramic polymer KW - Bone regeneration PY - 2018 U6 - https://doi.org/10.4416/JCST2017-00056 VL - 9 IS - 1 SP - 37 EP - 41 PB - Göller Verlag CY - 76532 Baden-Baden AN - OPUS4-45715 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bruno, Giovanni A1 - Mishurova, Tatiana A1 - Serrano Munoz, Itziar A1 - Ulbricht, Alexander A1 - Fritsch, Tobias A1 - Sprengel, Maximilian A1 - Evans, Alexander A1 - Kromm, Arne A1 - Madia, Mauro ED - Bruno, Giovanni T1 - A Critical Discussion on the Diffraction-Based Experimental Determination of Residual Stress in AM Parts N2 - As opposed to reviewing results on experimental determination of residual stress by diffraction, this paper discusses the open issues when dealing with residual stress determination in additive manufactured parts, in particular those manufactured with laser powder bed fusion techniques. Three points are addressed in detail: (a) the proper determination of the strain-free reference d0, (b) the problem of the determination of the principal axes, and (c) the use of the correct diffraction elastic constants. It is shown that all methods to determine the strain-free reference d0 suffer from caveats, and care must be taken in evaluating the most suitable for the problem being tackled. In addition, it is shown that, in some systems, the principal axes do correspond to the geometrical axes of the specimen, but this needs to be systematically checked, especially in the case of uni- or bidirectional hatching strategies. Finally, the need to experimentally determine the proper diffraction elastic constants is underlined, especially in the case of strongly textured specimens, which again depends on the deposition strategy. T2 - ASTM ICAM 2020 – ASTM International Conference on Additive Manufacturing CY - Online meeting DA - 16.11.2020 KW - Additive Manufacturing KW - Diffraction KW - Residual Stress PY - 2020 U6 - https://doi.org/10.1520/STP163120190148 VL - STP1631 SP - 122 EP - 138 PB - ASTM International CY - USA AN - OPUS4-51347 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wilbig, Janka A1 - Borges de Oliveira, F. A1 - Obaton, A.-F. A1 - Schwentenwein, M. A1 - Rübner, Katrin A1 - Günster, Jens T1 - Defect detection in additively manufactured lattices N2 - This paper investigates fast and inexpensive measurement methods for defect detection in parts produced by Additive Manufacturing (AM) with special focus on lattice parts made of ceramics. By Lithography-based Ceramic Manufacturing, parts were built both without defects and with typical defects intentionally introduced. These defects were investigated and confirmed by industrial X-ray Computed Tomography. Alternative inexpensive methods were applied afterwards on the parts such as weighing, volume determination by Archimedes method and gas permeability measurement. The results showed, that defects resulting in around 20% of change in volume and mass could be separated from parts free of defects by determination of mass or volume. Minor defects were not detectable as they were in the range of process-related fluctuations. Permeability measurement did not allow to safely identify parts with defects. The measurement methods investigated can be easily integrated in AM process chains to support quality control. KW - Additive manufacturing KW - Quality assurance KW - Defect detection KW - Lattices KW - Ceramics PY - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-513547 VL - 3 SP - 100020 PB - Elsevier Ltd. AN - OPUS4-51354 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - El-Sari, B. A1 - Biegler, M. A1 - Graf, B. A1 - Rethmeier, Michael T1 - Distortion-based validation of the heat treatment simulation of Directed Energy Deposition additive manufactured parts N2 - Directed energy deposition additive manufactured parts have steep stress gradients and an anisotropic microstructure caused by the rapid thermo-cycles and the layer-upon-layer manufacturing, hence heat treatment can be used to reduce the residual stresses and to restore the microstructure. The numerical simulation is a suitable tool to determine the parameters of the heat treatment process and to reduce the necessary application efforts. The heat treatment simulation calculates the distortion and residual stresses during the process. Validation experiments are necessary to verify the simulation results. This paper presents a 3D coupled thermo-mechanical model of the heat treatment of additive components. A distortion-based validation is conducted to verify the simulation results, using a C-ring shaped specimen geometry. Therefore, the C-ring samples were 3D scanned using a structured light 3D scanner to compare the distortion of the samples with different post-processing histories. KW - Directed Energy Deposition KW - Additive Manufacturing KW - Heat Treatment KW - Numerical Simulation KW - Finite Element Method PY - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-513153 VL - 94 SP - 362 EP - 366 PB - Elsevier B.V. AN - OPUS4-51315 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schnieder, V. A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - Additive Fertigung von Nickel-Titan-Formgedächtnislegierungen aus den Elementpulvern mittels Laserpulverauftragschweißen N2 - Additive Fertigungsverfahren gewinnen aufgrund der schnellen, flexiblen und kosten-günstigen Fertigung von Bauteilen zunehmend an Bedeutung. Das Laserpulverauf-tragschweißen (LPA) wurde anfangs hauptsächlich als Beschichtungsverfahren ein-gesetzt. Diese Technologie bewerkstelligt aber auch das Reparieren von verschlisse-nen Bauteilen, sodass diese zeitsparend und ressourcenschonend erneuert werden können. Die hohe Aufbaurate, die flexible Pulverzusammensetzung sowie die hohe Endkonturnähe ermöglichen heutzutage die Entwicklung und additive Fertigung von neuen Materialien, wie zum Beispiel Nickel-Titan-Formgedächtnislegierungen. T2 - 39. Assistentenseminar CY - Eupen, Germany DA - 12.09.2018 KW - Laserpulverauftragschweißen PY - 2019 SN - 978-3-96144-070-2 SP - 27 EP - 33 PB - DVS Media GmbH AN - OPUS4-51316 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - El-Sari, B. A1 - Biegler, M. A1 - Rethmeier, Michael T1 - Investigation of the Application of a C-ring Geometry to validate the Stress Relief Heat Treatment Simulation of Additive Manufactured Austenitic Stainless Steel Parts via Displacement N2 - Directed energy deposition is a metal additive manufacturing process that builds parts by joining material in a layer-by-layer fashion on a substrate. Those parts are exposed to rapid thermo-cycles which cause steep stress gradients and the layer-upon-layer manufacturing fosters an anisotropic microstructure, therefore stress relief heat treatment is necessary. The numerical simulation can be used to find suitable parameters for the heat treatment and to reduce the necessary efforts to perform an effective stress relieving. Suitable validation Experiments are necessary to verify the results of the numerical simulation. In this paper, a 3D coupled thermo-mechanical model is used to simulate the heat treatment of an additive manufactured component to investigate the application of a C-ring geometry for the distortion-based validation of the numerical simulation. Therefore, the C-ring samples were 3D scanned using a structured light 3D scanner to quantify the distortion after each process step. KW - Additive manufacturing KW - Directed energy deposition KW - Laser KW - Heat treatment KW - Numerical simulation PY - 2020 U6 - https://doi.org/10.3139/105.110417 VL - 75 IS - 4 SP - 248 EP - 259 PB - Carl Hanser Verlag AN - OPUS4-51318 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Charmi, Amir A1 - Falkenberg, Rainer A1 - Skrotzki, Birgit T1 - Virtual-lab-based determination of a macroscopic yield function for additively manufactured parts N2 - This work aims for a yield function description of additively manufactured parts of S316L steel at the continuum-mechanical macro-scale by means of so-called virtual experiments using a crystal plasticity (CP) model at meso-scale. Additively manufactured parts require the consideration of the specific process-related microstructure, which prevents this material to be macroscopically treated as isotropic, because of crystallographic as well as topological textures. From virtual experiments, yield loci under various loading conditions are simulated. The scale bridging from meso- to macro-scale is realised by the identification of the simulated yield loci as a modified anisotropic Barlat-type yield model representation. T2 - Workshop on Additive Manufacturing, BAM CY - Berlin, Germany DA - 13.05.2019 KW - Virtual experiments KW - Additive manufacturing KW - Anisotropy KW - Crystal plasticity KW - Scale-bridging PY - 2019 AN - OPUS4-48064 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Avila, Luis A1 - Rehmer, Birgit A1 - Skrotzki, Birgit A1 - Graf, B. A1 - Rethmeier, Michael A1 - Ulbricht, Alexander T1 - Low cycle fatigue behavior, tensile properties and microstructural features of additively manufactured Ti-6Al-4V N2 - Despite of the significant advances in additive manufacturing (AM) process optimization there is still a lack of experimental results and understanding regarding the mechanical behavior and its relationship with the microstructural features of AM-parts, especially in loading conditions typical for safety-relevant applications. Within the scope of the presented ongoing investigations, a basic microstructural characterization, tensile tests at room and elevated temperature (400°C) as well as a characterization of the fatigue behavior of additively manufactured Ti-6Al-4V in the low cycle fatigue regime are carried out in the as-built state. After failure, different techniques are used to describe the failure mechanisms of the specimens. The AM-Specimens are provided by the Fraunhofer institute for production systems and design technology and investigated at the BAM following the philosophy of the TF-Project AGIL. T2 - Workshop on Additive Manufacturing: Process, materials, testing, simulation & implants CY - BAM, Berlin, Germany DA - 13.05.2019 KW - High Temperature Testing KW - Titanium KW - Ti-6Al-4V KW - Additive Manufacturing KW - DED-L KW - LMD KW - Computed Tomography KW - Microstructure KW - Tensile Properties KW - Low Cycle Fatigue PY - 2019 AN - OPUS4-48067 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ulbricht, Alexander A1 - Altenburg, Simon A1 - Mohr, Gunther T1 - µCT as Benchmark for Online Process Monitoring N2 - µCT is used to validate the capability of online monitoring for in-situ detection of defects during the L-PBF build process, which is a focus of the TF project ProMoAM. Our first experiments show that online monitoring using thermography and optical tomography cameras are able to detect defects in the built part. But further research is needed to understand root cause of the correlation. T2 - Workshop on Additive Manufacturing: Process, materials, simulation & implants CY - BAM, Berlin, Germany DA - 13.05.2019 KW - Computed tomography KW - Online Process Monitoring KW - Additive Manufacturing KW - Powder Bed Fusion KW - Selected Laser Melting PY - 2019 AN - OPUS4-48073 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Scheuschner, Nils A1 - Altenburg, Simon A1 - Pignatelli, Giuseppe A1 - Maierhofer, Christiane A1 - Straße, Anne A1 - Gornushkin, Igor B. A1 - Gumenyuk, Andrey T1 - Comparison of in-situ OES and Thermography in the LMD process N2 - In this talk optical emission spectroscopy (OES) and thermographic measurements of the Laser Metal Deposition Process (LMD) are presented. T2 - Workshop on Additive Manufacturing: Process, materials, simulation & implants CY - BAM, Berlin, Germany DA - 13.05.2019 KW - Additive Manufacturing KW - Infrared Thermography PY - 2019 AN - OPUS4-48054 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ulbricht, Alexander A1 - Altenburg, Simon A1 - Mohr, Gunther T1 - The Influence of the Temperature Gradient on the Distribution of Residual Stresses in AM AISI 316L N2 - Steep temperature gradients and solidification shrinkage are the main contributors to the formation of residual stresses in additively manufactured metallic parts produced by laser beam melting. The aim of this work was to determine the influence of the temperature gradient. Diffraction results show a similar pattern for both specimens, indicating the shrinkage to be more dominant for the distribution of residual stresses than the temperature gradient. Thermography results imply that a higher energy input result in higher compressive residual stresses in the bulk. T2 - Workshop on Additive Manufacturing: Process, materials, simulation & implants CY - BAM, Berlin, Germany DA - 13.05.2019 KW - Computed tomography KW - Online Process Monitoring KW - Additive Manufacturing KW - Powder Bed Fusion KW - Selected Laser Melting KW - Neutron Diffraction PY - 2019 AN - OPUS4-48075 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ehlers, Henrik A1 - Pelkner, Matthias T1 - Eddy Current Testing for Laser Beam Melting N2 - This poster presents a new application for high-spatial resolution eddy current testing (ET) with magnetoresistive (MR) sensor arrays for additive manufacturing (AM) T2 - Workshop on Additive Manufacturing CY - Berlin, Germany DA - 13.05.2019 KW - GMR KW - Additive Manufacturing KW - 316L KW - LBM KW - SLM KW - Eddy Current PY - 2019 AN - OPUS4-47992 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ehlers, Henrik A1 - Pelkner, Matthias T1 - Electromagnetic testing for additive manufacturing N2 - This talk presents a new application for high-spatial resolution eddy current testing (ET) with magneto resistive (MR) sensor arrays. With rising popularity and availability of additive manufacturing (AM), companies mainly in the aerospace sector, set high requirements on quality control of AM parts, especially produced with selective laser melting (SLM). Since it was shown that those parts are prawn to flaws like pores or cracks, every part needs to be tested. Therefore, NDT Methods, like ET, could help to characterize SLM parts. Research on ET has shown, that offline ET with high spatial resolution MR sensor arrays is possible and that flaws as small as 50 µm could be detected while significantly reducing testing time. In this talk a first approach on automated online ET method for testing SLM parts is proposed. An approach with hundreds of MR sensor is made to maintain spatial resolution and short testing times. Classic signal conditioning methods are used to reduce cost and complexity while maintaining high testing bandwidths. The proposed idea enables further research on automated generation of testing reports, process control or automated flaw curing. T2 - ICWAM 2019 CY - Metz, France DA - 05.06.2019 KW - GMR KW - Eddy Current KW - LBM KW - SLM KW - LPBF KW - Additive Manufacturing PY - 2019 AN - OPUS4-48201 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Altenburg, Simon A1 - Scheuschner, Nils A1 - Pignatelli, Giuseppe A1 - Maierhofer, Christiane A1 - Straße, Anne A1 - Gornushkin, Igor B. A1 - Gumenyuk, Andrey T1 - Thermography and optical emission spectroscopy: Simultaneous temperature measurement during the LMD process N2 - For metal-based additive manufacturing, sensors and measuring systems for monitoring of the energy source, the build volume, the melt pool and the component geometry are already commercially available. Further methods of optics, spectroscopy and non-destructive testing are described in the literature as suitable for in-situ application, but there are only a few reports on practical implementations. Therefore, a new BAM project aims to develop process monitoring methods for the in-situ evaluation of the quality of additively manufactured metal components. In addition to passive and active thermography, this includes optical tomography, optical emission and absorption spectroscopy, eddy current testing, laminography, X-ray backscattering and photoacoustic methods. These methods are used in additive manufacturing systems for selective laser melting, laser metal deposition and wire arc additive manufacturing. To handle the sometimes huge amounts of data, algorithms for efficient preprocessing are developed and characteristics of the in-situ data are extracted and correlated to defects and inhomogeneities, which are determined using reference methods such as computer tomography and metallography. This process monitoring and fusion of data of different measurement techniques should result in a significant reduction of costly and time-consuming, destructive or non-destructive tests after the production of the component and at the same time reduce the production of scrap. Here, first results of simultaneous measurements of optical emission spectroscopy and thermography during the laser metal deposition process using 316L as building material are presented. Temperature values are extracted from spectroscopic data by fitting of blackbody emission spectra to the experimental data and compared with results from a thermographic camera. Measurements with and without powder flow reveal significant differences between welding at a pristine metal surface and previously melted positions on the build plate, illustrating the significant influence of the partial oxidation of the surface during the first welding process on subsequent welding. The measurement equipment can either be mounted stationary or following the laser path. While first results were obtained in the stationary mode, future applications for online monitoring of the build of whole parts in the mobile mode are planned. This research was funded by BAM within the focus area Material. T2 - 2nd international congress on welding, additive manufacturing and associated non-destructive testing CY - Metz, France DA - 05.06.2019 KW - Additive manufacturing KW - Laser metal deposition KW - Thermography KW - Optical emission spectroscopy KW - Process monitoring PY - 2019 AN - OPUS4-48228 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bakenecker, A. A1 - Topolniak, Ievgeniia A1 - Lüdtke-Buzug, K. A1 - Pauw, Brian Richard A1 - Buzug, T. T1 - Additive manufacturing of superparamagnetic micro-devices for magnetic actuation N2 - 3D microstructures with sub-micron resolution can be manufactured in additive manner applying multi-photon laser structuring technique. This paper is focused on the incorporation of superparamagnetic iron oxide nanoparticles into the photoresist in order to manufacture micrometer-sized devices featuring a magnetic moment. The aim of the project is to achieve untethered actuation of the presented objects through externally applied magnetic fields. Future medical application scenarios such as drug delivery and tissue engineering are targeted by this research. T2 - Additive Manufacturing Meets Medicine 2019 CY - Lübeck, Germany DA - 12.09.2019 KW - MPI KW - Two-Photon Polymerization KW - Magnetic swimmers KW - MPLS PY - 2019 UR - www.journals.infinite-science.de/ammm U6 - https://doi.org/10.18416/AMMM.2019.1909S09T06 SP - 153 EP - 154 PB - Infinite Science Publishing AN - OPUS4-49114 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Scheuschner, Nils A1 - Altenburg, Simon A1 - Straße, Anne A1 - Gumenyuk, Andrey A1 - Maierhofer, Christiane T1 - In-situ Thermografie in der additiven Fertigung mittels Laser-Pulver-Auftragsschweißen N2 - Im Rahmen des Themenfeld Projektes „Process Monitoring of AM“ (ProMoAM) evaluiert die BAM gegenwärtig die Anwendbarkeit verschiedenster ZfP-Verfahren, darunter die Thermografie, zur Prozessüberwachung in der additiven Fertigung von Metallen in Hinblick auf die Qualitätssicherung. In diesem Beitrag werden SWIR-Thermografiemessungen während des Bauprozesses mittels Laser Pulver Auftragsschweißen (LPA) vorgestellt. Eine Herausforderung im Rahmen dieser Messungen liegt in der Positionierung der Kamera, welche entweder fixiert am Schweißarm, also mitbewegt, oder fixiert in der Baukammer, also stationär, erfolgen kann, wobei beide Varianten mit individuellen Vor- und Nachteilen verbunden sind. Eine stationäre Befestigung der Kamera ermöglicht zwar eine einfachere Zuordnung der Messdaten zu der jeweiligen Position im Bauteil, führt jedoch bei komplexeren Geometrien zwangsläufig zu Problemen durch Abschattungen und zu defokussierten Bereichen. Zur Auswertung von Thermogrammen, welche durch eine mit dem Schweißarm mitbewegte Kamera aufgenommen wurden, sind hingegen für jedes Bild akkurate Positionsdaten der Kamera nötig um die Messdaten einer Position im Bauteil zuzuordnen. Da die Positionsdaten des Schweißarmes im allgemeinen Fall durch die Anlagensoftware nicht zur Verfügung gestellt werden, muss diese Information durch zusätzliche Messungen aufgezeichnet werden. Hierzu verwenden wir einen an der Kamera befestigten Beschleunigungssensor. Dieser ermöglicht einen zeitlichen Abgleich mit dem vorprogrammierten Verfahrweg des Schweißarmes, welcher im Allgemeinen noch Unsicherheiten bezüglich genauer Geschwindigkeiten und Beschleunigungen offenlässt. Weiterhin untersuchen wir den Einfluss des empfindlichen Spektralbereiches der IR-Kamera durch den Vergleich von Messungen mit verschiedenen schmalbandigen Bandpassfiltern (25 nm FWHM) in einem Bereich von 1150 nm bis 1550 nm. T2 - Thermographie-Kolloquium 2019 CY - Halle (Saale), Germany DA - 19.09.2019 KW - Additive manufacturing KW - 3D printing KW - Thermography KW - Direct energy deposition KW - Laser Metal Deposition KW - 3D Druck KW - Laser Pulver Auftragsschweißen KW - Additive Fertigung KW - Thermografie PY - 2019 AN - OPUS4-49078 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Scheuschner, Nils A1 - Altenburg, Simon A1 - Straße, Anne A1 - Gumenyuk, Andrey A1 - Maierhofer, Christiane T1 - In-situ thermographic monitoring of the laser metal deposition process N2 - In this paper shortwave infrared (SWIR) thermographic measurements of the manufacturing of thin single-line walls via laser metal deposition (LMD) are presented. As the thermographic camera is mounted fixed to the welding arm, an acceleration sensor was used to assist in reconstructing the spatial position from the predefined welding path. Hereby we could obtain data sets containing the size of the molten pool and the oxide covered areas as functions of the position in the workpiece. Furthermore, the influence of the acquisition wavelength onto the thermograms was investigated in a spectral range from 1250 nm to 1550 nm. All wavelengths turned out to be usable for the in-situ process monitoring of the LMD process. The longer wavelengths are shown to be beneficial for the lower temperature range, while shorter wavelengths show more details within the molten pool. T2 - Sim-AM 2019 - 2. International Conference on Simulation for Additive Manufacturing CY - Pavia, Italy DA - 11.09.2019 KW - Additive manufacturing KW - 3D printing KW - Thermography KW - Direct energy deposition KW - Laser Metal Deposition KW - 3D Druck KW - Laser Pulver Auftragsschweißen KW - Additive Fertigung KW - Thermografie PY - 2019 UR - http://congress.cimne.com/SIM-AM2019/frontal/Doc/proceedings.pdf SN - 978-84-949194-8-0 SP - 246 EP - 255 AN - OPUS4-49086 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Werner, Tiago A1 - Zerbst, Uwe A1 - Madia, Mauro T1 - Damage tolerant design of metallic AM parts N2 - Additive Manufacturing (AM) opens new possibilities in the design of metallic components, including very complex geometries (e.g. structures optimized for certain loads), optimization of materials (e.g. gradient materials) and cost-effective manufacturing of spare parts. In the recent years, it has been used for the first safety-relevant parts, but the consideration of cyclic mechanical behavior in AM is still at the very beginning. The reason for this is the complexity of mechanical material properties, i.e. inhomogeneity, anisotropy and a large number of defects frequently textured and characterized by large scattering in size. Additionally, high surface roughness and residual stresses with complex distributions are typical of AM. Due to these reasons, the transferability of experimentally determined properties from specimens to components is a challenge. This presentation provides an overview of the questions concerning the application of AM to safety-relevant components. Possible strategies for the fatigue design of such components are presented. Besides the Kitagawa-Takahashi-diagram method and the cyclic R-curve analysis as approaches for damage-tolerant design, the identification of critical locations, the problem of representative material properties and the handling of residual stresses are addressed. T2 - 4th international symposium on Fatigue Design and Material Defects CY - Online meeting DA - 26.05.2020 KW - Additive Manufacturing KW - Cyclic R-Curve KW - Component assessment PY - 2020 AN - OPUS4-50938 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Artzt, K. A1 - Mishurova, Tatiana A1 - Bauer, P.-P. A1 - Gussone, J. A1 - Barriobero-Vila, P. A1 - Evsevleev, Sergei A1 - Bruno, Giovanni A1 - Requena, G. A1 - Haubrich, J. T1 - Pandora’s Box–Influence of Contour Parameters on Roughness and Subsurface Residual Stresses in Laser Powder Bed Fusion of Ti-6Al-4V N2 - The contour scan strategies in laser powder bed fusion (LPBF) of Ti-6Al-4V were studied at the coupon level. These scan strategies determined the surface qualities and subsurface residual stresses. The correlations to these properties were identified for an optimization of the LPBF processing. The surface roughness and the residual stresses in build direction were linked: combining high laser power and high scan velocities with at least two contour lines substantially reduced the surface roughness, expressed by the arithmetic mean height, from values as high as 30 μm to 13 μm, while the residual stresses rose from ~340 to about 800 MPa. At this stress level, manufactured rocket fuel injector components evidenced macroscopic cracking. A scan strategy completing the contour region at 100 W and 1050 mm/s is recommended as a compromise between residual stresses (625 MPa) and surface quality (14.2 μm). The LPBF builds were monitored with an in-line twin-photodiode-based melt pool monitoring (MPM) system, which revealed a correlation between the intensity quotient I2/I1, the surface roughness, and the residual stresses. Thus, this MPM system can provide a predictive estimate of the surface quality of the samples and resulting residual stresses in the material generated during LPBF. KW - Additive manufacturing KW - Ti-6Al-4V KW - Contour scan strategy KW - Surface roughness KW - Melt pool monitoring KW - Residual stress KW - Synchrotron X-ray diffraction PY - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-510585 VL - 13 IS - 15 SP - 3348 AN - OPUS4-51058 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Biegler, M. A1 - Rethmeier, Michael T1 - Numerische Simulation im 3D-Druck N2 - Die numerische Simulation hilft, Probleme bei additiven Bauprozessen früh zu erkennen und Optimierungspotentiale auszuschöpfen. Ziel ist, im additiven Auftragschweißen (DED) die Zahl der nötigen Versuche durch Vorhersagen zu verringern und Prozessgrößen zu visualisieren. Eine besondere Anwendung der Simulation ist die Generierung verzugskompensierter Geometrien: Durch die Berechnung des Bauteilverzugs kann die Geometrie vor dem Bauen so verändert werden, dass sie mit Verzug die gewünschte Toleranz erreicht. So kann Zerspanvolumen und Aufmaß reduziert werden. KW - Schweißsimulation KW - FEM KW - Auftragschweißen KW - Additive Fertigung KW - Verzug PY - 2020 IS - 4 SP - 45 EP - 48 AN - OPUS4-51097 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Khrapov, D. A1 - Surmeneva, M. A1 - Koptioug, A. A1 - Evsevleev, Sergei A1 - Léonard, Fabien A1 - Bruno, Giovanni A1 - Surmenev, R. T1 - X-ray computed tomography of multiple-layered scaffolds with controlled gradient cell lattice structures fabricated via additive manufacturing N2 - In this paper we report on the characterization by X-ray computed tomography of calcium phosphate (CaP) and polycaprolactone (PCL) coatings on Ti-6Al-4V alloy scaffolds used as a material for medical implants. The cylindrical scaffold has greater porosity of the inner part than the external part, thus, mimicking trabecular and cortical bone, respectively. The prismatic scaffolds have uniform porosity. Surface of the scaffolds was modified with calcium phosphate (CaP) and polycaprolactone (PCL) by dip-coating to improve biocompatibility and mechanical properties. Computed tomography performed with X-ray and synchrotron radiation revealed the defects of structure and morphology of CaP and PCL coatings showing small platelet-like and spider-web-like structures, respectively.  KW - Mechanical Engineering KW - Maskinteknik PY - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-510763 SN - 17426588 VL - 1145 SP - 012044 PB - IOP AN - OPUS4-51076 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Biegler, M. A1 - Wang, J. A1 - Kaiser, L. A1 - Rethmeier, Michael T1 - Automated Tool-Path Generation for Rapid Manufacturing of Additive Manufacturing Directed Energy Deposition Geometries N2 - In additive manufacturing (AM) directed energy deposition (DED), parts are built by welding layers of powder or wire feedstock onto a substrate with applications for steel powders in the fields of forging tools, spare parts, and structural components for various industries. For large and bulky parts, the choice of toolpaths influences the build rate, the mechanical performance, and the distortions in a highly geometry-dependent manner. With weld-path lengths in the range of hundreds of meters, a reliable, automated tool-path generation is essential for the usability of DED processes. This contribution presents automated tool-path generation approaches and discusses the results for arbitrary geometries. Socalled “zig-zag” and “contour-parallel” processing strategies are investigated and the tool-paths are automatically formatted into machine-readable g-code for experimental validation to build sample geometries. The results are discussed in regard to volume-fill, microstructure, and porosity in dependence of the path planning according to photographs and metallographic cross-sections. KW - Porosity KW - Path planning KW - Mechanical properties KW - Laser metal deposition KW - Additive manufacturing PY - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-510454 VL - 91 IS - 11 SP - 2000017 PB - WILEY-VCH Verlag GmbH & co. KGaA CY - Weinheim AN - OPUS4-51045 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mishurova, Tatiana A1 - Sydow, B. A1 - Thiede, Tobias A1 - Sizova, I. A1 - Ulbricht, Alexander A1 - Bambach, M. A1 - Bruno, Giovanni T1 - Residual Stress and Microstructure of a Ti-6Al-4V Wire Arc Additive Manufacturing Hybrid Demonstrator N2 - Wire Arc Additive Manufacturing (WAAM) features high deposition rates and, thus, allows production of large components that are relevant for aerospace applications. However, a lot of aerospace parts are currently produced by forging or machining alone to ensure fast production and to obtain good mechanical properties; the use of these conventional process routes causes high tooling and material costs. A hybrid approach (a combination of forging and WAAM) allows making production more efficient. In this fashion, further structural or functional features can be built in any direction without using additional tools for every part. By using a combination of forging basic geometries with one tool set and adding the functional features by means of WAAM, the tool costs and material waste can be reduced compared to either completely forged or machined parts. One of the factors influencing the structural integrity of additively manufactured parts are (high) residual stresses, generated during the build process. In this study, the triaxial residual stress profiles in a hybrid WAAM part are reported, as determined by neutron diffraction. The analysis is complemented by microstructural investigations, showing a gradient of microstructure (shape and size of grains) along the part height. The highest residual stresses were found in the transition Zone (between WAAM and forged part). The total stress range showed to be lower than expected for WAAM components. This could be explained by the thermal history of the component. KW - Additive manufacturing KW - Neutron diffraction KW - Residual stress KW - Hybrid manufacturing KW - WAAM KW - Ti-6Al-4V PY - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-508245 VL - 10 IS - 6 SP - 701 PB - MDPI AN - OPUS4-50824 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mohr, Gunther A1 - Scheuschner, Nils A1 - Hilgenberg, Kai T1 - In situ heat accumulation by geometrical features obstructing heat flux and by reduced inter layer times in laser powder bed fusion of AISI 316L stainless steel N2 - Material qualification for laser powder bed fusion (L-PBF) processes are often based on results derived from additively manufactured (AM) bulk material or small density cubes, although it is well known that the part geometry has a tremendous influence on the heat flux and, therefore, on the thermal history of an AM component. This study shows experimentally the effect of simple geometrical obstructions to the heat flux on cooling behavior and solidification conditions of 316L stainless steel processed by L-PBF. Additionally, it respects two distinct inter layer times (ILT) as well as the build height of the parts. The cooling behavior of the parts is in-situ traced by infrared (IR) thermography during the built-up. The IR signals reveal significant differences in cooling conditions, which are correlated to differences in melt pool geometries. The acquired data and results can be used for validation of computational models and improvements of quality assurance. KW - Selective laser beam melting KW - Thermography KW - Melt pool depth KW - Inter layer time KW - Ppreheating temperature KW - Additive Manufacturing PY - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-512549 VL - 94 SP - 155 EP - 160 PB - Elsevier B.V. AN - OPUS4-51254 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mohr, Gunther A1 - Scheuschner, Nils A1 - Hilgenberg, Kai T1 - In situ heat accumulation by geometrical features obstructing heat flux and by reduced inter layer times in laser powder bed fusion of AISI 316L stainless steel N2 - Material qualification for laser powder bed fusion (L-PBF) processes are often based on results derived from additively manufactured (AM) bulk material or small density cubes, although it is well known that the part geometry has a tremendous influence on the heat flux and, therefore, on the thermal history of an AM component. This study shows experimentally the effect of simple geometrical obstructions to the heat flux on cooling behavior and solidification conditions of 316L stainless steel processed by L-PBF. Additionally, it respects two distinct inter layer times (ILT) as well as the build height of the parts. The cooling behavior of the parts is in-situ traced by infrared (IR) thermography during the built-up. The IR signals reveal significant differences in cooling conditions, which are correlated to differences in melt pool geometries. The acquired data and results can be used for validation of computational models and improvements of quality assurance. T2 - 11th CIRP Conference on Photonic Technologies (LANE 2020) CY - Online meeting DA - 07.09.2020 KW - Additive Manufacturing PY - 2020 AN - OPUS4-51255 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nazarzadehmoafi, Maryam A1 - Zscherpel, Uwe A1 - Metz, Christian A1 - Li, Zongshu A1 - Jaenisch, Gerd-Rüdiger A1 - Waske, Anja T1 - Zerstörungsfreie Defekterkennung in additiv gefertigten Stufenkeilen aus Kunststoff mittels Röntgen-Rückstreuung N2 - Die Additive Fertigung (AM) wird eingesetzt, um komplexe Bauteile für die Luftfahrt-, Medizin- und Automobilindustrie kostengünstig und zeitsparend herzustellen. Der Einsatz von AM in der Industrie erfordert eine strenge Qualitätskontrolle der hergestellten Teile, um die geforderten Normen erfüllen zu können. Aus diesem Grund spielen die Prozessüberwachung und die Anwendung von Methoden der zerstörungsfreien Prüfung eine große Rolle, was im Fokus unserer aktuellen Forschung steht. In dieser Arbeit benutzen wir Röntgenrückstreuung, welche lediglich einen einseitigen Zugang zum Objekt benötigt, um innenliegende, künstlich hergestellte Defekte in additiv gefertigten Stufenkeilen aus Polyamid 12 (PA 12, Laser Sintering) sowie Acrylnitril-Butadien-Styrol (ABS, Fused Layer Modeling) zu untersuchen. Dafür wurde ein von der Firma AS&E (Boston, USA) konstruierter Prototyp verwendet, der ursprünglich für den Sicherheitsbereich entwickelt wurde. Die Messung der Rückstreuung basiert auf der Flying-Spot Technik mit einem stark kollimierten Nadelstrahl, erzeugt von einem rotierenden Kollimator, wobei großflächige Detektoren die rückgestreute Strahlung sammeln. Da die Anforderungen an die räumliche Auflösung sowie die Kontrastempfindlichkeit in der zerstörungsfreien Prüfung (ZfP) über denen im Sicherheitsbereich liegen, ist eine Optimierung des Prototyps notwendig, um eine Bildqualität zu erreichen, wie sie in der ZfP gefordert ist. Darüber hinaus wurden klassische Durchstrahlungsprüfungen durchgeführt, um die Fähigkeit des Rückstreusystems bei der Defekterkennung in den untersuchten Objekten einschließlich innenliegender Defekte vergleichen und bewerten zu können. Die nachweisbaren Poren und Lufteinschlüsse sind in den Durchstrahlungsaufnahmen, besonders bei den PA 12 Proben, kleiner als in den mittels Rückstreuung erzeugten Bildern. Daher ist eine weitere Optimierung des AS&E- Prototypen notwendig und zusätzliche Untersuchungen sind erforderlich, um die ZfP-Anforderungen zu erfüllen und die Anwendungsgrenzen dieses Geräts zu ermitteln. Jedoch zeigen Vergleichsmessungen mit gedruckten Leichtmetallen (Al), dass die Rückstreutechnik eine vielversprechende Methode zur in-situ Qualitätssicherung mehrerer cm großer Bauteile mit inneren Defekten ab ca. 400 μm Größe ist. T2 - Werkstoffwoche 2019 CY - Dresden, Germany DA - 18.09.2019 KW - Kunststoff und Röntgen-Rückstreuung KW - ZfP KW - Additive Fertigung PY - 2019 AN - OPUS4-50854 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Chinellato, Fabio A1 - Wilbig, Janka A1 - Al-Sabbagh, Dominik A1 - Colombo, P. A1 - Günster, Jens T1 - Gas flow assisted powder deposition for enhanced flowability of fine powders: 3D printing of alpha-tricalcium phosphate N2 - The possibility of creating patient-specific individual implants makes Additive Manufacturing technologies of special interest for the medical sector. For substitution of bone defects, powder based Additive Manufacturing by Binder Jetting is a suitable method to produce complex scaffold-like structures made of bioceramics with easily adapted geometries and controlled porosity. The process inherent residual porosity in the printed part, even though desired as it supports bone ingrowth, also leads to limited mechanical strength. Currently, bioceramic scaffolds made by Binder Jetting feature suitable biocompatible and biodegradable properties, while a sufficient mechanical stability is rather challenging. The purpose of this work is to apply the gas flow assisted powder deposition introduced in 2014 by Zocca et al., to the powder bed during printing of bioceramic tablets and scaffolds using α-TCP powder as feedstock. This enables exploiting the advantages of an increased powder bed density, thereby improving the mechanical properties of the printed parts. KW - Additive Manufacturing KW - Binder Jetting KW - Gas flow assisted powder deposition KW - Alpha-tricalcium phosphate KW - Scaffold PY - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-510138 SN - 2666-5395 VL - 1 SP - 100003 PB - Elsevier Ltd. AN - OPUS4-51013 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Laquai, René A1 - Müller, Bernd R. A1 - Schneider, J. A1 - Kupsch, Andreas A1 - Bruno, Giovanni T1 - Using SXRR to Probe the Nature of Discontinuities in SLM Additive Manufactured Inconel 718 Specimens N2 - The utilization of additive manufacturing (AM) to fabricate robust structural components relies on understanding the nature of internal anomalies or discontinuities, which can compromise the structural integrity. While some discontinuities in AM microstructures stem from similar mechanisms as observed in more traditional processes such as casting, others are unique to the AM process. Discontinuities in AM are challenging to detect, due to their submicron size and orientation dependency. Toward the goal of improving structural integrity, minimizing discontinuities in an AM build requires an understanding of the mechanisms of formation to mitigate their occurrence. This study utilizes various techniques to evaluate the shape, size, nature and distribution of discontinuities in AM Inconel 718, in a non-hot isostatic pressed (HIPed) as-built, non-HIPed and direct age, and HIPed with two step age samples. Non-destructive synchrotron radiation refraction and transmission radiography (SXRR) provides additional information beyond that obtained with destructive optical microscopy. SXRR was able to distinguish between voids, cracks and lack of melt in, due to its sensitivity to the orientation of the discontinuity. KW - Additive manufacturing KW - X-ray refraction radiography KW - INCONEL 718 KW - Selective laser melting PY - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-509836 SN - 1543-1940 VL - 51 IS - 8 SP - 4146 EP - 4157 PB - Springer AN - OPUS4-50983 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mishurova, Tatiana A1 - Bruno, Giovanni A1 - Evsevleev, Sergei A1 - Sevostianov, I. T1 - Determination of macroscopic stress from diffraction experiments: A critical discussion N2 - The paper is motivated by some inconsistencies and contradictions present in the literature on the calculation of the so-called diffraction elastic constants. In an attempt at unifying the views that the two communities of Materials Science and Mechanics of Materials have on the subject, we revisit and define the terminology used in the field. We also clarify the limitations of the commonly used approaches and Show that a unified methodology is also applicable to textured materials with a nearly arbitrary grain shape. We finally compare the predictions based on this methodology with experimental data obtained by in situ synchrotron radiation diffraction on additively manufactured Ti-6Al4V alloy. We show that (a) the transverse isotropy of the material yields good agreement between the best-fit isotropy approximation (equivalent to the classic Kröner’s model) and the experimental data and (b) the use of a general framework allows the calculation of all components of the tensor of diffraction elastic constants, which are not easily measurable by diffraction methods. This allows us to extend the current state-of-the-art with a predictive tool. KW - Additive manufacturing KW - X-ray diffraction KW - Elastic constants KW - Stress concentration tensor PY - 2020 U6 - https://doi.org/10.1063/5.0009101 VL - 128 IS - 2 SP - 025103 PB - AIP Publishing AN - OPUS4-50993 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - de Melo Bernardino, Raphael A1 - Valentino, S. A1 - Franchin, G. A1 - Günster, Jens A1 - Zocca, Andrea T1 - Manufacturing of ceramic components with internal channels by a novel additive/subtractive hybridizazion process N2 - A new approach for fabrication of ceramic components with inner channels is proposed, as a result of the combination of two additive and one subtractive manufacturing processes. In this project, porcelain parts are manufactured by the Layerwise Slurry Deposition (LSD) process, meanwhile end milling and Direct Ink Writing (DIW) are applied to create channels on the surface of the deposited ceramic. Unique to the LSD process is the Formation of a freestanding powder bed with a mechanical strength comparable to conventional slip casted ceramic green bodies. Combining these three processes allows the manufacturing of ceramic objects containing an internal path of ink, which in this case was a graphite-based ink that can be further eliminated by heat treatment to obtain a porcelain object embedded with channels. The results show the capabilities of this method and its potential to fabricate not only parts with inner channels, but also multi-material and multi-functional components (such as integrated electronic circuits). KW - Additive Manufacturing KW - Layerwise Slurry Deposition KW - Hybrid Manufacturing PY - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-510012 UR - https://www.sciencedirect.com/science/article/pii/S2666539520300109?via%3Dihub VL - 2 SP - 100010 PB - Elsevier Ltd. AN - OPUS4-51001 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mohr, Gunther A1 - Altenburg, Simon A1 - Hilgenberg, Kai T1 - Einfluss der Zwischenlagenzeit und der Bauteilhöhe auf die resultierenden Eigenschaften laserstrahlgeschmolzener austenitischer Stahlbauteile N2 - Das pulverbettbasierte selektive Laserstrahlschmelzen (engl. laser powder bed fusion, L-PBF) ist die am weitesten verbreitete additive Fertigungstechnologie für die Herstellung metallischer Komponenten. Unter der Vielzahl an Einflussfaktoren auf die Qualität und die mechanischen Eigenschaften von L PBF-Bauteilen hat die Zwischenlagenzeit (engl. inter layer time, ILT) bisher kaum Beachtung in der wissenschaftlichen Literatur gefunden, obwohl sie je nach Bauraumausnutzungsgrad stark variieren kann. In diesem Vortrag werden Ergebnisse einer Studie präsentiert, die den Einfluss der ILT in Kombination mit der Bauteilhöhe und unter Berücksichtigung verschiedener Volumenenergiedichten am Beispiel der austenitischen Stahllegierung AISI 316L untersucht. Die Fertigungsprozesse wurden in situ mittels Thermographiekamera überwacht, sodass Informationen über das Abkühlverhalten der Bauteile während des Prozesses gewonnen werden konnten. Es wurden signifikante Effekte der ILT und der Bauteilhöhe auf Wärmeakkumulation, Mikrostruktur, Schmelzbadgeometrie und Härte festgestellt. Ferner konnte ein Anstieg von Defektdichten bei einem gegenseitigen Wechselspiel aus Bauteilhöhe und ILT aufgezeigt werden. Die Zwischenlagenzeit wurde somit als kritischer Faktor für die L-PBF-Fertigung von Realbauteilen identifiziert. T2 - DGM Fachtagung "Werkstoffe und Additive Fertigung" CY - Online meeting DA - 13.05.2020 KW - Laser Powder Bed Fusion KW - Additive Fertigung KW - Zwischenlagenzeit KW - In-situ Monitoring PY - 2020 AN - OPUS4-50788 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zocca, Andrea A1 - Fateri, M. A1 - Al-Sabbagh, Dominik A1 - Günster, Jens T1 - Investigation of the sintering and melting of JSC-2A lunar regolith simulant N2 - Future lunar exploration can benefit greatly from In-Situ Resource Utilization. Accordingly, the in-Situ Resource Utilization approach highlights the need for detailed analysis of lunar regolith. In this study, JSC-2A Simulant was studied regarding its sintering and melting behaviour using Differential Thermal Analysis under ambient and inert conditions. The minerals at the crystalline peaks were determined using X-Ray Diffraction analysis. Moreover, melting droplet shape and wetting behaviour of pressed regolith samples of different particle size distributions were studied by Hot Stage Microscopy technique. Hot Stage Microscopy experiments were performed at different heating rates under ambient conditions. Bloating effects within the solidified samples were then qualitatively examined by X-ray tomography. Lastly, the optimization of processing strategies for the Additive Manufacturing of lunar regolith is discussed. KW - Lunar regolith KW - Sintering KW - Melting KW - Hot stage microscopy PY - 2020 U6 - https://doi.org/10.1016/j.ceramint.2020.02.212 VL - 46 IS - 9 SP - 14097 EP - 14104 PB - Elsevier Ltd. AN - OPUS4-50869 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Karl, D. A1 - Duminy, T. A1 - Lima, P. A1 - Kamutzki, F. A1 - Gili, A. A1 - Zocca, Andrea A1 - Günster, Jens A1 - Gurlo, A. T1 - Clay in situ resource utilization with Mars global simulant slurries for additive manufacturing and traditional shaping of unfired green bodies N2 - The wet processing of regolith simulant for clay in situ resource utilization (ISRU) on Mars is presented. The two raw materials from the Mars global simulant family, one without clay (MGS-1) and one with clay - sodium montmorillonite smectite - (MGS-1C) were milled and mixed to produce a simulant with small particle size and reduced clay content (MGS-1C/8). All three simulants and the pure clay raw material were extensively characterized using XRF, synchrotron XRD, gas adsorption and gas pycnometry methods. In a straightforward processing approach, MGS-1C/8 was mixed with water and different dispersant approaches were investigated, all of which gave stable slurries. Particle size distribution, rheology, ion concentration, pH and electrical conductivity of these slurries were characterized. The slurry systems can easily be adapted to fit all typical ceramic shaping routes and here parts of varying complexity from slip casting, throwing on a potter's wheel and additive manufacturing, including material extrusion (robocasting) and binder jetting (powder bed 3D printing) were produced. The unique properties of the sodium montmorillonite clay, which is readily accessible in conjunction with magnesium sulfate on the Martian surface, acted as a natural nanosized binder and produced high strength green bodies (unfired ceramic body) with compressive strength from 3.3 to 7.5 MPa. The most elaborate additive manufacturing technique layerwise slurry deposition (LSD) produced water-resistant green bodies with a compressive strength of 30.8 ± 2.5 MPa by employing a polymeric binder, which is similar or higher than the strength of standard concrete. The unfired green bodies show sufficient strength to be used for remote Habitat building on Mars using additive manufacturing without humans being present. KW - Mars KW - Smectite KW - Clay ISRU KW - MGS-1 regolith simulant KW - 3D printing KW - Additive manufacturing PY - 2020 U6 - https://doi.org/10.1016/j.actaastro.2020.04.064 VL - 174 SP - 241 EP - 253 PB - Elsevier Ltd. AN - OPUS4-50870 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Biegler, M. A1 - Elsner, B. A1 - Graf, B. A1 - Rethmeier, Michael T1 - Geometric distortion-compensation via transient numerical simulation for directed energy deposition additive manufacturing N2 - Components distort during directed energy deposition (DED) additive manufacturing (AM) due to the repeated localised heating. Changing the geometry in such a way that distortion causes it to assume the desired shape – a technique called distortion-compensation – is a promising method to reach geometrically accurate parts. Transient numerical simulation can be used to generate the compensated geometries and severely reduce the amount of necessary experimental trials. This publication demonstrates the simulation-based generation of a distortioncompensated DED build for an industrial-scale component. A transient thermo-mechanical approach is extended for large parts and the accuracy is demonstrated against 3d-scans. The calculated distortions are inverted to derive the compensated geometry and the distortions after a single compensation iteration are reduced by over 65%. KW - DED KW - Welding simulation KW - Dimensional accuracy KW - Additive manufacturing KW - Laser metal deposition KW - LMD PY - 2020 U6 - https://doi.org/10.1080/13621718.2020.1743927 SP - 1 EP - 8 PB - Taylor & Francis AN - OPUS4-50877 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ávila, Luis A1 - Rehmer, Birgit A1 - Graf, B. A1 - Ulbricht, Alexander A1 - Skrotzki, Birgit A1 - Rethmeier, Michael T1 - Assessing the low cycle fatigue behaviour of additively manufactured Ti-6Al-4V: Challenges and first results N2 - The understanding of process-microstructure-property-performance (PMPP) relationships in additive manufacturing (AM) of metals is highly necessary to achieve wide-spread industrial application and replace conventionally manufactured parts, especially regarding safety-relevant applications. To achieve this understanding, reliable data and knowledge regarding material’s microstructure-property relationships (e.g. the role of defects) is needed, since it represents the base for future more targeted process optimizations and more reliable calculations of performance. However, producing reliable material data and assessing the AM material behaviour is not an easy task: big challenges are e.g. the actual lack of standard testing methods for AM materials and the occasional difficulties in finding one-to-one comparable material data for the conventional counterpart. This work aims to contribute to end this lack of reliable material data and knowledge for the low cycle fatigue behaviour of the most used titanium alloy in aerospace applications (Ti-6Al-4V). For this purpose, two sets of test specimens were investigated. The first set was manufactured from cylindrical rods produced by an optimized DED-L process and the second was manufactured from a hot formed round bar. The test specimens were cyclically loaded until failure in the low-cycle-fatigue (LCF) regime. The tests were carried out according to ISO 12106 between 0.3 to 1.0 % axial strain amplitude from room temperature up to 400°C. The LCF behaviour is described and compared between materials and with literature values based on cyclic deformation curves and strain-based fatigue life curves. Besides, the parameters of Manson-Coffin-Basquin relationship were calculated. The microstructures (initial and after failure) and fracture surfaces were comparative characterized. Thereby, the focus lied on understanding the role of grain morphology and defects on the failure mechanisms and fatigue lifetimes. For this latter characterization, optical microscopy (OM), scanning electron microscopy (SEM) and micro computed tomography (µCT) were used. T2 - 4th International Symposium on Fatigue Design and Material Defects CY - Online meeting DA - 26.05.2020 KW - Ti-6Al-4V KW - Additive manufacturing KW - Low cycle fatigue KW - Micro computed tomography KW - Microstructure PY - 2020 AN - OPUS4-50893 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Khrapov, D A1 - Koptyug, A. A1 - Manabaev, K. A1 - Léonard, Fabien A1 - Mishurova, Tatiana A1 - Bruno, Giovanni A1 - Cheneler, D. A1 - Loza, K. A1 - Epple, M. A1 - Surmenev, R. A1 - Surmeneva, M. T1 - The impact of post manufacturing treatment of functionally graded Ti6Al4V scaffolds on their surface morphology and mechanical strength N2 - An ultrasonic vibration post-treatment procedure was suggested for additively manufac-tured lattices. The aim of the present research was to investigate mechanical properties andthe differences in mechanical behavior and fracture modes of Ti6Al4V scaffolds treated withtraditional powder recovery system (PRS) and ultrasound vibration (USV). Scanning electronmicroscopy (SEM) was used to investigate the strut surface and the fracture surface mor-phology. X-ray computed tomography (CT) was employed to evaluate the inner structure,strut dimensions, pore size, as well as the surface morphology of additively manufacturedporous scaffolds. Uniaxial compression tests were conducted to obtain elastic modulus,compressive ultimate strength and yield stress. Finite element analysis was performedfor a body-centered cubic (BCC) element-based model and for CT-based reconstructiondata, as well as for a two-zone scaffold model to evaluate stress distribution during elasticdeformation. The scaffold with PRS post treatment displayed ductile behavior, while USVtreated scaffold displayed fragile behavior. Double barrel formation of PRS treated scaffoldwas observed during deformation. Finite element analysis for the CT-based reconstructionrevealed the strong impact of surface morphology on the stress distribution in comparisonwith BCC cell model because of partially molten metal particles on the surface of struts,which usually remain unstressed. KW - Additive manufacturing KW - Electron beam melting KW - Computed tomography KW - FEM KW - Lattice structures PY - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-505960 SN - 2238-7854 VL - 9 IS - 2 SP - 1866 EP - 1881 PB - Elsevier B.V. AN - OPUS4-50596 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ehlers, Henrik A1 - Pelkner, Matthias A1 - Thewes, R. T1 - Heterodyne Eddy Current Testing Using Magnetoresistive Sensors for Additive Manufacturing Purposes N2 - In recent years additive manufacturing technologies have become widely popular. For complex functional components or low volume production of workpieces, laser powder bed fusion can be used. High safety requirements, e.g. in the aerospace sector, demand extensive quality control. Therefore, offline non-destructive testing methods like computed tomography are used after manufacturing. Recently, for enhanced profitability and practicality online non-destructive testing methods, like optical tomography have been developed. This paper discusses the applicability of eddy current testing with magnetoresistive sensors for laser powder bed fusion parts. For this purpose, high spatial resolution giant magnetoresistance arrays are utilized for testing in combination with a single wire excitation coil. A heterodyne principle minimizes metrology efforts. This principle is compared to conventional signal processing in an eddy current testing setup using an aluminum test sample with artificial surface defects. To evaluate the influence of the powder used in the manufacturing process on eddy current testing and vice versa, a laser powder bed fusion mock-up made from stainless steel powder (316L) is used with artificial surface defects down to 100 µm. This laser powder bed fusion specimen was then examined using eddy current testing and the underlying principles. KW - Eddy current testing KW - Heterodyning KW - Laser powder bed fusion KW - Giant magnetoresistance KW - Additive manufacturing KW - 316L PY - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-506140 SN - 1530-437X VL - 20 IS - 11 SP - 5793 EP - 5800 PB - IEEE AN - OPUS4-50614 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Scheuschner, Nils A1 - Altenburg, Simon A1 - Maierhofer, Christiane A1 - Mohr, Gunther A1 - Hilgenberg, Kai T1 - Verfahrensentwicklung für die Prozessüberwachung in der additiven Fertigung - Thermografie N2 - Für die Prozessüberwachung in der additiven Fertigung (AM) werden Sensoren und Messsysteme zur Kontrolle der Energiequelle, des Bauraums, des Schmelzbades und der Bauteilgeometrie zumindest im metallbasierten AM schon kommerziell angeboten. Weitere Verfahren der Optik, Spektroskopie und zerstörungsfreien Prüfung werden in der Literatur als geeignet für die in-situ Anwendung bezeichnet, es finden sich aber nur wenige Berichte über konkrete praktische Umsetzungen. Ein neues Projekt der BAM im Themenfeld Material hat daher das Ziel, Verfahren des Prozessmonitorings zur in-situ Bewertung der Qualität additiv gefertigter Metallbauteile in AM-Prozessen mit Laser- bzw. Lichtbogenquellen zu entwickeln. Dies beinhaltet neben passiver und aktiver Thermografie die optische Tomografie, die optische Emissionsspektroskopie, die Wirbelstromprüfung, die Laminografie, die Röntgenrückstreuung und photoakustische Verfahren. Diese Verfahren werden in verschiedenen AM-Systemen zum selektiven Laserschmelzen, zum Laser-Pulver-Auftragsschweißen und zum Lichtbogenschweißen mit Drahtzuführung zum Einsatz gebracht. Für die zum Teil sehr großen Datenmengen werden Algorithmen für ein effizientes Preprocessing entwickelt und Merkmale der Messdaten in Korrelation zu Fehlern und Inhomogenitäten extrahiert, welche mit Referenzverfahren wie Computertomografie und Ultraschall-Tauchtechnik ermittelt werden. Die Ergebnisse der Einzelverfahren werden fusioniert und mit den Fertigungsparametern korreliert. Diese Prozessüberwachung soll eine deutliche Reduzierung aufwändiger und zeitintensiver, zerstörender oder zerstörungsfreier Prüfungen nach der Fertigung des Bauteiles und zugleich eine Verringerung von Ausschussproduktion bewirken. Im Beitrag wird zunächst das Projekt als Ganzes vorgestellt und dann der Fokus auf die Thermografie mit Detektoren in verschiedenen Wellenlängenbereichen gelegt. Anforderungen an die Messtechnik für verschiedene AM-Systeme werden diskutiert und experimentelle Ergebnisse im Vergleich zur optischen Tomografie und weiterer Verfahren präsentiert. T2 - DGZfP DACH Jahrestagung 2019 CY - Friedrichshafen, Germany DA - 27.05.2019 KW - Additive Fertigung KW - 3D Druck KW - Thermografie KW - L-PBF KW - SLM PY - 2019 AN - OPUS4-50213 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Waske, Anja T1 - Anwendungsaspekte magnetischer Funktionsmaterialien: Untersuchungen mit Computertomographie N2 - In diesem Vortrag wird am Beispiel magnetischer Werkstoffe zur Energiewandlung gezeigt, wie röntgentomographische Untersuchungen zur Strukturaufklärung in Kompositen und Massivproben beitragen können. Die Bauteile werden zerstörungsfrei geprüft, um Risse, Poren und andere Defekte und ihren Einfluss auf die funktionellen Eigenschaften dreidimensional und rechtzeitig im Lebenszyklus des Werkstoffs zu charakterisieren. Kombiniert man Mikrotomographie mit anderen Methoden der magnetischen Werkstoffcharakterisierung, lassen sich einzigartige Aussagen über den Aufbau und die funktionellen Eigenschaften treffen. T2 - Werkstoffwoche CY - Dresden, Germany DA - 18.09.2019 KW - X-Ray Imaging KW - Additive Manufacturing KW - Magnetocaloric KW - Material Science KW - Non-Destructive testing PY - 2019 AN - OPUS4-50175 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zemke, F. A1 - Schölch, V. A1 - Bekheet, M.F. A1 - Schmidt, Franziska T1 - Surfactant-assisted sol–gel synthesis of mesoporous bioactive glass microspheres N2 - Spherical mesoporous bioactive glasses in the silicon dioxide (SiO2)-phosphorus pentoxide (P2O5)–calcium oxide (CaO) system with a high specific surface area of up to 300m2/g and a medium pore radius of 4 nm were synthesized by using a simple one-pot surfactant-assisted sol–gel synthesis method followed by calcination at 500–700°C. The authors were able to control the particle properties by varying synthesis parameters to achieve microscale powders with spherical morphology and a particle size of around 5–10 mm by employing one structure-directing agent. Due to a high Calcium oxide content of 33·6mol% and a phosphorus pentoxide content of 4·0mol%, the powder showed very good bioactivity up to 7 d of immersion in simulated Body fluid. The resulting microspheres are promising materials for a variety of life science applications, as further processing – for example, granulation – is unnecessary. Microspheres can be applied as materials for powder-based additive manufacturing or in stable suspensions for drug release, in bone cements or fillers. KW - bioactive KW - biomaterials KW - bone PY - 2019 U6 - https://doi.org/10.1680/jnaen.18.00020 SN - 2045-9831 SN - 2045-984X VL - 8 IS - 2 SP - 126 EP - 134 PB - ICE Publishing CY - London AN - OPUS4-50148 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Waske, Anja A1 - Funk, Alexander A1 - Jaenisch, Gerd-Rüdiger A1 - Zscherpel, Uwe A1 - Grunwald, Marcel A1 - Moosavi, Robabeh A1 - Redmer, Bernhard A1 - Nazarzadehmoafi, Maryam T1 - X-ray non-destructive testing of materials and composites N2 - Using magnetic materials for energy conversion as an example, this lecture shows how X-ray tomography investigations can contribute to structure elucidation in composites and solid samples. The components are tested non-destructively in order to characterize cracks, pores and other defects and their influence on the functional properties three-dimensionally and in good time in the life cycle of the material. If you combine microtomography with other methods of magnetic material characterization, you can make unique statements about the structure and the functional properties. T2 - TU Chemnitz Vortrag CY - Chemnitz, Germany DA - 04.11.2019 KW - X-Ray Imaging KW - Additive Manufacturing KW - Materials Science KW - Non-destructiv testing PY - 2019 AN - OPUS4-50150 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Waske, Anja A1 - Funk, Alexander A1 - Moosavi, Robabeh A1 - Redmer, Bernhard A1 - Nazarzadehmoafi, Maryam A1 - Jaenisch, Gerd-Rüdiger A1 - Zscherpel, Uwe T1 - X-ray non-destructive testing of materials and composites N2 - Using magnetic materials for energy conversion as an example, this lecture shows how X-ray tomography investigations can contribute to structure elucidation in composites and solid samples. The components are tested non-destructively in order to characterize cracks, pores and other defects and their influence on the functional properties three-dimensionally and in good time in the life cycle of the material. If you combine microtomography with other methods of magnetic material characterization, you can make unique statements about the structure and the functional properties. T2 - Dcms CY - Stockholm, Sweden DA - 28.08.2019 KW - X-Ray imaging KW - Additive Manufacturing KW - Magnetocoloric KW - Material Science KW - Non-destructive testing PY - 2019 AN - OPUS4-50151 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Waske, Anja T1 - Properties of powder-in-tube formed magnetocaloric materials N2 - This talk gives an overview of the shaping options for magnetocaloric materials. We have shown that powder-in-tube processing of these functional materials is a straightforward and efficient way to obtain wires and stacked structures for heat exchange. T2 - Eingeladener Vortrag / Symposiumsorganisation und Vortrag CY - Stockholm, Sweden DA - 05.09.2019 KW - X-Ray imaging KW - Additive Manufacturing KW - Magnetocaloric KW - Material Science KW - Non-Destructive testing PY - 2019 AN - OPUS4-50177 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Waske, Anja T1 - Magnetocaloric materials for cooling and harvesting of low-grade waste heat N2 - To date, there are very few technologies available for the conversion of low-temperature waste heat into electricity. Thermomagnetic generators are one approach proposed more than a century ago. Such devices are based on a cyclic change of magnetization with temperature. For thermomagnetic materials, we used a commercial magnetocaloric alloy with a transition temperature of 300 K. T2 - Symposiumsorganisation und Vortrag CY - Stockholm, Sweden DA - 05.09.2019 KW - X-Ray imaging KW - Energy harvesting KW - Additive Manufacturing KW - Magnetocaloric KW - Material Science KW - Non-Destructive testing PY - 2019 AN - OPUS4-50178 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Waske, Anja T1 - Mikro-Computertomographie für die zerstörungsfreie Untersuchung von Pulvern und additiv gefertigten Bauteilen N2 - In diesem Vortrag wird am Beispiel magnetischer Werkstoffe zur Energiewandlung gezeigt, wie röntgentomographische Untersuchungen zur Strukturaufklärung in Kompositen und Massivproben beitragen können. Die Bauteile werden zerstörungsfrei geprüft, um Risse, Poren und andere Defekte und ihren Einfluss auf die funktionellen Eigenschaften dreidimensional und rechtzeitig im Lebenszyklus des Werkstoffs zu charakterisieren. Kombiniert man Mikrotomographie mit anderen Methoden der magnetischen Werkstoffcharakterisierung, lassen sich einzigartige Aussagen über den Aufbau und die funktionellen Eigenschaften treffen. T2 - TU München Vortragsreihe CY - Munich, Germany DA - 24.01.2019 KW - X-Ray Imaging KW - Additive Manufacturing KW - Material Science KW - Non-destructive testing PY - 2019 AN - OPUS4-50156 LA - mul AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Waske, Anja T1 - Mikrocomputertomographie für die zerstörungsfreie Untersuchung von Pulvern und additiv gefertigten Bauteilen N2 - In diesem Vortrag wird am Beispiel magnetischer Werkstoffe zur Energiewandlung gezeigt, wie röntgentomographische Untersuchungen zur Strukturaufklärung in Kompositen und Massivproben beitragen können. Die Bauteile werden zerstörungsfrei geprüft, um Risse, Poren und andere Defekte und ihren Einfluss auf die funktionellen Eigenschaften dreidimensional und rechtzeitig im Lebenszyklus des Werkstoffs zu charakterisieren. Kombiniert man Mikrotomographie mit anderen Methoden der magnetischen Werkstoffcharakterisierung, lassen sich einzigartige Aussagen über den Aufbau und die funktionellen Eigenschaften treffen. T2 - Seminar Yxlon CY - Dresden, Germany DA - 15.05.2019 KW - X-Ray imaging KW - Additive Manufacturing KW - Materials Science KW - Non-destructive testing PY - 2019 AN - OPUS4-50157 LA - mul AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zocca, Andrea A1 - Lüchtenborg, Jörg A1 - Lima, P. A1 - Diener, S. A1 - Katsikis, N. A1 - Günster, Jens T1 - Additive Manufacturing of Silicon Carbide by LSD-print N2 - The layerwise slurry deposition (LSD) has been established in the recent years as a method for the deposition of ceramic powder layers. The LSD consists in the layer-by-layer deposition of a ceramic slurry by means of a doctor blade; each layer is sequentially deposited and dried to achieve a highly packed powder layer. The combination of binder jetting and LSD was introduced as a novel technology named LSD-print. The LSD-print takes advantage of the speed of binder jetting to print large areas, parallel to the flexibility of the LSD, which allows the deposition of highly packed powder layers with a variety of ceramic materials. The working principle and history of the LSD technology will be shortly discussed. A theoretical background will be also discussed, highlighting advantages and drawbacks of the LSD compared to the deposition of a dry powder. The last part of the talk will be dedicated to highlight recent results on the LSD-print of SiSiC of geometrically complex components, in collaboration between BAM and HC Starck Ceramics GmbH. Density, microstructure and mechanical properties of LSD-printed and isostatic pressed samples will be discussed and compared. T2 - XVI ECerS CONFERENCE CY - Torino, Italy DA - 16.06.2019 KW - Additive Manufacturing KW - Silicon Carbide KW - 3D printing KW - Layerwise Slurry Deposition PY - 2019 AN - OPUS4-49220 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zocca, Andrea A1 - Mühler, T. A1 - Lima, P. A1 - Günster, Jens A1 - Lüchtenborg, Jörg T1 - Advanced ceramics by powder bed 3D printing N2 - Powder bed -based technologies are amongst the most successful Additive Manufacturing (AM) techniques. "Selective laser sintering/melting" (SLS/SLM) and "binder jetting 3D printing" (3DP) especially are leading AM technologies for metals and polymers, thanks to their high productivity and scalability. However, the flowability of the powder used in these processes is essential to achieve defect-free and densely packed powder layers. For standard powder bed AM technologies, this limits the use of many raw materials which are too fine or too cohesive. This presentation will discuss the possibilities to either optimize the powder raw material to adapt it to the specific AM process, or to develop novel AM technologies which are able to process powders in a wider range of conditions. In this context, the "layerwise slurry deposition" (LSD) has been developed as a layer deposition method which enables the use of very fine ceramic particles. T2 - Smart Made CY - Osaka, Japan DA - 01.09.2019 KW - Additive Manufacturing KW - Ceramic KW - Powder KW - Layerwise slurry deposition KW - 3D printing PY - 2019 AN - OPUS4-49221 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wilbig, Janka A1 - Borges de Oliveira, F. A1 - Schwentenwein, M. A1 - Günster, Jens T1 - Quality Aspects of Additively Manufactured Medical Implants - Defect Detection in Lattice Parts N2 - Additive Manufacturing technologies are developing fast to enable a rapid and flexible production of parts. Tailoring products to individual needs is a big advantage of this technology, which makes it of special interest for the medical device industry and the direct manufacturing of final products. Due to the fast development, standards to assure reliability of the AM process and quality of the printed products are often lacking. The EU project Metrology for Additively Manufactured Medical Implants (MetAMMI) is aiming to fill this gap by investigating alternative and cost efficient non-destructive measurement methods. T2 - yCAM Forum CY - Mons, Belgium DA - 03.03.2019 KW - Additive Manufacturing KW - Metrology PY - 2019 AN - OPUS4-49141 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hlavacek, Petr A1 - Gluth, Gregor A1 - Lüchtenborg, Jörg A1 - Sturm, Patrick A1 - Mühler, T. A1 - Kühne, Hans-Carsten A1 - Günster, Jens T1 - A Novel Approach to Additive Manufacturing of Alkali-activated Materials: Laser-induced Slip Casting (LIS) of Lithium Aluminate/Silica Slurries N2 - Additive manufacturing of alkali-activated materials currently attracts a lot of attention, because of the possibility to produce customized high-performance elements for a range of applications, potentially being more resource-efficient than conventionally produced parts. Here, we describe a new additive manufacturing process for alkali-activated materials that is based on selective laser-heating of lithium aluminate/microsilica slurries. The new process-material combination allows to manufacture elements with complex geometries at high building rates and high accuracy. The process is versatile and transferrable to structures of sizes differing by orders of magnitude. The mechanical strength of the obtained materials was in the range of values reported for conventional metakaolin-based geopolymers, and superior to what has been hitherto reported for alkali-activated materials produced by additive manufacturing. This mechanical performance was obtained despite the fact that the degree of reaction of the lithium aluminate and the microsilica was low, suggesting that significant reactions took place only at the surface of the microsilica particles. KW - Laser-induced slip casting KW - Alkali-activated materials KW - Additive manufacturing PY - 2019 U6 - https://doi.org/10.29272/cmt.2018.0011 SN - 2612-4882 VL - 1 IS - 2 SP - 138 EP - 144 PB - Techna Group AN - OPUS4-49142 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mishurova, Tatiana A1 - Artzt, K. A1 - Haubrich, J. A1 - Requena, G. A1 - Bruno, Giovanni T1 - New aspects about the search for the most relevant parameters optimizing SLM materials N2 - Using non-optimum combination of manufacturing parameters in selective laser melting (SLM) may lead to reduction of quality of component: defects generation, distortion of geometry and even cracking. Usually, the optimization of parameters is performed by changing volumetric energy density (Ev) and selecting parameters giving low porosity values. However, not only low porosity but also stable microstructure and low residual stresses will help to achieve advanced mechanical behavior of the component. In present work, we investigated cuboid-shaped Ti-6Al-4V samples produced with different manufacturing parameters. The parameters leading to the same Ev were considered as well as parameters which are not included in Ev. Residual stresses in subsurface region were investigated by synchrotron X-ray diffraction, which allows to penetrate around 100 µm from the surface therefore overcome the problem of high roughness of SLM components without additional sample preparation. Only tensile stresses were found along the building direction, that can play critical role especially during cyclic loading. The pore shape and spatial distribution obtained by computed tomography varied for samples produced with the same Ev. However, by using some process parameters it was possible to decrease residual stresses and obtain uniform α+β Ti microstructure and relatively low porosity. Additionally, it was found that not included in Ev (e.g., base plate position, focus distance) should be considered as additional manufacturing parameters during SLM process. T2 - ESIAM 2019 CY - Trondheim, Norway DA - 09.09.2019 KW - Additive manufacturing KW - Computed tomography KW - Residual stress PY - 2019 AN - OPUS4-49216 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Metz, Christian A1 - Franz, Philipp A1 - Fischer, C. A1 - Wachtendorf, Volker A1 - Maierhofer, Christiane T1 - Zerstörungsfreie Charakterisierung der Alterung additiv gefertigter Kunststoffbauteile N2 - Das vorgestellte Projekt beschäftigt sich mit den optischen, thermophysikalischen und mechanischen Materialeigenschaften von additiv gefertigten Kunststoffteilen und deren Alterung. Dazu wurden mittels Fused Layer Modeling (FLM) Probekörper aus ABS hergestellt, die anschließend für drei Monate einer künstlichen Bewitterung unterzogen wurden. Die dabei erzeugte definierte Alterung wurde nach drei Zeitabschnitten jeweils mit zerstörungsfreien Methoden charakterisiert. Dabei wurde neben den spektroskopischen Standardmethoden auch die aktive Thermografie eingesetzt. Die Ergebnisse zeigen, dass sich mittels der Thermografie sowohl chemische Veränderungen als auch mechanische Schädigungen (Fehlstellen) darstellen lassen. Die Bewitterung beeinflusst die Teiltransparenz der Proben zumindest im sichtbaren Spektralbereich, was bei der Charakterisierung der Fehlstellen, die mittels optisch angeregter aktiver Thermografie detektiert wurden, berücksichtigt werden muss. T2 - DGZfP-Jahrestagung 2019 CY - Friedrichshafen, Germany DA - 27.05.2019 KW - 3D Druck KW - Additive Fertigung KW - Thermografie KW - Polymere KW - Künstliche Bewitterung PY - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-491561 UR - https://jt2019.dgzfp.de/Portals/jt2019/bb/Di.3.B.1.pdf SN - 978-3-947971-02-2 VL - 171 SP - 1 EP - 8 PB - Deutsche Gesellschaft für Zerstörungsfreie Prüfung (DGZfP) CY - Berlin AN - OPUS4-49156 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Scheuschner, Nils A1 - Altenburg, Simon A1 - Straße, Anne A1 - Gumenyuk, Andrey A1 - Maierhofer, Christiane T1 - In-situ thermographic monitoring of the laser metal deposition process N2 - By allowing economic on demand manufacturing of highly customized and complex workpieces, metal based additive manufacturing (AM) has the prospect to revolutionize many industrial areas. Since AM is prone to the formation of defects during the building process, a fundamental requirement for AM to become applicable in most fields is the ability to guarantee the adherence to strict quality and safety standards. A possible solution for this problem lies in the deployment of various in-situ monitoring techniques. For most of these techniques, the application to AM is still very poorly understood. Therefore, the BAM in its mission to provide safety in technology has initiated the project “Process Monitoring of AM” (ProMoAM). In this project, a wide range of in-situ process monitoring techniques, including active and passive thermography, optical tomography, optical emission and absorption spectroscopy, eddy current testing, laminography, X-ray backscattering and photoacoustic methods, are applied to laser metal deposition (LMD), laser powder bed fusion and wire arc AM. Since it is still unclear which measured quantities are relevant for the detection of defects, these measurements are performed very thoroughly. In successive steps, the data acquired by all these methods is fused and compared to the results of reference methods such as computer tomography and ultrasonic immersion testing. The goal is to find reliable methods to detect the formation of defects during the building process. The detailed acquired data sets may also be used for comparison with simulations. Here, we show first results of high speed (> 300 Hz) thermographic measurements of the LMD process in the SWIR range using 316L as building material. For these experiments, the camera was mounted fixed to the welding arm of the LMD machine to keep the molten pool in focus, regardless of the shape of the specimen. As the thermograms do not contain any information about the current spatial position during the building process, we use an acceleration sensor to track the movement and synchronize the measured data with the predefined welding path. This allows us to reconstruct the geometry of the workpieces and assign the thermographic data to spatial positions. Furthermore, we investigate the influence of the acquisition wavelength on the thermographic data by comparing measurements acquired with different narrow bandpass filters (50 nm FWHM) in a spectral range from 1150 nm to 1550 nm. This research was funded by BAM within the Focus Area Materials. T2 - Sim-AM 2019 - 2. International Conference on Simulation for Additive Manufacturing CY - Pavia, Italy DA - 11.09.2019 KW - Additive manufacturing KW - 3D printing KW - Thermography KW - Direct energy deposition KW - Laser Metal Deposition KW - 3D Druck KW - Laser Pulver Auftragsschweißen KW - Additive Fertigung KW - Thermografie PY - 2019 AN - OPUS4-49070 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Biegler, M. A1 - Khazan, P. A1 - Gazen, M. A1 - Rethmeier, Michael T1 - Improvement of numerical simulation model setup and calculation time in additive manufacturing-laser-metal-deposition components with an advanced modelling strategy N2 - Rapid localized heating and cooling during additive manufacturing using laser deposition method (LMD) lead to loss of dimensional accuracy as well as cracking of built parts. Finite-Element welding simulations allow prediction of geometrical deviations and accumulated residual stresses as well as their optimization before conducting experiments. Due to the great length of stacked welds, calculation times for fully transient thermomechanical simulations are currently long, the calculation stability suffers from the high number of contact bodies in the model and the modelling effort is high, as the geometries need to be sliced and positioned layer-wise. In this contribution, an integrated modelling approach is demonstrated for a thin-walled LMD component made from 30 layers of 1.4404 (316L) stainless steel: Instead of the layer-by-layer modelling strategy commonly found in the literature, the whole component mesh is kept in one piece and the fully transient, layer-by-layer material deposition is implemented via element sets. In contrast to prior simulations, nonlinear contact between the layers does not have to be considered, significantly decreasing calculation times. The calculated distortions are compared to recently published, in-situ digital image correlation (DIC) measurements as well as numerical simulations conducted with the established layer-wise modelling strategy to judge result quality. Finally, the improvement in calculation time and ease-of-use is compared between both modelling approaches and conclusions regarding future usage for industrial-scale components are drawn. T2 - 12th International Seminar ‘Numerical Analysis of Weldability' CY - Graz, Austria DA - 23.09.2018 KW - Additive Manufacturing KW - Laser Metal Deposition KW - Distortion simulation KW - Calculation time KW - Directed energy deposition KW - Efficient modelling PY - 2019 SN - 978-3-85125-615-4 SN - 978-3-85125-616-1 U6 - https://doi.org/10.3217/978-3-85125-615-4-52 SN - 2410-0544 VL - 2019 SP - 979 EP - 1003 PB - Verlag der Technischen Universität Graz CY - Graz AN - OPUS4-49274 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Werner, Tiago A1 - Madia, Mauro A1 - Zerbst, Uwe A1 - Sprengel, Maximilian A1 - Ulbricht, Alexander A1 - Evans, Alexander T1 - Experimental investigation on cyclic R-curves for additively manufactured 316L steel N2 - The present study deals with the experimental characterization of short crack propagation in SLM (selective-laser-melting) manufactured stainless steel. More specifically, the determination of cyclic R-curves is discussed. This describes the dependency of the crack propagation threshold on crack growth during the short crack propagation stage. For metals, the threshold, starting at a material-intrinsic value, increases until it reaches a value independent of the crack length due to crack closure phenomena which build up at that stage. The cyclic R-curve, when used in the frame of a cyclic R curve analysis, characterizes the resistance of a material to fatigue crack growth and the ability to arrest a physically short crack. Thus, it is the link between classical fatigue and fracture mechanics. In the high-cycle-fatigue range, the short crack propagation stage dominates the overall lifetime, i.e., the number of cycles until failure. Below the fatigue limit crack arrest of hitherto propagable micro-cracks will occur. The effort for the experimental characterization of the short fatigue crack propagation behavior and the cyclic R-curve is very high compared to experiments on long crack propagation. A very exact measurement of crack extension is required, since small increments need to be depicted. Pre-cracking must leave a closure free initial crack, since closure must be build up only by the cyclic R-curve. The closure-free status is achieved by compression pre-cracking. The aim of the present study is an insight into the influence of an AM process on the short crack propagation threshold. Cyclic R-curves are experimentally determined at different load-ratios for 316L austenitic steel specimens produced by SLM and conventional manufacturing. Residual stresses are measured in the crack plane and their influence on the cyclic R-curve is discussed. T2 - ESIAM19 CY - Trondheim, Norway DA - 09.09.2019 KW - fatigue crack growth KW - Additive Manufacturing KW - 316L KW - Cyclic R-curve KW - Laser Powder Bed Fusion KW - AM KW - L-PBF PY - 2019 AN - OPUS4-49412 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Madia, Mauro A1 - Werner, Tiago A1 - Sprengel, Maximilian A1 - Evans, Alexander A1 - Serrano Munoz, Itziar A1 - Zerbst, Uwe T1 - Effect of residual stresses on crack propagation in Laser Beam Melted (LBM) additively manufactured 316L N2 - Residual stresses count among the most limiting factors in the application of additively manufactured materials in safety relevant components subject to cyclic loading. The source of such stresses is inherent in the manufacturing Laser Beam Melted (LBM) process due to rapid cooling and solidification and their distribution in the specimen or component is not homogeneous, but it is usually characterized by high gradients. Moreover, the magnitude of the residual stress field depends very much on the orientation, being higher in the build direction. Many works in the literature advise to carry out a post-LBM treatment to relieve residual stresses, even though particular attention should be paid in choosing the parameters for the thermal treatment in order to avoid microstructural/phase transformations, which would affect greatly the mechanical properties of the material. Particularly in the case of the austenitic stainless steel 316L, it has been shown that annealing at high temperatures (above 900°C), besides relieving the residual stresses, may cause recrystallization, grain growth and even phase transformation. In contrast, if a too low annealing temperature is chosen in order to preserve the microstructure, the residual stresses cannot be completely relieved. This work aims to address the effect of residual stresses on short and long crack propagation for SEN(B) specimens made of 316L fabricated by LBM, in which notches have been machined by electro-discharge machining (EDM) on the mid-plane, perpendicular to the build direction. The specimens underwent different annealing treatments in inert atmosphere, in which the maximum temperature has been varied up to 900°C. The amount of residual stresses and their distribution has been measured by X-ray and neutron diffraction and the specimens have been subject to cyclic loading in a resonant testing machine. The tests show a massive influence of the residual stresses in the build direction on the resistance to fatigue crack propagation of additively manufactured 316L. Finally, a comparison with conventionally manufactured 316L is presented. T2 - Fourth Symposium on Structural Integrity of Additive Manufactured Materials and Parts CY - Gaylord National Resort And Convention Center; National Harbor, MD, USA DA - 07.10.2019 KW - Fatigue Crack Propagation KW - Additive Manufacturing KW - Residual Stresses PY - 2019 AN - OPUS4-49415 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Werner, Tiago ED - Madia, Mauro ED - Zerbst, Uwe T1 - Experimental investigation on cyclic R-curves for additively manufactured 316L steel N2 - The present study deals with the experimental characterization of short crack propagation in SLM (selective-laser-melting) manufactured stainless steel. More specifically, the determination of cyclic R-curves is discussed. This describes the dependency of the crack propagation threshold on crack growth during the short crack propagation stage. For metals, the threshold, starting at a material-intrinsic value, increases until it reaches a value independent of the crack length due to crack closure phenomena which build up at that stage. The cyclic R-curve, when used in the frame of a cyclic R curve analysis, characterizes the resistance of a material to fatigue crack growth and the ability to arrest a physically short crack. Thus, it is the link between classical fatigue and fracture mechanics. In the high-cycle-fatigue range, the short crack propagation stage dominates the overall lifetime, i.e., the number of cycles until failure. Below the fatigue limit crack arrest of hitherto propagable micro-cracks will occur. The effort for the experimental characterization of the short fatigue crack propagation behavior and the cyclic R-curve is very high compared to experiments on long crack propagation. A very exact measurement of crack extension is required, since small increments need to be depicted. Pre-cracking must leave a closure free initial crack, since closure must be build up only by the cyclic R-curve. The closure-free status is achieved by compression pre-cracking. The aim of the present study is an insight into the influence of an AM process on the short crack propagation threshold. Cyclic R-curves are experimentally determined at different load-ratios for 316L austenitic steel specimens produced by SLM and conventional manufacturing. Residual stresses are measured in the crack plane and their influence on the cyclic R-curve is discussed. T2 - ESIAM19 CY - Trondheim, Norway DA - 09.09.2019 KW - Fatigue crack growth KW - Additive Manufacturing KW - 316L KW - Cyclic R-curve KW - Laser Powder Bed Fusion KW - AM KW - L-PBF PY - 2019 SP - 1 EP - 8 AN - OPUS4-49416 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Werner, Tiago A1 - Madia, Mauro A1 - Zerbst, Uwe T1 - Investigation on short crack propagation in additive manufactured steel N2 - The assessment of high cycle fatigue in additive manufactured (AM) components is a challenge due to complex microstructure, anisotropic material behavior, residual stresses and porosity / lack-of-fusion defects. Due to the statistical distribution of defects, a high scatter band of S-N-curves is expected. The fracture mechanics-based fatigue assessment of additive manufactured components must consider the propagation of short cracks emanating from defects. In this work, the fatigue crack propagation resistance in the short and large crack regimes of additive and conventionally manufactured AISI 316L stainless steel is examined experimentally based on the cyclic R-curve. However, remaining residual stresses in the AM specimen lead to unexpected and dramatic crack-growth during the pre-cracking procedure. T2 - Workshop on Additive Manufacturing CY - BAM Berlin, Germany DA - 13.05.2019 KW - Fatigue crack growth KW - Additive Manufacturing KW - 316L KW - Cyclic R-curve KW - Laser Powder Bed Fusion KW - AM KW - L-PBF PY - 2019 AN - OPUS4-49419 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Charmi, Amir A1 - Falkenberg, Rainer A1 - Skrotzki, Birgit A1 - Ávila, Luis A1 - Sommer, Konstantin T1 - Virtual-lab-based determination of a macroscopic yield function for additively manufactured parts N2 - This work aims for an yield function description of additively manufactured (AM) parts of S316L steel at the continuum-mechanical macro-scale by means of so-called virtual experiments using a crystal plasticity (CP) model at meso-scale. Additively manufactured parts require the consideration of the specific process-related microstructure, which prevents this material to be macroscopically treated as isotropic, because of crystallographic as well as topological textures. EBSD/CT-Scans from in-house additively manufactured specimen extract the unique microstructural topology which is converted to a representative volume element (RVE) with grain structure and crystal orientations. Crystal plasticity model parameters on this RVE are calibrated and validated by means of mechanical testing under different texture angles. From virtual experiments on this RVE, yield loci under various loading conditions are simulated. The scale bridging from meso- to macro-scale is realised by the identification of the simulated yield loci as a modified anisotropic Barlat-type yield model representation. T2 - The First European Conference on Structural Integrity of Additively Manufactured Materials (ESIAM19) CY - Trondheim, Norway DA - 09.09.2019 KW - Virtual experiments KW - Additive manufacturing KW - Anisotropy KW - Crystal plasticity KW - Scale-bridging PY - 2019 AN - OPUS4-49376 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mohr, Gunther A1 - Altenburg, Simon A1 - Ulbricht, Alexander A1 - Hilgenberg, Kai T1 - In-situ defect detection in Laser Powder Bed Fusion (L-PBF) by using thermography and optical tomography N2 - Laser powder bed fusion (L-PBF) is one of the most promising additive manufacturing (AM) technologies for the production of complex metallic real part components. Due to the multitude of factors influencing process conditions and part quality and due to the layer-wise characteristic of the process, monitoring of process signatures seems to be mandatory in case of the production of safety critical components. Here, the iterative process nature enables unique access for in-situ monitoring during part manufacture. In this talk, the successful test of the synchronous use of a high-frequency infrared camera and a camera for long time exposure, working in the visible spectrum (VIS) and equipped with a near infrared filter (NIR), will be introduced as a machine manufacturer independent thermal detection monitoring set-up. Thereby, the synchronous use of an infrared camera and a VIS NIR camera combines the advantages of high framerate and high spatial resolution. The manufacture of a 316L stainless steel specimen, containing purposely seeded defects and volumes with forced changes of energy inputs, was monitored during the build. The measured thermal responses are analysed and compared with a defect mapping obtained by micro X-ray computed tomography (CT). The first results regarding methods for data analysis, derived correlations between measured signals and detected defects as well as sources of possible data misinterpretation are presented in this talk. T2 - 45. MPA Seminar - Fit for Future – Advanced Manufacturing Technologies, Materials and Lifetime CY - Stuttgart, Germany DA - 01.10.2019 KW - Data fusion KW - Laser Powder Bed Fusion (L-PBF) KW - Selective Laser Melting (SLM) KW - Additive Manufacturing (AM) KW - Process monitoring KW - Infrared thermography KW - Optical tomography KW - Computed tomography (CT) KW - Lack-of-fusion PY - 2019 AN - OPUS4-49386 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bruno, Giovanni A1 - Thiede, Tobias A1 - Mishurova, Tatiana A1 - Ulbricht, Alexander A1 - Sprengel, Maximilian A1 - Kromm, Arne A1 - Serrano Munoz, Itziar A1 - Evans, Alexander T1 - Diffraction-based experimental determination of Residual Stress in AM parts: A critical discussion N2 - Additive manufacturing (AM) technologies have experienced an exceedingly rapid growth, not always paralleled by the knowledge about the materials properties and performance. In particular, residual stress (RS) has been soon recognized as an issue in AM parts, so that parts are always post-heat-treated. Moreover, much effort has been spent on simulating RS, especially using finite element methods. The experimental determination of RS has thereby become increasingly important, and even simple data constitute (to date) a piece of knowledge to fill the above-mentioned gap. In particular, diffraction methods, which are basically non-destructive, offer enormous possibilities to gain knowledge on real components, since neutrons and synchrotron radiation can penetrate even heavy metals up to several millimeters (or even centimeters). Indeed, some success has been obtained, and the knowledge about the origins of the RS fields, as well as their variation as a consequence of heat or mechanical treatments, has been greatly expanded. In this talk, a few success stories will be outlined. It will be shown how the determination of RS in metallic parts (with focus on those produced by laser powder bed fusion) has even allowed showing that process parameters that were considered unimportant play a major role in the onset of stress. However, while RS is starting to be considered in the part design, deposition strategy (e.g. build plate temperature), and even in the definition of the relevant metric to assess the quality of a part, much is still to be investigated about the hypotheses underlying its experimental determination. Therefore, some aspects to be aware of, or even to date unclear will also be discussed, such as the determination of the reference unstrained samples and of the principal axes of stress. All these aspects will draw the path towards a comprehensive understanding of the process-structure-performance relationships in AM materials and parts. T2 - MSTAM 2019 CY - Bremen, Germany DA - 10.12.2019 KW - Elastic Constants KW - Residual Stress KW - Additive Manufacturing KW - Neutron Diffraction PY - 2019 AN - OPUS4-50020 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Waske, Anja A1 - Funk, Alexander A1 - Jaenisch, Gerd-Rüdiger A1 - Zscherpel, Uwe A1 - Moosavi, Robabeh A1 - Grunwald, Marcel A1 - Redmer, Bernhard A1 - Nazarzadehmoafie, Maryam T1 - X-ray non-destructive testing of materials and composites N2 - Functional materials for energy conversion are important technology drivers needed for the implementation of low carbon energy. Therefore, researchers commonly focus on improving the intrinsic properties of a functional material. However, for applications, the extrinsic properties are at least as important as the intrinsic ones. Consequently, it is important to investigate and understand the external and internal structure of semi-finished products and especially defect dependent properties. The extrinsic properties may change during application and the life cycle of the material as well as through processing and molding steps. Our studies show how X-ray tomographic (XCT) investigations can contribute to structure investigations in composites and massive samples using the example of magnetic materials for energy conversion. The components are tested non-destructively in 3D in order to localize and characterize cracks, pores, inclusions as well as other defects and their influence on the functional properties and also “in-time” during the life cycle of the material. Exsitu and in-situ experiments performed with non-destructive XCT are predestinated to follow damaging mechanisms of materials under certain load conditions, atmospheres or liquids, e.g. went through several working cycles of a functional material. By combining microtomography with other methods of magnetic and classical material characterization, unique statements about the structure and the functional properties can be made. From the applications point of view, sometimes complex, three-dimensional geometries are needed to fully exploit the functional properties of the materials, e.g. to ensure a high surface area for heat exchange. Since many functional materials are brittle and difficult to form, shaping is often a big challenge. In principle, additive manufacturing processes offer the possibility to produce complex, porous components from poorly formable alloys. If all stages of additive manufacturing are accompanied by X-ray tomographic imaging, the process of finding the optimal parameters for material processing can be significantly accelerated. Based on the quality control of the initial powder material used and also investigations of the shape and arrangement of defects within the molten structure and their relationship with the melting path scanning strategy, Xray tomography has proven to be an ideal tool for additive manufacturing, even for functional materials. Overall, tomographic methods are important tools for the development of functional materials to application maturity. T2 - Physikalisches Kolloquium TU Chemnitz CY - Chemnitz, Germany DA - 04.12.2019 KW - Non-destructuve testing KW - X-ray imaging KW - Additive manufacturing KW - Materials science PY - 2019 AN - OPUS4-50100 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Biegler, M. A1 - Wang, J. A1 - Graf, B. A1 - Rethmeier, Michael T1 - Automated tool-path generation for rapid manufacturing and numerical simulation of additive manufacturing LMD geometries N2 - In additive manufacturing (AM) Laser Metal Deposition (LMD), parts are built by welding layers of powder feedstock onto a substrate. Applications for steel powders include forging tools and structural components for various industries. For large parts, the choice of tool-paths influences the build-rate, the part performance and the distortions in a highly geometry-dependent manner. With weld-path lengths in the range of hundreds of meters, a reliable, automated tool path generation is essential for the usability of LMD processes. In this contribution, automated tool-path generation approaches are shown and their results are discussed for arbitrary geometries. The investigated path strategies are the classical approaches: “Zig-zag-” and “contour-parallel-strategies”. After generation, the tool-paths are automatically formatted into g-code for experimental build-up and ASCII for a numerical simulation model. Finally, the tool paths are discussed in regards to volume-fill, microstructure and porosity for the experimental samples. This work presents a part of the IGF project 18737N “Welding distortion simulation” (FOSTA P1140) T2 - 4th European Steel Technology and Application Days CY - Dusseldorf, Germany DA - 24.06.2019 KW - Additive manufacturing KW - Directed Energy Deposition KW - Path planning KW - DED KW - Mechanical properties KW - Porosity PY - 2019 SP - 1 AN - OPUS4-50045 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Laquai, René A1 - Müller, Bernd R. A1 - Kasperovich, G. A1 - Requena, G. A1 - Haubrich, J. A1 - Bruno, Giovanni T1 - Classification of defect types in SLM Ti-6Al-V4 by X-ray refraction topography N2 - Porosity in additively manufactured materials, such as laser powder bed fusion Ti-Al6-V4, can play an important role in their mechanical performance. Not only the total porosity but also the shape/morphology of the individual pores need to be considered. Therefore, it is necessary to determine the distributions of different defect types (especially fusing defects and keyhole pores) and their dependence on process parameters. We show that synchrotron X-ray refraction radiography allows analysis of large samples (up to several millimeters) without compromising the detectability of submicrometer defects. Correspondingly, a classification tool is introduced that is able to quantitatively distinguish defects such as keyhole pores and binding defects with a confidence level of 94 %, even when the shape cannot be discerned because of limited spatial resolution. KW - Additive manufacturing KW - Selective laser melting KW - X-ray refraction KW - Microscopy KW - Porosity KW - X-ray computed tomography KW - BAMline KW - Synchrotron Radiation PY - 2020 U6 - https://doi.org/10.1520/MPC20190080 SN - 2379-1365 VL - 9 IS - 1 SP - 82 EP - 93 PB - ASTM International CY - West Conshohocken, PA AN - OPUS4-50470 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Surmeneva, M. A1 - Koptyug, A. A1 - Khrapov, D. A1 - Ivanov, Yuriy A1 - Mishurova, Tatiana A1 - Evsevleev, Sergei A1 - Prymak, O. A1 - Loza, K. A1 - Epple, M. A1 - Bruno, Giovanni A1 - Surmenev, R. T1 - In situ synthesis of a binary Ti–10at% Nb alloy by electron beam melting using a mixture of elemental niobium and titanium powders N2 - This study reports the results of the preliminary assessment to fabricate Ti-10at% Nb alloy by electron beam melting (EBM®) from a blend of elemental Nb and Ti powders. The microstructure of the EBM-manufactured Ti-10at% Nb alloys is sensitive to the following factors: different sintering properties of Nb and Ti powders, powder particle properties, material viscosities at varying melt pool temperatures, β-stabilizer element content and the EBM® process parameters. Three phases were observed in as-manufactured Ti-10at% Nb alloy: μm-size Nb phase, a Nb-rich β-solid solution surrounding Nb phase, lamellar structured α-phase and β-solid solution with different distribution and volume fraction. Thus, the combination of powder particle characteristics, very short time material spends in molten condition and sluggish kinetics of mixing and diffusional process in Ti-Nb alloy results in heterogeneous microstructures depending on the local Nb content in the powder blend and the EBM® process conditions. KW - Additive manufacturing KW - Electron beam melting KW - Ti-Nb alloy KW - In situ alloying PY - 2020 U6 - https://doi.org/10.1016/j.jmatprotec.2020.116646 VL - 282 SP - 116646 PB - Elsevier B.V. AN - OPUS4-50457 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Markötter, Henning A1 - Gollwitzer, Christian A1 - Scholz, Philipp A1 - Ulbricht, Alexander A1 - Joshi, Yogita A1 - Weidner, Steffen T1 - Synchrotron based absorption edge tomography for the analysis of 3D printed polymer embedded MOF N2 - Absorption edge tomography, also known as differential tomography at absorption edges, is a method which exploits the sudden change of the attenuation coefficient, when the photon energy crosses the absorption edge of an element. Synchrotron radiation is the best source for absorption edge tomography, because of its small bandwidth, high intensity and easily adjustable photon energy. The synchrotron beamline BAMline at the synchrotron radiation facility BESSY II in Berlin, which is operated by the Bundesanstalt für Materialforschung und -prüfung (BAM), provides a monochromatized beam in a photon energy range from 5 keV up to 80 keV with a bandwidth of 2%, when the double multilayer monochromator is used. Together with the microtomography setup, this enables differential tomography with submicron resolution at the K edge of the elements from chromium up to the lanthanides, and up to uranium, when the L edges are used as well. In this work, metal organic frameworks (MOFs) embedded in polymer are characterized using differential tomography. MOFs are microporous structures of metal ions, coordinated by organic linker molecules, that can be used in a broad field of applications, especially in gas storage and catalysis. In this work, polymer embedded MOFs were extruded into filaments, which were subsequently used for 3d-printing to profit from the specific properties of the MOFs in polymeric materials combined with the arbitrary shapes provided by 3d-printing. For the extrusion, different polymer classes like ABS, polyester- and polyetherurethanes, as well as different MOFs (ZIF-8, ZIF-67, HKUST-1) were used to create MOF containing filaments with a nominal diameter of 3.0 mm. Differential tomography at the edges of the Zn, Co, and Cu was then used to find the distribution of the corresponding MOF in the filament and to analyze the shape of the inclusions. T2 - Beamline Jockey Workshop CY - Abingdon, Oxfordshire, UK DA - 19.02.2020 KW - Additive manufacturing KW - Absorption edge tomography KW - Metal organic framework KW - Synchrotron CT PY - 2019 AN - OPUS4-50350 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Biegler, M. A1 - Graf, B. A1 - Rethmeier, Michael T1 - Assessing the predictive capability of numerical additive manufacturing simulations via in-situ distortion measurements on a LMD component during build-up N2 - Due to rapid, localized heating and cooling, distortions accumulate in additive manufactured laser metal deposition (LMD) components, leading to a loss of dimensional accuracy or even cracking. Numerical welding simulations allow the prediction of these deviations and their optimization before conducting experiments. To assess the viability of the simulation tool for the use in a predictive manner, comprehensive systems as well as to choose the optimal product matches, product analysis methods are needed. Indeed, most of the known methods aim to analyze a product or one product family on the physical level. Different product families, however, may differ largely in terms of the number and nature of components. This fact impedes an efficient comparison and choice of appropriate product family combinations for the production system. A new methodology is proposed to analyze existing products in view of their functional and physical architecture. The aim is to Cluster these products in new assembly oriented product families for the optimization. KW - Laser metal deposition KW - Directed Energy Deposition KW - DED KW - Welding Simulation KW - Digital Image Correlation KW - Cimensional Accuracy PY - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-502567 VL - 74 SP - 158 EP - 162 PB - Elsevier AN - OPUS4-50256 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mohr, Gunther A1 - Altenburg, Simon A1 - Ulbricht, Alexander T1 - In situ thermography and optical tomography in LBM - comparison to CT N2 - - Successful proof of concept of synchronous in-situ monitoring of a L-PBF process by thermography and optical tomography - Examination method for data analysis - Identification of correlations between measured signals and defects - Identification of sources of misinterpreting T2 - Workshop on Additive Manufacturing: Process , materials , simulation & implants CY - Berlin, Germany DA - 13.05.2019 KW - Laser Powder Bed Fusion KW - Thermography KW - Optical Tomography KW - Computed Tomography KW - Additive Manufacturing KW - 3D printing PY - 2019 AN - OPUS4-48521 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zocca, Andrea A1 - Lima, P. A1 - Diener, S. A1 - Katsikis, N. A1 - Günster, Jens T1 - Additive manufacturing of SiSiC by layerwise slurry deposition and binder jetting (LSD-print) N2 - The current work presents for the first time results on the Additive Manufacturing of SiSiC complex parts based on the Layerwise Slurry Deposition (LSD) process. This technology allows to deposit highly packed powder layers by spreading a ceramic slurry and drying. The capillary forces acting during the process are responsible for the dense powder packing and the good joining between layers. The LSD process can be combined with binder jetting to print 2D cross-sections of an object in each successive layer, thus forming a 3D part. This process is named LSD-print. By LSD-print and silicon infiltration, SiSiC parts with complex geometries and features down to 1mm and an aspect ratio up to 4:1 could be demonstrated. The density and morphology were investigated for a large number of samples. Furthermore, the density and the mechanical properties, measured by ball-on-three-balls method, were in all three building directions close to isostatic pressed references. KW - Silicon Carbide KW - Additive Manufacturing KW - 3D printing KW - Layerwise slurry deposition KW - LSD print PY - 2019 U6 - https://doi.org/10.1016/j.jeurceramsoc.2019.05.009 VL - 2019 IS - 39 SP - 3527 EP - 3533 PB - Elsevier Ltd. AN - OPUS4-48546 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Metz, Christian A1 - Franz, Philipp A1 - Maierhofer, Christiane A1 - Wachtendorf, Volker A1 - Fischer, C. ED - Ziegahn, K.-F. T1 - Untersuchung der Beständigkeit additiv gefertigter Bauteile durch Thermografie nach künstlicher Bewitterung N2 - Additiv gefertigte Prüfkörper aus Polyamid 12 (Laser Sinter Verfahren) und Acrylnitril-Butadien-Styrol (Fused Layer Modeling Verfahren) wurden über 2000 Stunden künstlich bewittert und ihr Alterungsverhalten untersucht. Die Ergebnisse wurden anschließend mit denen von Prüfkörpern verglichen, welche auf dieselbe Weise künstlich bewittert, aber mittels konventionellem KunststoffSpritzguss hergestellt wurden. T2 - 48. Jahrestagung der GUS 2019 CY - Stutensee, Germany DA - 27.03.2019 KW - Polymere KW - Additive Fertigung KW - 3D Druck KW - Künstliche Bewitterung KW - Thermografie PY - 2019 SN - 978-3-9818507-3-4 VL - 48 SP - 207 EP - 216 CY - Pfinztal (Berghausen) AN - OPUS4-48502 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nazarzadehmoafi, Maryam A1 - Zscherpel, Uwe A1 - Altenburg, Simon A1 - Mohr, Gunther A1 - Maierhofer, Christiane A1 - Waske, Anja T1 - Detection of imprinted artificial defects in additively-manufactured samples by means of radiological inspections N2 - As a part of ProMoAM project, we are optimizing a prototype X-ray backscatter to reach NDT requirements, and thereafter to apply it for process monitoring. Moreover, we studied the capability of a radiography approach to detect artificial defects in AM components made by laser powder bed fusion (L-PBF). T2 - Workshop on Additive Manufacturing: Process, materials, simulation & implants CY - Berlin, Germany DA - 13.05.2019 KW - Additive manufacturing KW - NDT KW - Radiological inspections PY - 2019 AN - OPUS4-48515 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pauw, Brian Richard A1 - Topolniak, Ievgeniia A1 - Schenderlein, Matthias A1 - Sturm, Heinz T1 - Nano polymer (composite) printing N2 - This talk introduces the PolyPoly, a new device at BAM which enables the three-dimensional structuring of polymer nanocomposites with an extremely high resolution of 150x150x600 nm. Initial examples and findings will be shown. T2 - BAM-IFW Workshop CY - Dresden, Germany DA - 28.03.2019 KW - Multiphoton laser structuring KW - Polymer nanocomposites KW - 3d structuring KW - Additive manufacturing PY - 2019 AN - OPUS4-48041 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Uhlmann, E. A1 - Düchting, J. A1 - Petrat, T. A1 - Graf, B. A1 - Rethmeier, Michael T1 - Heat treatment of SLM-LMD hybrid components N2 - Additive manufacturing is no longer just used for the production of prototypes but already found its way into the industrial production. However, the fabrication of massive metallic parts with high geometrical complexity is still too time-consuming to be economically viable. The combination of the powder bed-based selective laser melting process (SLM), known for its geometrical freedom and accuracy, and the nozzle-based laser metal deposition process (LMD), known for its high build-up rates, has great potential to reduce the process duration. For the industrial application of the SLM-LMD hybrid process chain it is necessary to investigate the interaction of the processes and its effect on the material properties to guarantee part quality and prevent component failure. Therefore, hybrid components are manufactured and examined before and after the heat treatment regarding the microstructure and the hardness in the SLM-LMD transition zone. The experiments are conducted using the nickel-based alloy Inconel 718. T2 - LiM 2019 CY - München, Germany DA - 23.06.2019 KW - Additive Manufacturing KW - Selective Laser Melting KW - Hybrid components KW - Inconel 718 KW - Laser Metal Deposition PY - 2019 SP - 1 EP - 9 AN - OPUS4-48410 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Metz, Christian A1 - Franz, Philipp A1 - Maierhofer, Christiane A1 - Wachtendorf, Volker A1 - Fischer, C. T1 - Untersuchung der Beständigkeit additiv gefertigter Bauteile mit Thermografie nach künstlicher Bewitterung N2 - Additiv gefertigte Prüfkörper aus Polyamid 12 (Laser Sinter Verfahren) und Acrylnitril-Butadien-Styrol (Fused Layer Modeling Verfahren) wurden über 2000 Stunden künstlich bewittert und ihr Alterungsverhalten untersucht. Die Ergebnisse wurden anschließend mit denen von Prüfkörpern verglichen, welche auf dieselbe Weise künstlich bewittert, aber mittels konventionellem Kunststoff-Spritzguss hergestellt wurden. Die Erkenntnisse dienen für die Entwicklung einer Strategie für eine Qualitätskontrolle von additiv gefertigten Kunststoffteilen. T2 - 48. Jahrestagung der Gesellschaft für Umweltsimulation e.V. (GUS) CY - Stutensee-Blankenloch, Germany DA - 27.03.2019 KW - Additive Fertigung KW - Künstliche Bewitterung KW - Thermografie KW - Zerstörungsfreie Prüfung KW - Additive manufacturing KW - Kunststoffe PY - 2019 AN - OPUS4-48328 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Metz, Christian A1 - Franz, Philipp A1 - Maierhofer, Christiane A1 - Wachtendorf, Volker A1 - Fischer, C. T1 - Zerstörungsfreie Charakterisierung der Alterung additiv gefertigter Kunststoffbauteile N2 - Es wurden mittels Fused Layer Modeling (FLM) Probekörper aus ABS und mittels Laser Sintering (LS) Probekörper aus PA 12 hergestellt, die anschließend für drei Monate einer künstlichen Bewitterung unterzogen wurden. Die dabei erzeugte definierte Alterung wurde nach drei Zeitabschnitten jeweils mit zerstörungsfreien Methoden charakterisiert. Dabei wurde neben den spektroskopischen Standardmethoden auch die aktive Thermografie eingesetzt. Die Ergebnisse zeigen, dass sich mittels der Thermografie sowohl chemische Veränderungen als auch mechanische Schädigungen (Fehlstellen) darstellen lassen. Die Bewitterung beeinflusst die Teiltransparenz der Proben zumindest im sichtbaren Spektralbereich, was bei der Charakterisierung der Fehlstellen, die mittels optisch angeregter aktiver Thermografie detektiert wurden, berücksichtigt werden muss. Die Erkenntnisse dienen für die Entwicklung einer Strategie für eine Qualitätskontrolle von additiv gefertigten Kunststoffteilen. T2 - DACH-Jahrestagung 2019 - Zerstörungsfreie Materialprüfung CY - Friedrichshafen, Germany DA - 27.05.2019 KW - Additive Fertigung KW - Künstliche Bewitterung KW - Thermografie KW - Zerstörungsfreie Prüfung KW - additive manufacturing KW - Kunststoffe PY - 2019 AN - OPUS4-48331 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Evans, Alexander A1 - Bruno, Giovanni A1 - Sprengel, Maximilian A1 - Madia, Mauro A1 - Kromm, Arne T1 - Residual stresses in Laser Beam Melting (LBM) – Critical Review and outlook of activities at BAM N2 - Additive manufacturing (AM) technologies have experienced an exceedingly rapid growth, which is coupled with the knowledge about the resulting material properties and performance. In particular, residual stress (RS) was soon recognized as an important issue in AM parts, such that parts are usually subjected to a post build-heat-treated. Significant effort has been spent on simulations of RS in AM, especially using finite element methods. As a consequence, the experimental determination of RS has thereby become increasingly important as a validation tool for simulations, as well as a method for assessing the influence of process parameters. In particular, diffraction methods, which are fundamentally non-destructive, offer enormous possibilities to gain knowledge on the residual stress state in real components, since synchrotron radiation and neutrons can penetrate even heavy metals up to several millimeters or centimeters, respectively. Indeed, significant progress has been achieved, in the understanding of the origins of the RS fields as a function of process parameters, as well as their stability under thermal and/or mechanical exposure. In this paper, a few success stories will be outlined. It will be shown how the determination of RS in metallic parts (with the focus on those produced by laser powder bed fusion) has even revealed that process parameters that were previously considered unimportant (e.g. the position and orientation on the base plate) play a major role in the onset of residual stress accumulation. However, while RS characterization is starting to be considered in the component design, deposition strategy (e.g. build plate temperature), and even in the definition of the relevant metric to assess the quality of a part, much is still to be investigates about the hypotheses underlying its experimental determination. Therefore, some aspects to be aware of, or even those which to date are unclear, will also be discussed. These include the determination of the stress-free reference and of the principal axes of stress. All of these aspects will lead towards a comprehensive understanding of the process-structure-performance relationships in AM materials and parts. T2 - Fourth ASTM Symposium on Structural Integrity of Additive Manufactured Materials and Parts CY - Gaylord National Resort And Convention Center; National Harbor, MD DA - 07.10.2019 KW - Diffraction KW - Additive Manufacturing KW - Residual stress PY - 2019 AN - OPUS4-49367 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kempf, A. A1 - Hilgenberg, Kai T1 - Einfluss der Porosität auf die Duktilitätseigenschaften von additiv gefertigtem AlSi10Mg N2 - Die Werkstoffeigenschaften im selektiven Laserstrahlschmelz-Verfahren hergestellter Bauteile werden von einer Vielzahl technologischer Parameter beeinflusst, sodass sich die Fertigungsgüte verschiedener Anlagen voneinander unterscheiden kann. Vor diesem Hintergrund wurde in der vorliegenden Arbeit untersucht, inwiefern sich durch verschiedene nachgelagerte Wärmebehandlungen die Mikrostruktur und die quasistatischen Festigkeitseigenschaften von Proben aus der Aluminiumlegierung AlSi10Mg, die mit verschiedenen Anlagen, Pulvern, Belichtungsstrategien und Prozessparametern gefertigt wurden, harmonisieren lassen. Die Versuche zeigten u.a., dass die erheblichen Festigkeitsunterschiede im Ausgangszustand unabhängig von der angewendeten Wärmebehandlungsroute aufgehoben wurden. Dennoch wurden signifikante Unterschiede in der Duktilität ermittelt. Anhand umfangreicher Bruchflächenanalysen konnte nachgewiesen werden, dass die in der Bruchfläche ermittelte Porosität eine lineare Korrelation zu der Bruchdehnung aufwies. T2 - 5. Tagung des DVM-Arbeitskreises Additiv gefertigte Bauteile und Strukturen CY - Online meeting DA - 04.11.2020 KW - Duktilität KW - Additive Fertigung KW - Laser powder bed fusion KW - AlSi10Mg KW - Festigkeit PY - 2020 AN - OPUS4-51656 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kempf, A. A1 - Hilgenberg, Kai T1 - Einfluss der Porosität auf die Duktilitätseigenschaften von additiv gefertigtem AlSi10Mg N2 - Die Werkstoffeigenschaften im selektiven Laserstrahlschmelz-Verfahren hergestellter Bauteile werden von einer Vielzahl technologischer Parameter beeinflusst, sodass sich die Fertigungsgüte verschiedener Anlagen voneinander unterscheiden kann. Vor diesem Hintergrund wurde in der vorliegenden Arbeit untersucht, inwiefern sich durch verschiedene nachgelagerte Wärmebehandlungen die Mikrostruktur und die quasistatischen Festigkeitseigenschaften von Proben aus der Aluminiumlegierung AlSi10Mg, die mit verschiedenen Anlagen, Pulvern, Belichtungsstrategien und Prozessparametern gefertigt wurden, harmonisieren lassen. Die Versuche zeigten u.a., dass die erheblichen Festigkeitsunterschiede im Ausgangszustand unabhängig von der angewendeten Wärmebehandlungsroute aufgehoben wurden. Dennoch wurden signifikante Unterschiede in der Duktilität ermittelt. Anhand umfangreicher Bruchflächenanalysen konnte nachgewiesen werden, dass die in der Bruchfläche ermittelte Porosität eine lineare Korrelation zu der Bruchdehnung aufwies. T2 - 5. Tagung des Arbeitskreises Additiv gefertigte Bauteile und Strukturen CY - Online Meeting DA - 04.11.2020 KW - Wärmebehandlung KW - Additive Fertigung KW - Laser powder bed fusion KW - AlSi10Mg KW - Ringversuch PY - 2020 SN - 2509-8772 VL - 405 SP - 93 EP - 104 AN - OPUS4-51657 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - D'Accardi, E. A1 - Krankenhagen, Rainer A1 - Ulbricht, Alexander A1 - Palumbo, D. A1 - Galietti, U. T1 - Capability of active thermography to detect and localize pores in Metal Additive Manufacturing materials N2 - A powerful tool to understand, demonstrate and explain the limits of the pulsed technique in terms of detectability and localizability of AM keyhole pores has been assessed by comparing the active thermographic approach (both experimental and FEM simulations) to Computed Tomography results; ✓ µCT results demonstrate that the intended defect geometry is not achieved; indeed a network of voids (microdefects consisting of small sharp-edged hollows with a complicated, almost fractal, inner surface) was found; ✓ both Exp-PT and FEM results explains clearly why no indication of defect related to the thermal contrasts could be found during the investigation of an uncoated surface. However, the application of further data evaluations focusing on the thermal behavior and emissivity evaluation (PPT post data processing) enable the detection of some defects; ✓ coating facilitates a closer inspection of inner defects, but inhomogeneities of the coating could impair the spatial resolution and lead to the emergence of hotspots (the FEM simulation reached its limit with this extreme geometry where a 25 µm thin disc is considered at a 1 cm thick specimen in millisecond time resolution); ✓ both Exp-PT and FEM results allow the conclusion that very short pulses of 200 ms or shorter should be sufficient to detect these defects below, but near the surface; besides a short duration of the thermal phenomenon it should be emphasized, about 0.04 s (high frame rate camera); T2 - Convegno AIAS 2020 CY - Online meeting DA - 02.09.2020 KW - Additive Manufacturing KW - Laser powderbed fusion KW - Pores KW - Thermography PY - 2020 AN - OPUS4-51922 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - D'Accardi, E. A1 - Ulbricht, Alexander A1 - Krankenhagen, Rainer A1 - Palumbo, D. A1 - Galietti, U. T1 - Capability of active thermography to detect and localize pores in Metal Additive Manufacturing materials N2 - Active thermography is a fast, contactless and non-destructive technique that can be used to detect internal defects in different types of material. Volumetric irregularities such as the presence of pores in materials produced by the Additive Manufacturing processes can strongly affect the thermophysical and the mechanical properties of the final component. In this work, an experimental investigation aimed at detecting different pores in a sample made of stainless AISI 316L produced by Laser Powder Bed Fusion (L-PBF) was carried out using pulsed thermography in reflection mode. The capability of the technique and the adopted setups in terms of geometrical and thermal resolution, acquisition frequency and energy Density of the heating source were assessed to discern two contiguous pores as well as to detect a single pore. Moreover, a quantitative indication about the minimum resolvable pore size among the available and analysed defects was provided. A powerful tool to assess the Limits and the opportunities of the pulsed technique in terms of detectability and localizability was provided by comparing active thermography results to Computed Tomography as well as a related Finite Element Analysis (FEA) to simulate the pulsed heating transfer with Comsol. T2 - 49th Italian Association for Stress Analysis Conferencee (AIAS 2020) CY - Online meeting DA - 02.09.2020 KW - Additive manufacturing KW - Laser powderbed fusion KW - Pores KW - Thermography KW - Micro-CT PY - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-519231 VL - 1038 SP - 1 EP - 17 PB - Institute of Physics CY - London AN - OPUS4-51923 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Serrano Munoz, Itziar A1 - Mishurova, Tatiana A1 - Fritsch, Tobias A1 - Ulbricht, Alexander A1 - Evans, Alexander A1 - Hofmann, Michael A1 - Bruno, Giovanni T1 - Influence of the scanning strategy on the residual stress state in IN718 additive manufactured parts N2 - Laser Powder Bed Fusion (L-PBF) is an additive manufacturing technique enabling the design of complex geometries that are unrivalled by conventional production technologies. Nevertheless, L-PBF process is known to induce a high amount of residual stresses (RS) due to the high temperature gradients present during powder melting by laser. High tensile residual stresses are to be found the edges whereas the bulk material shows balancing compressive RS. Literature shows that the RS is highly sensitive to the process parameters. In particular, this study presents the characterization of the RS state in two L-PBF parts produced with a rastering scan vector that undergoes 90° or 67° rotation between subsequent layers. T2 - MLZ User Meeting 2020 CY - Online meeting DA - 08.12.2020 KW - Laser Powder Bed Fusion KW - IN718 KW - EBSD analysis KW - Residual stress state PY - 2020 AN - OPUS4-51821 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ávila Calderón, Luis Alexander T1 - Mechanical behaviour of AM metals: Creep of LPBF 316L and low-cycle-fatigue of LMD Ti-6Al-4V N2 - Additively manufactured metallic materials have already started to find application in safety-relevant components. However, this has only happened for certain materials and specific applications and loading conditions, since there is still an extensive lack of knowledge as well as of historical data regarding their mechanical behaviour. This contribution aims to address this lack of understanding and historical data concerning the creep behaviour of the austenitic stainless steel 316L manufactured by Laser-Powder-Bed-Fusion (L-PBF) and the low-cycle-fatigue behaviour of the titanium alloy Ti-6Al-4V manufactured by Laser-Metal-Deposition (LMD). Furthermore, it aims to assess their mechanical behaviour against their conventional counterparts. With that in mind, specimens from conventional and additive materials are tested and their mechanical behaviour analysed based on characteristic curves. To understand the damage behaviours the materials are characterized by destructive and non-destructive techniques before and after failure. T2 - 1st Workshop on In-situ Monitoring and Microstructure Development in Additive Manufacturing CY - Online Meeting DA - 10.12.2020 KW - Ti-6Al-4V KW - 316L KW - Additive manufacturing KW - Creep behaviour KW - Low-cycle-fatigue behaviour PY - 2020 AN - OPUS4-51879 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sänger, Johanna Christiane A1 - Pauw, Brian Richard A1 - Sturm, Heinz A1 - Günster, Jens T1 - First time additively manufactured advanced ceramics by using two-photon polymerization for powder processing N2 - Methods and materials are presented here, which enable the manufacturing of fine structures using a 3D-printing method known as two-photon polymerization (2PP). As traditional photolithography methods for structuring ceramic slurries do not function with 2PP, due to light scattering on ceramic particles, a novel water-based photoresist with high ceramic loading of extremely well dispersed ceramic nano particles was developed. This photoresist is basically a ceramic slurry containing a photocurable agent and a photoinitiator to be crosslinkable with the 780 nm wavelength femtosecond laser light source of the 2PP machine. It is demonstrated that it is possible to gain a highly transparent and low viscous slurry suitable for 2PP processing. This work shows the development of the slurry, first printing results and the post-printing processes required to form three dimensional ceramic microstructures consisting of alumina toughened zirconia (ATZ). KW - 3D-printing KW - Two-photon polymerization KW - 2PP KW - Ceramic nano particles KW - Slurry KW - Alumina toughened zirconia KW - ATZ KW - Additive manufacturing KW - SchwarzP cells KW - Nano-ceramic-additive-manufacturing photoresin KW - NanoCAM PY - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-517441 VL - 4 SP - 100040 PB - Elsevier Ltd. AN - OPUS4-51744 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ulbricht, Alexander A1 - Altenburg, Simon A1 - Sprengel, Maximilian A1 - Sommer, Konstantin A1 - Mohr, Gunther A1 - Fritsch, Tobias A1 - Mishurova, Tatiana A1 - Serrano Munoz, Itziar A1 - Evans, Alexander A1 - Hofmann, Michael A1 - Bruno, Giovanni T1 - Separation of the Formation Mechanisms of Residual Stresses in LPBF 316L N2 - Rapid cooling rates and steep temperature gradients are characteristic of additively manufactured parts and important factors for the residual stress formation. This study examined the influence of heat accumulation on the distribution of residual stress in two prisms produced by Laser Powder Bed Fusion (LPBF) of austenitic stainless steel 316L. The layers of the prisms were exposed using two different border fill scan strategies: one scanned from the centre to the perimeter and the other from the perimeter to the centre. The goal was to reveal the effect of different heat inputs on samples featuring the same solidification shrinkage. Residual stress was characterised in one plane perpendicular to the building direction at the mid height using Neutron and Lab X-ray diffraction. Thermography data obtained during the build process were analysed in order to correlate the cooling rates and apparent surface temperatures with the residual stress results. Optical microscopy and micro computed tomography were used to correlate defect populations with the residual stress distribution. The two scanning strategies led to residual stress distributions that were typical for additively manufactured components: compressive stresses in the bulk and tensile stresses at the surface. However, due to the different heat accumulation, the maximum residual stress levels differed. We concluded that solidification shrinkage plays a major role in determining the shape of the residual stress distribution, while the temperature gradient mechanism appears to determine the magnitude of peak residual stresses. T2 - MLZ User Meeting 2020 CY - Online meeting DA - 08.12.2020 KW - Computed tomography KW - Neutron diffraction KW - X-ray diffraction KW - Additive manufacturing KW - Residual stress KW - Thermography KW - LPBF KW - Laser Powder Bed Fusion PY - 2020 AN - OPUS4-51793 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sprengel, Maximilian A1 - Ulbricht, Alexander A1 - Evans, Alexander A1 - Mohr, Gunther A1 - Kromm, Arne A1 - Bruno, Giovanni A1 - Kannengießer, Thomas T1 - Using Neutron Diffraction to Monitor Stress Relaxation in Additively Manufactured 316L N2 - The relaxation of residual stress in laser powder bed fused stainless steel 316L parts was monitored using monochromatic and time-of-flight neutron diffraction. T2 - ISIS student meeting CY - Online meeting DA - 26.10.2020 KW - Stainless Steel KW - Residual Stress KW - Additive Manufacturing PY - 2020 AN - OPUS4-51469 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bäßler, Ralph T1 - Review: Science, Technology and Applications of Metals in Additive Manufacturing N2 - Often 3D‐printing and additive manufacturing are mentioned as the 3rd industrial revolution. In this conjunction this book provides a brief overview on additively manufactured metal pieces. This book fulfills its intension to serve as an educational guide, providing a holistic picture encompassing science, technology and applications for the real‐life use of Metal Additive Manufacturing. KW - Additive manufacturing KW - Corrosion KW - Material properties PY - 2020 U6 - https://doi.org/10.1002/maco.202070114 SN - 1521-4176 SN - 0947-5117 VL - 71 IS - 11 SP - 1929 EP - 1930 PB - WILEY‐VCH Verlag GmbH & Co. KGaA CY - Weinheim AN - OPUS4-51514 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Altenburg, Simon A1 - Scheuschner, Nils A1 - Maierhofer, Christiane A1 - Mohr, Gunther A1 - Hilgenberg, Kai T1 - Thermography in laser powder bed fusion of metals: time over threshold as feasible feature in thermographic data N2 - Thermography is one on the most promising techniques for in-situ monitoring for metal additive manufacturing processes. The high process dynamics and the strong focus of the laser beam cause a very complex thermal history within the produced specimens, such as multiple heating cycles within single layer expositions. This complicates data interpretation, e.g., in terms of cooling rates. A quantity that is easily calculated is the time a specific area of the specimen is at a temperature above a chosen threshold value (TOT). Here, we discuss variations occurring in time-over-threshold-maps during manufacturing of a defect free cuboid specimen. T2 - 15th Quantitative InfraRed Thermography conference CY - Online meeting DA - 21.09.2020 KW - Additive Manufacturing KW - Process monitoring KW - Thermography KW - L-PBF KW - Time over threshold PY - 2020 AN - OPUS4-51630 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Altenburg, Simon A1 - Straße, Anne A1 - Gumenyuk, Andrey A1 - Maierhofer, Christiane T1 - In-situ monitoring of a laser metal deposition (LMD) process: comparison of MWIR, SWIR and high-speed NIR thermography N2 - Additive manufacturing offers a range of novel applications. However, the manufacturing process is complex and the production of almost defect-free parts with high reliability and durability is still a challenge. Thermography is a valuable tool for process surveillance, especially in metal additive manufacturing processes. The high process temperatures allow one to use cameras usually operating in the visible spectral range. Here, we compare the results of measurements during the manufacturing process of a commercial laser metal deposition setup using a mid wavelength infrared camera with those from a short wavelength infrared camera and those from a visual spectrum high-speed camera with band pass filter in the near infrared range. KW - Additive Manufacturing KW - Process monitoring KW - Thermography KW - LMD KW - Metal KW - MWIR KW - SWIR KW - NIR PY - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-516318 VL - 19 IS - 2 SP - 97 EP - 114 PB - Taylor & Francis Group CY - London, UK AN - OPUS4-51631 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Werner, Tiago A1 - Madia, Mauro A1 - Zerbst, Uwe T1 - Kurzrisswachstum in additiv gefertigtem austenitischem Edelstahl 316L N2 - Diese Untersuchung beschäftigt sich mit der Charakterisierung von Kurzrisswachstum in mittels Laser-Pulverbett-Verschmelzen (LPBF - Laser Powder Bed Fusion) hergestelltem rostfreien austenitischen Stahl. Spezifischer wird die Ermittlung zyklischer R-Kurven untersucht. Diese beschreiben den Aufbau des Widerstands gegen Ermüdungsrisswachstum - d.h. des Schwellenwertes - aufgrund von Rissschließeffekten bei physikalisch kurzen Rissen. Mit Hilfe der zyklischen R-Kurven kann die Fähigkeit eines Bauteils, physikalisch kurze Risse zu arretieren, charakterisiert werden. Wir verfügen damit über eine Schnittstelle zwischen klassischer Ermüdung und Bruchmechanik. Das ist gerade auch für additiv gefertigte (AM – Additive Manufacturing) Materialien von Interesse. Diese weisen prozessintrinsische Defekte auf, die als Initiierungsstellen kurzer Ermüdungsrisse agieren. Im Rahmen der experimentellen Untersuchungen wurden zyklische R-Kurven für konventionellen und LPBF AISI-316L-Stahl ermittelt. Insbesondere wurde der Einfluss verschiedener Wärmebehandlungen (WB1: 450°C, WB2: 800°C und WB3: 900°C) auf das Wachstumsverhalten physikalisch kurzer Risse im LPBF-Material untersucht. Aufgrund hoher Eigenspannungen war die Ermittlung des Kurzrisswachstumsverhaltens bei WB1 nicht möglich. Für WB2 und WB3 ergaben sich sehr unterschiedliche zyklische R-Kurven. Untersuchungen der Eigenspannungen, der Bruchfläche (insbesondere der Rauheit) und der Mikrostruktur sollen die Ursachen für das unterschiedliche Verhalten erklären. Die Ergebnisse werden mit den Verhältnissen in konventionellem Material verglichen. T2 - 41. Werkstoffmechanikseminar TU Darmstadt CY - Online meeting DA - 26.10.2020 KW - AM KW - Additiv KW - Zyklische R-Kurve KW - 316L KW - Ermüdung KW - Ermüdungsrisswachstum KW - Risswachstum PY - 2020 AN - OPUS4-51603 LA - mul AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Altenburg, Simon A1 - Scheuschner, Nils A1 - Maierhofer, Christiane A1 - Ulbricht, Alexander A1 - Mohr, Gunther A1 - Heinrich, P. A1 - Baum, D. A1 - Hilgenberg, Kai T1 - In-situ Prozessüberwachung in der additiven Fertigung von Metallen mittels optischer Verfahren N2 - Einer der aussichtsreichsten Ansätze, die Qualität und Sicherheit der gefertigten Teile in der metallbasierten additiven Fertigung (AM) zu erhöhen und die Notwendigkeit aufwändiger und zeitintensiver, zerstörender oder zerstörungsfreier Prüfungen (ZfP) nach der Fertigung zu verringern, liegt in dem Einsatz von in-situ Prozessüberwachungstechniken. Bereits jetzt werden erste Messsysteme zur Kontrolle der Energiequelle, des Bauraums, des Schmelzbades und der Bauteilgeometrie kommerziell angeboten. Weitere ZfP Verfahren, wie z.B. die aktive und passive Thermografie, werden in der Literatur als geeignet für die in-situ Anwendung angesehen, allerdings gibt es noch wenig konkrete praktische Umsetzungen, da die Möglichkeiten und individuellen Grenzen dieser Methoden, angewendet auf AM, noch nicht ausreichend erforscht sind. Aus diesem Grund verfolgt die BAM mit dem Projekt „Process Monitoring of AM“ (ProMoAM) im Themenfeld Material das Ziel, Verfahren des Prozessmonitorings zur in-situ Bewertung der Qualität additiv gefertigter Metallbauteile weiterzuentwickeln. Im Beitrag wird zunächst das Projekt vorgestellt und anschließend der Fokus auf eine Messserie gelegt, in der Probekörper aus dem austenitischen Edelstahl 316L mit lokal variierenden Prozessparametern mittels selektiven Laserschmelzen (L-PBF) aufgebaut wurden. Der Bauprozess wurde hierbei durch das maschineneigene, koaxial arbeitende Photodiodensystem (Melt-Pool-Monitoring), einer Mittelwellen-Infrarotkamera und einer optischen Tomografiekamera im sichtbaren Wellenlängenbereich (Langzeitbelichtung für die Dauer eines Lagenaufbaus mit einer CMOS-Kamera mit hoher Ortsauflösung) simultan überwacht. Als Referenz für diese Methoden wurden die Probekörper mittels Computertomografie untersucht. Für die dabei anfallenden teils großen Datenmengen wurden Algorithmen für ein effizientes Preprocessing entwickelt. Es wurden Merkmale der Messdaten in Korrelation zu Fehlern und Inhomogenitäten extrahiert, welche für die einzelnen Methoden vergleichend vorgestellt und diskutiert werden. T2 - 5. Tagung des Arbeitskreises Additiv gefertigte Bauteile und Strukturen CY - Online meeting DA - 04.11.2020 KW - Additive Fertigung KW - Prozessüberwachung KW - Thermografie KW - Optische Tomografie KW - Computertomografie KW - L-PBF KW - AM KW - CT KW - In-situ PY - 2020 AN - OPUS4-51627 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mohr, Gunther A1 - Nowakowski, Susanna A1 - Altenburg, Simon A1 - Maierhofer, Christiane A1 - Hilgenberg, Kai T1 - Experimental Determination of the Emissivity of Powder Layers and Bulk Material in Laser Powder Bed Fusion Using Infrared Thermography and Thermocouples N2 - Recording the temperature distribution of the layer under construction during laser powder bed fusion (L-PBF) is of utmost interest for a deep process understanding as well as for quality assurance and in situ monitoring means. While having a notable number of thermal monitoring approaches in additive manufacturing (AM), attempts at temperature calibration and emissivity determination are relatively rare. This study aims for the experimental temperature adjustment of an off-axis infrared (IR) thermography setup used for in situ thermal data acquisition in L-PBF processes. The temperature adjustment was conducted by means of the so-called contact method using thermocouples at two different surface conditions and two different materials: AISI 316L L-PBF bulk surface, AISI 316L powder surface, and IN718 powder surface. The apparent emissivity values for the particular setup were determined. For the first time, also corrected, closer to real emissivity values of the bulk or powder surface condition are published. In the temperature region from approximately 150 °C to 580 °C, the corrected emissivity was determined in a range from 0.2 to 0.25 for a 316L L-PBF bulk surface, in a range from 0.37 to 0.45 for 316L powder layer, and in a range from 0.37 to 0.4 for IN718 powder layer. KW - Emisssivity KW - Laser Powder Bed Fusion (L-PBF) KW - Selective Laser Melting (SLM) KW - Additive Manufacturing (AM) KW - Process monitoring KW - Infrared thermography PY - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-516148 VL - 10 IS - 11 SP - 1546 PB - MDPI CY - Basel, Schweiz AN - OPUS4-51614 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mishurova, Tatiana A1 - Artzt, Katia A1 - Haubrich, Jan A1 - Requena, Guillermo A1 - Bruno, Giovanni A1 - Rehmer, Brigit T1 - Influence of residual stress and microstructure on mechanical performance of LPBF TI-6AL-4V N2 - Ti-6Al-4V alloy is intensively used in the aerospace industry because of its high specific strength. However, the application of Laser Powder Bed Fusion (LPBF) Ti-6Al-4V alloy for structurally critical load-bearing components is limited. One of the main limiting factors affecting the structural integrity, are manufacturing defects. Additionally, the high cooling rates associated with LPBF process result in the formation of large residual stress (RS) with complex fields. Such RS can cause cracking and geometrical distortions of the part even right after production. Also, the microstructure of LPBF Ti-6Al-4V in the as-built condition is significantly different from that of the conventionally produced alloy. All these factors affect the mechanical behavior of the material. Therefore, to improve the material performance it is important to evaluate the individual effect of RS, defects, and microstructure on fatigue life. To this aim Ti-6Al-4V LPBF material in as-built condition and subjected to different post-processing, including two heat treatments (for stress relief and microstructural modification) and Hot Isostatic Pressing (HIP, for densification), were investigated. Prior to Low Cycle Fatigue (LCF) tests at operating temperature (300°C), the microstructure (phases, crystallographic texture, and grain morphology), the mesostructure (defect shape and distribution), and subsurface RS on the LCF samples were investigated. It was found that the fatigue performance of HIPped samples is similar to that of conventionally produced Ti-6Al-4V. The tensile RS found at the surface of as-built samples decreased the fatigue life compared to heat-treated samples. Additionally, the modification of the microstructure (by heat treatment) did not affect the fatigue performance in the regime of mostly elastic strain. This shows that in the absence of tensile RS the manufacturing defects solely control the failure of LPBF components and densification has the strongest effect on the improvement of the mechanical performance. T2 - ASTM ICAM 2020 CY - Online meeting DA - 16.11.2020 KW - Additive manufacturing KW - Ti-6Al-4V KW - Computed tomography KW - Residual stress PY - 2020 AN - OPUS4-51695 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Simon, Sebastian A1 - Gluth, Gregor ED - Rossignol, S. ED - Gluth, Gregor T1 - Unraveling the hardening mechanism during laser-induced slip casting of lithium aluminate-microsilica slurry N2 - Additive manufacturing (AM) of alkali-activated materials is a promising method for producing ceramic precursors, construction elements and other parts. A recently introduced AM process is laser-induced slip casting of lithium aluminate/microsilica slurries, which yields parts with excellent mechanical strengths. To clarify the underlying mechanisms, μ-Raman spectroscopy was applied to parts produced by the process, and the dissolution and hydration of lithium aluminate was studied inter alia using conventional and in-situ X-ray diffraction. The results show that significant dissolution of lithium aluminate occurs, particularly at increased temperatures during laser interaction, which leads to an increase of pH and precipitation of an akopovaite-like Li-Al-CO3 layered double hydroxide. The increase of the pH is likely to induce dissolution of the microsilica and possibly formation of a hydrous lithium aluminosilicate gel. These observations explain the strength evolution of the studied parts and can also aid the development and improvement of related AM methods. KW - Alkali-activated materials KW - Additive manufacturing KW - Laser-induced slip casting KW - Lithium KW - Layered double hydroxide PY - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-520557 SN - 2666-5395 VL - 5 IS - Special issue: Alkali-activated materials and geopolymers in ceramics and beyond SP - 1 EP - 7 PB - Elsevier CY - Amsterdam AN - OPUS4-52055 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schröder, Jakob A1 - Mishurova, Tatiana A1 - Fritsch, Tobias A1 - Serrano Munoz, Itziar A1 - Evans, Alexander A1 - Sprengel, Maximilian A1 - Klaus, M. A1 - Genzel, C. A1 - Schneider, J. A1 - Bruno, Giovanni T1 - On the influence of heat treatment on microstructure and mechanical behavior of laser powder bed fused Inconel 718 N2 - A range of heat treatments have been developed for wrought Inconel 718 to obtain desired properties. For additively manufactured Inconel 718, the recently developed standard ASTM F3301 provides guidance for heat treatment of powder bed fusion specimens. Although this standard is based on standards developed for wrought Inconel 718, it does not include direct aging. Since direct aging reduces the number of processing steps, it can result in a post processing cost reduction if the desired properties are obtained. In this study, we characterized the microstructure and tensile behavior of Inconel 718 specimens produced by a laser powder bed fusion process. The specimens were heat treated according to two different routines after stress relieving: a full heat Treatment versus a one-step direct aging process. Differences in the resulting texture and grain morphology were observed. The ex-situ stress-strain behavior was broadly similar. However, a slight increase in yield strength was observed for the direct aged specimen. In order to understand this behavior, investigations with in-situ synchrotron Energy dispersive X-ray diffraction tensile testing revealed differences in the load partitioning among different Crystal directions. Importantly, the elastic anisotropy expressed by the magnitude of the diffraction elastic constants showed a dependency on the microstructures. KW - Electron microscopy KW - X-ray analysis KW - Inconel 718 KW - Additive Manufacturing KW - Mechanical behavior KW - Diffraction elastic constants PY - 2021 U6 - https://doi.org/10.1016/j.msea.2020.140555 VL - 805 SP - 40555 PB - Elsevier B.V. CY - Amsterdam AN - OPUS4-52142 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Uhlmann, E. A1 - Düchting, J. A1 - Petrat, T. A1 - Krohmer, E. A1 - Graf, B. A1 - Rethmeier, Michael T1 - Effects on the distortion of Inconel 718 components along a hybrid laser‑based additive manufacturing process chain using laser powder bed fusion and laser metal deposition N2 - The combination of laser powder bed fusion (LPBF), known for its geometrical freedom and accuracy, and the nozzle-based laser metal deposition process (LMD), known for its high build-up rates, has great potential to reduce the additive manufacturing times for large metallic parts. For the industrial application of the LPBF-LMD hybrid process chain, it is necessary to investigate the infuence of the LMD process on the LPBF substrate. In addition, the build plate material also has a signifcant impact on the occurrence of distortion along the additive manufacturing process chain. In the literature, steel build plates are often used in laser-based additive manufacturing processes of Inconel 718, since a good metallurgical Bonding can be assured whilst reducing costs in the production and restoration of the build plates. This paper examines the distortion caused by LMD material deposition and the infuence of the build plate material along the hybrid additive manufacturing process chain. Twin cantilevers are manufactured by LPBF and an additional layer is subsequently deposited with LMD. The distortion is measured in the as-built condition as well as after heat treatment. The efect of diferent LMD hatch strategies on the distortion is determined. The experiments are conducted using the nickel-base alloy Inconel 718. The results show a signifcant infuence of LMD path strategies on distortion, with shorter tool paths leading to less distortion. The remaining distortion after heat treatment is considerably dependent on the material of the build plate. KW - Laser powder bed fusion KW - Directed energy deposition KW - Laser metal deposition KW - Distortion KW - Heat treatment PY - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-521439 SP - 1 EP - 10 PB - Springer-Verlag GmbH CY - Heidelberg AN - OPUS4-52143 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Avila, Luis A1 - Rehmer, Birgit A1 - Skrotzki, Birgit A1 - Graf, B. A1 - Rethmeier, Michael A1 - Ulbricht, Alexander T1 - Low cycle fatigue behavior and failure mechanisms of additively manufactured Ti-6Al-4V N2 - Despite of the significant advances in AM process optimization there is still a lack of experimental results and understanding regarding the mechanical behavior and microstructural evolution of AMparts, especially in loading conditions typical for safety-relevant applications e.g. in the aerospace or power engineering. Within the scope of the presented investigations, a characterization of the fatigue behavior of additively manufactured Ti-6Al-4V in the low cycle fatigue regime was carried out in the range of 0.3 to 1.0 % strain amplitude at room temperature, 250°C and 400°C. The Ti-6Al-4V specimens are machined out of lean cylindrical rods, which were fabricated using powder laser metal deposition (LMD) with an improved build-up strategy. The improved strategy incorporates variable track overlap ratios to achieve a constant growth in the shell and core area. The low-cycle-fatigue behavior is described based on cyclic deformation curves and strain-based fatigue life curves. The lifetimes are fitted based on the Manson-Coffin-Basquin relationship. A characterization of the microstructure and the Lack-of-Fusion (LoF)-defect-structure in the as-built state is performed using optical light microscopy and high-resolution computed tomography (CT) respectively. The failure mechanism under loading is described in terms of LoF-defects-evolution and crack growth mechanism based on an interrupted LCF test with selected test parameters. After failure, scanning electron microscopy, digital and optical light microscopy and CT are used to describe the failure mechanisms both in the longitudinal direction and in the cross section of the specimens. The fatigue lives obtained are comparable with results from previous related studies and are shorter than those of traditionally manufactured (wrought) Ti-6Al-4V. In this study new experimental data and understanding of the mechanical behavior under application-relevant loading conditions (high temperature, cyclic plasticity) is gained. Furthermore, a better understanding of the role of LoFdefects and AM-typical microstructural features on the failure mechanism of LMD Ti-6Al-4V is achieved. T2 - First European Conference on Structural Integrity of Additively Manufactured Materials (ESIAM19) CY - Trondheim, Norway DA - 09.09.2019 KW - High Temperature Testing KW - Titanium KW - Ti-6Al-4V KW - Additive Manufacturing KW - Computed Tomography KW - Microstructure KW - Tensile Properties KW - Low Cycle Fatigue PY - 2019 AN - OPUS4-49492 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Petrat, T. A1 - Brunner-Schwer, C. A1 - Graf, B. A1 - Rethmeier, Michael T1 - Microstructure of Inconel 718 parts with constant mass energy input manufactured with direct energy deposition N2 - The laser-based direct energy deposition (DED) as a technology for additive manufacturing allows the production of near net shape components. Industrial applications require a stable process to ensure reproducible quality. Instabilities in the manufacturing process can lead to faulty components which do not meet the required properties. The DED process is adjusted by various parameters such as laser power, velocity, powder mass flow and spot diameter, which interact with each other. A frequently used comparative parameter in welding is the energy per unit length and is calculated from the laser power and the velocity in laser welding. The powder per unit length comparative parameter in the DED process has also be taken into account, because this filler material absorbs energy in addition to the base material. This paper deals with the influence of mass energy as a comparative parameter for determining the properties of additively manufactured parts. The same energy per unit length of 60 J/mm as well as the same powder per unit length of 7.2 mg/mm can be adjusted with different parameter sets. The energy per unit length and the powder per unit length determine the mass energy. The laser power is varied within the experiments between 400 W and 900 W. Energy per unit length and powder per unit length are kept constant by adjusting velocity and powder mass flow. Using the example of Inconel 718, experiments are carried out with the determined parameter sets. In a first step, individual tracks are produced and analyzed by means of micro section. The geometry of the tracks shows differences in height and width. In addition, the increasing laser power leads to a higher dilution of the base material. To determine the suitability of the parameters for additive manufacturing use, the individual tracks are used to build up parts with a square base area of 20x20 mm². An investigation by Archimedean principle shows a higher porosity with lower laser power. By further analysis of the micro sections, it can be seen that at low laser power, connection errors occur between the tracks. The results show that laser power, velocity and powder mass flow have to be considered in particular, because a constant mass energy can lead to different geometric as well as microscopic properties. KW - Direct energy deposition KW - Porosity KW - Inconel 718 KW - Additive manufacturing KW - Laser metal deposition PY - 2019 SN - 2351-9789 SP - 1 EP - 12 PB - Elsevier B.V. AN - OPUS4-50007 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bruno, Giovanni T1 - X-ray Absorption and Refraction techniques for characterization and non-destructive-testing of materials N2 - The combination of tomographic, microstructural data with other experimental techniques and with modeling is paramount, if we want to extract the maximum amount of information on material and component properties. In particular, quantitative image analysis, statistical approaches, direct discretization of tomographic reconstructions represent concrete possibilities to extend the power of the tomographic 3D representation to insights into the material and component performance. This logic thread equally holds for industrial and academic research and valorizes expensive experiments such as those carried out at synchrotron sources, which cannot be daily repeated. I will show a few examples of possible use of X-ray tomographic data for quantitative assessment of damage evolution and microstructural properties, as well as for non-destructive testing. Examples of micro-structured inhomogeneous materials will be given, such as Composites, Ceramics, Concrete, and Additively manufactured parts. I will also show how X-ray refraction computed tomography (CT) can be highly complementary to classic absorption CT, being sensitive to internal interfaces. Additionally, I will show how Neutron Diffraction, which is extremely well suited to the study of internal stresses, both residual and under external load, can well be coupled to the microstructural framework gained by CT, allowing understanding the microstructure-property relationships in materials. T2 - ENSAM CY - Paris, France DA - 28.11.2019 KW - Additive Manufacturing KW - Computed Tomography KW - Neutron Diffraction KW - X-ray refraction techniques KW - Composites PY - 2019 AN - OPUS4-49927 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bruno, Giovanni T1 - Characterization of Additive Manufacturing Materials at BAM N2 - The combination of tomographic, microstructural data with other experimental techniques and with modeling is paramount, if we want to extract the maximum amount of information on material and component properties. In particular, quantitative image analysis, statistical approaches, direct discretization of tomographic reconstructions represent concrete possibilities to extend the power of the tomographic 3D representation to insights into the material and component performance. This logic thread equally holds for industrial and academic research and valorizes expensive experiments such as those carried out at synchrotron sources, which cannot be daily repeated. I will show a few examples of possible use of X-ray tomographic data for quantitative assessment of damage evolution and microstructural properties, as well as for non-destructive testing. Examples of micro-structured inhomogeneous materials will be given, such as Composites, Ceramics, Concrete, and Additively manufactured parts. I will also show how X-ray refraction computed tomography (CT) can be highly complementary to classic absorption CT, being sensitive to internal interfaces. Additionally, I will show how Neutron Diffraction, which is extremely well suited to the study of internal stresses, both residual and under external load, can well be coupled to the microstructural framework gained by CT, allowing understanding the microstructure-property relationships in materials. Finally, I will show that BAM is very active in standardization and certification, including production of Reference Materials and Methods. T2 - Skoltech Determination of the microscopic residual stress CY - Moscow, Russia DA - 20.11.2019 KW - Additive Manufacturing KW - Computed Tomography KW - Neutron Diffraction KW - X-ray refraction techniques KW - Composites PY - 2019 AN - OPUS4-49929 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Metz, Christian A1 - Franz, Philipp A1 - Fischer, C. A1 - Wachtendorf, Volker A1 - Maierhofer, Christiane T1 - Active thermography for quality assurance of 3D-printed polymer structures N2 - Additively manufactured test specimens made of polyamide 12 (PA 12) by Laser Sintering as well as of acrylonitrile butadiene styrene (ABS) by Fused Layer Modelling, were characterised with active thermography directly after manufacturing and after artificial weathering. For this, two different excitation methods (flash and pulse heating) were used and compared, regarding their suitability for the detection of constructed and imprinted defects inside the test specimens. To increase the quality of the thermograms, data processing methods like thermal signal reconstruction (TSR) and Fourier Transformation after TSR were applied. To further investigate the long-term stability of the additively manufactured test specimens towards environmental stress, like UV radiation, heat, humidity, water contact and frost with active thermography, an artificial weathering test over 2000 hours (~3 months) was applied to the specimens. The monitoring of the changes in the optical properties of the weathered plastics was supplemented by spectral reflectance and UV/VIS spectroscopy. KW - Additive manufacturing KW - Polymers KW - Artificial weathering KW - Active thermography KW - UV/VIS spectroscopy PY - 2019 U6 - https://doi.org/10.1080/17686733.2019.1686896 SN - 1768-6733 (Print) 2116-7176 (Online) VL - 18 IS - 1 SP - 50 EP - 72 PB - Taylor & Francis AN - OPUS4-49817 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Metz, Christian A1 - Franz, Philipp A1 - Fischer, C. A1 - Wachtendorf, Volker A1 - Maierhofer, Christiane T1 - Zerstörungsfreie Charakterisierung additiv gefertigter Kunststoffbauteile und ihres Alterungsverhaltens sowie zerstörende Prüfungen N2 - Es wurden Prüfkörper aus additiver Fertigung mittels Laser Sinter Verfahren (Polyamid 12, PA 12) und Fused Layer Modeling (Acrylnitril-Butadien-Styrol, ABS) sowie Prüfkörper aus dem Kunststoff-Spritzguss Verfahren (PA 12 und ABS) über 2000 Stunden künstlich bewittert. Vor, während und nach der Bewitterung erfolgte eine zerstörungsfreie Prüfung mittels Thermografie, optischer Mikroskopie und spektralen Methoden (UV/VIS-Spektroskopie und spektrale Reflexion), um den Alterungsfortschritt zu untersuchen und Schäden durch die künstliche Bewitterung sowie eingedruckte Defekte zu identifizieren und zu detektieren. Zusätzlich wurden zerstörende Zugprüfungen vorgenommen, welche mit einer IR-Kamera verfolgt wurden. Auf diese Weise konnten lokale Temperaturänderungen, hervorgerufen durch elastische sowie plastische Verformungen, zeitaufgelöst erfasst und ausgewertet werden. T2 - Sitzung des DGM Fachausschusses Polymerwerkstoffe CY - Würzburg, Germany DA - 14.11.2019 KW - Additive Fertigung KW - Thermografie KW - Kunststoffe KW - Zugprüfungen KW - Künstliche Bewitterung PY - 2019 AN - OPUS4-49820 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Madia, Mauro A1 - Bruno, Giovanni A1 - Evans, Alexander A1 - Sprengel, Maximilian A1 - Kromm, Arne T1 - Residual stresses in Laser Beam Melting (LBM) – Critical Review and outlook of activities at BAM N2 - Additive manufacturing (AM) technologies have experienced an exceedingly rapid growth, which is coupled with the knowledge about the resulting material properties and performance. In particular, residual stress (RS) was soon recognized as an important issue in AM parts, such that parts are usually subjected to a post build-heat-treated. Significant effort has been spent on simulations of RS in AM, especially using finite element methods. As a consequence, the experimental determination of RS has thereby become increasingly important as a validation tool for simulations, as well as a method for assessing the influence of process parameters. In particular, diffraction methods, which are fundamentally non-destructive, offer enormous possibilities to gain knowledge on the residual stress state in real components, since synchrotron radiation and neutrons can penetrate even heavy metals up to several millimeters or centimeters, respectively. Indeed, significant progress has been achieved, in the understanding of the origins of the RS fields as a function of process parameters, as well as their stability under thermal and/or mechanical exposure. In this paper, a few success stories will be outlined. It will be shown how the determination of RS in metallic parts (with the focus on those produced by laser powder bed fusion) has even revealed that process parameters that were previously considered unimportant (e.g. the position and orientation on the base plate) play a major role in the onset of residual stress accumulation. However, while RS characterization is starting to be considered in the component design, deposition strategy (e.g. build plate temperature), and even in the definition of the relevant metric to assess the quality of a part, much is still to be investigates about the hypotheses underlying its experimental determination. Therefore, some aspects to be aware of, or even those which to date are unclear, will also be discussed. These include the determination of the stress-free reference and of the principal axes of stress. All of these aspects will lead towards a comprehensive understanding of the process-structure-performance relationships in AM materials and parts. T2 - Fourth ASTM Symposium on Structural Integrity of Additive Manufactured Materials and Parts CY - Gaylord National Resort And Convention Center; National Harbor, MD, USA DA - 07.10.2019 KW - Residual stress KW - Additive Manufacturing KW - Diffraction PY - 2019 AN - OPUS4-49822 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Evans, Alexander A1 - Thiede, Tobias A1 - Mishurova, Tatiana A1 - Léonard, Fabien A1 - Laquai, René A1 - Ulbricht, Alexander A1 - Serrano Munoz, Itziar A1 - Müller, Bernd R. A1 - Bruno, Giovanni T1 - Non destructive characterization in Additive manufacturing N2 - An overview of non destructive characterisation in additively manufactured materials using computed tomography, refraction and diffraction based stress analysis T2 - BAM-IFW workshop CY - IFW Dresden, Germany DA - 28.03.2019 KW - Residual stress analysis KW - Additive manufacturing KW - Computed tomography KW - Diffraction KW - X-ray refraction PY - 2019 AN - OPUS4-49842 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Evans, Alexander A1 - Thiede, Tobias A1 - Mishurova, Tatiana A1 - Kromm, Arne A1 - Cabeza, Sandra A1 - Serrano Munoz, Itziar A1 - Ulbricht, Alexander A1 - Sprengel, Maximilian A1 - Bruno, Giovanni T1 - Residual stresses in am review and oulook of activities at BAM N2 - Critical discussion of residual stress Analysis in additive manufacturing from examples in literature and an overview of activities at BAM T2 - Workshop on Fatigue of Additive Manufactured Metallic Components CY - BAM, Berlin, Germany DA - 16.05.2019 KW - Diffraction KW - Additive Manufacturing KW - Residual stress PY - 2019 AN - OPUS4-49843 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sprengel, Maximilian A1 - Kromm, Arne A1 - Cabeza, S. A1 - Mishurova, Tatiana A1 - Nadammal, N. A1 - Thiede, Tobias A1 - Serrano Munoz, Itziar A1 - Ulbricht, Alexander A1 - Evans, Alexander A1 - Bruno, Giovanni T1 - Combining diffraction methods to non-destructively characterize through thickness residual stress gradients in L-PBF IN718 N2 - Laser based Powder Bed Fusion (L-PBF) is an additive manufacturing technique that has been continuously developed in the past years. It offers unparalleled design freedom and the resulting mechanical properties match, in some cases even exceed, those of materials processed by conventional manufacturing techniques. Nonetheless the process is prone to create Residual Stresses (RS) resulting from the sequential melting and solidification of the material. RS can reduce load bearing capacity and generate unwanted distortions thus diminishing the potential of L-PBF. This research activity aimed at characterizing the RS state in Inconel 718 L-PBF specimens using multiple diffraction methods. The microstructure as well as the surface and bulk residual stresses were investigated. The RS analysis was performed using X-ray, synchrotron and neutron diffraction methods to provide information at different depths within the specimen. The measurements were performed at the Bundesanstalt für Materialforschung und –prüfung (BAM), the EDDI beamline at BESSY II synchrotron and E3 line at BER II neutron reactor of the Helmholtz-Zentrum für Materialien und Energie (HZB) Berlin. The results revealed a depth depending RS state. The longitudinal and transverse stress components measured by X-ray and synchrotron at the surface agree well, exhibiting stress values around the yield strength of the material. In addition, synchrotron mapping showed gradients along the width and length of the sample for the longitudinal and transverse stress components. Lower RS values compared to surface RS were measured in the bulk of the material using neutron diffraction. The longitudinal stress component in the bulk was tensile and gradually decreased towards the edge of the specimen. The normal component however did not change significantly along the specimen dimensions and was of compressive nature. The transversal component was almost negligible. The results indicate that a stress re-distribution takes place during the deposition of the consecutive layers, which has to be further investigated. T2 - First European Conference on Structural Integrity of Additively Manufactured Materials CY - Trondheim, Norway DA - 09.09.2019 KW - Additive Manufacturing KW - Residual Stress KW - Diffraction PY - 2019 AN - OPUS4-49804 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ulbricht, Alexander A1 - Altenburg, Simon A1 - Sprengel, Maximilian A1 - Thiede, Tobias A1 - Serrano Munoz, Itziar A1 - Mishurova, Tatiana A1 - Mohr, Gunther A1 - Evans, Alexander A1 - Bruno, Giovanni T1 - How Temperature Gradient Influences the Formation of Residual Stresses in Metallic Parts Made by L-PBF N2 - Rapid cooling rates and steep temperature gradients are characteristic of additively manufactured (AM) parts and important factors for residual stress formation which have implications on structural integrity. This study examined the influence of heat input on the distribution of residual stresses in two prisms produced by laser powder bed fusion (L-PBF) of austenitic stainless steel 316L. The layers of the prisms were exposed using two distinct helix scanning strategies: one scanned from the centre to the perimeter and the other from the perimeter to the centre. Residual stresses were characterised at one plane perpendicular to the building direction at half of its build height using neutron diffraction. In addition, the defect distribution was analysed via micro X-ray computed tomography (µCT) in a twin specimen. Both scanning strategies reveal residual stress distributions typical for AM: compressive stresses in the bulk and tensile stresses at the surface. However, temperature gradients and maximum stress levels differ due to the different heat input. Regarding the X-ray µCT results, they show an accumulation of defects at the corners where the laser direction turned through 90°. The results demonstrate that neutron diffraction and X-ray µCT can be successfully used as non-destructive methods to analyse through-thickness residual stress and defect distribution in AM parts, and in the presented case, illustrate the influence of scanning strategies. This approach contributes to deeper assessment of structural integrity of AM materials and components. T2 - First European Conference on Structural Integrity of Additively Manufactured Materials (ESIAM19) CY - Trondheim, Norwegen DA - 09.09.2019 KW - AGIL KW - Neutron diffraction KW - Thermography KW - Additive manufacturing KW - Residual stress PY - 2019 AN - OPUS4-49805 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sprengel, Maximilian A1 - Kromm, Arne A1 - Evans, Alexander A1 - Bruno, Giovanni A1 - Kannengießer, Thomas T1 - Insight into the residual stress formation in additively manufactured austenitic steel 316l N2 - Overview of residual stresses in austenitic stainless steel 316l manufactured by laser baser powder bed fusion and determined via x-ray and neutron diffraction T2 - Doktorandenseminar der Otto-von-Guericke Universität CY - Magdeburg, Germany DA - 28.11.2019 KW - Additive Manufacturing KW - Residual Stress KW - Neutron Diffraction KW - 316L PY - 2019 AN - OPUS4-49850 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sprengel, Maximilian A1 - Kromm, Arne A1 - Evans, Alexander A1 - Bruno, Giovanni A1 - Kannengießer, Thomas T1 - Heat treatment induced residual stress relaxation in additively manufactured L-PBF 316L stainless steel N2 - Residual stress relaxation as a function of heat treatment strategies in laser based powder bed fused 316l samples. T2 - Eleventh Joint BER II and BESSY II User Meeting CY - Berlin, Germany DA - 04.12.2019 KW - Additive Manufacturing KW - Residual Stress KW - Neutron Diffraction KW - 316L PY - 2019 AN - OPUS4-49851 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Günster, Jens A1 - Zocca, Andrea T1 - Dense Powder Beds for the Additive Manufacturing of Ceramics N2 - Many of the most successful and precise additive manufacturing (AM) technologies are based on the deposition layer-by-layer of a flowable powder. Since the first pioneering work at the end of the 1980th many developments have been introduced, greatly extending the use of different materials, improving the physical properties of the components built and enhancing the accuracy of the process. Still very important issues remain nowadays, hampering a completely autonomous production of parts and even restricting the freedom of design by means of these technologies. One of the major issues is the low density and stability of the parts during the building process, which implies the need of support structures: The powder bed surrounding the part has an essential role, since it should support the structure during building, until it’s ready for removal. Moreover, the microstructure of the powder bed is a template for the microstructure of the part produced. In this context, the use of submicron ceramic powders is still a challenge. Three approaches for the stabilization and densification of powder beds will be presented: The Layerwise Slurry Deposition process LSD, the gas flow assisted powder deposition and the Laser Induced Slipcasting (LIS) of ceramic powder compacts. T2 - 43rd International Conference and Exposition on Advanced Ceramics and Composites (ICACC 2019) CY - Daytona Beach, FL, USA DA - 27.01.2019 KW - Ceramics KW - Additive Manufacturing PY - 2019 AN - OPUS4-49627 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Günster, Jens T1 - Powder-based Additive Manufacturing at Micro-Gravity N2 - Are we ready for putting a human footprint on Mars? Obviously, it is possible to send technologically challenging missions to our earth neighbors with a high level of complexity, such as enabling autonomous planetary mobility. As humanity contemplates mounting manned missions to Mars, strategies need to be developed for the design and operation of hospitable environments safely working in space for years. Humans require water and air provided by complicated equipment. Its safe operation is a great challenge and implies being prepared for all eventualities. Instead of foreseeing and preparing for all possible scenarios of machine failures and accidents, it appears logic taking advantage of the flexibility of humans and providing essential equipment for the reaction on critical situations. The supply of spare parts for repair and replacement of lost equipment would be one key pillar of such a strategy. Bearing in mind the absolute distance and flight trajectories for manned missions to Mars, supplying spare parts from Earth is impossible. Thus, in space manufacturing remains the only option for a timely supply. With a high flexibility in design and the ability to manufacture ready to use components directly from a computer aided model, additive manufacturing technologies appear extremely attractive. For metal parts manufacturing the Laser Beam Melting process is the most widely used additive manufacturing process in industrial application. However, envisioning the handling of metal powders in the absence of gravitation is one prerequisite for its successful application in space. A gas flow throughout the powder bed has been successfully applied to compensate for missing gravitational forces in micro gravity experiments. The so-called Gas Flow Assisted Powder Deposition is based on a porous building platform acting as a filter for the fixation of metal particles in a gas flow driven by a pressure difference maintained by a vacuum pump. T2 - 1st Sino-German Workshop on 3D Printing in Space CY - Beijing, China DA - 20.02.2019 KW - Zero-g KW - Additive Manufacturing KW - µ-gravity PY - 2019 AN - OPUS4-49628 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Günster, Jens T1 - Powder-based Additive Manufacturing at Micro-Gravity N2 - Are we ready for putting a human footprint on Mars? Obviously, it is possible to send technologically challenging missions to our earth neighbors with a high level of complexity, such as enabling autonomous planetary mobility. As humanity contemplates mounting manned missions to Mars, strategies need to be developed for the design and operation of hospitable environments safely working in space for years. Humans require water and air provided by complicated equipment. Its safe operation is a great challenge and implies being prepared for all eventualities. Instead of foreseeing and preparing for all possible scenarios of machine failures and accidents, it appears logic taking advantage of the flexibility of humans and providing essential equipment for the reaction on critical situations. The supply of spare parts for repair and replacement of lost equipment would be one key pillar of such a strategy. Bearing in mind the absolute distance and flight trajectories for manned missions to Mars, supplying spare parts from Earth is impossible. Thus, in space manufacturing remains the only option for a timely supply. With a high flexibility in design and the ability to manufacture ready to use components directly from a computer aided model, additive manufacturing technologies appear extremely attractive. For metal parts manufacturing the Laser Beam Melting process is the most widely used additive manufacturing process in industrial application. However, envisioning the handling of metal powders in the absence of gravitation is one prerequisite for its successful application in space. A gas flow throughout the powder bed has been successfully applied to compensate for missing gravitational forces in micro gravity experiments. The so-called Gas Flow Assisted Powder Deposition is based on a porous building platform acting as a filter for the fixation of metal particles in a gas flow driven by a pressure difference maintained by a vacuum pump. T2 - 2nd Sino-German Workshop on 3D Printing in Space CY - Berlin, Germany DA - 28.10.2019 KW - µ-gravity KW - Additive Manufacturing KW - Zero-g PY - 2019 AN - OPUS4-49629 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Straße, Anne A1 - Gumenyuk, Andrey A1 - Altenburg, Simon A1 - Pignatelli, Giuseppe A1 - Baensch, Franziska A1 - Rethmeier, Michael T1 - Laser Metal Deposition (LMD) in ProMoAM N2 - During the last years Additive Manufacturing (AM) became increasingly important. That becomes clear, while looking at the advantages like a high degree of freedom concerning the geometry of the parts, low waste rates and a reduction of postprocessing, to name just three. Laser Metal Deposition (LMD) is one of those AM- methods. It can be used for different kinds of applications, e.g. repair weldings of used parts, coatings to increase the corrosion resistance or to build up new components. But for all applications, the production of defect free parts is crucial. Therefore, different kinds of non-destructive monitoring techniques were tested for the LMD-process to identify their potential to detect imperfections in-situ. T2 - Workshop on Additive Manufacturing: Process, materials, testing, simulation & implants CY - Berlin, Germany DA - 13.05.2019 KW - Acoustic Emission KW - LMD KW - Thermography KW - Optical Emission Spectroscopy PY - 2019 AN - OPUS4-49657 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kupsch, Andreas A1 - Schob, D. A1 - Léonard, Fabien A1 - Müller, Bernd R. A1 - Sagradov, I. A1 - Roszak, R. A1 - Sparr, H. A1 - Franke, R. A1 - Ziegenhorn, M. A1 - Bruno, Giovanni T1 - Bestimmung der Mikrostruktur und Simulation des Schädigungs-verhaltens von lasergesintertem Polyamid 12 unter statischer Zugbelastung N2 - Um das Material- und Schädigungsverhalten von additiv gefertigtem Polyamid 12 (PA12) unter quasistatischer Belastung zu charakterisieren, wurden mechanische Tests und Experimente zur Bestimmung der Mikrostruktur durchgeführt. Die Proben wurden nach dem Prinzip des Selektiven Lasersinterns (SLS) hergestellt. Unter quasistatischer Belastung mit Haltezeiten ergab sich ein viskoplastisches Materialverhalten. Im Zugversuch wurde eine maximale Zugfestigkeit von 40.6 MPa und eine Bruchdehnung von 7.4% beobachtet. Mittels Digitaler Bildkorrelation (DIC) wurde die Ausbildung von Scherbändern während des Zugs nachgewiesen. Mittels Röntgenrefraktion wurde eine Erhöhung von inneren Oberflächen beobachtet, die senkrecht zur Zugrichtung orientiert sind. Die Analyse der Gesamtporosität aus Computertomographie-Messungen ergab keine Änderung infolge der Zugbelastung. Jedoch wurde eine bimodale Porengrößenverteilung und eine steigende Sphärizität festgestellt. Das Materialverhalten wurde mit den Ergebnissen des Zugversuchs nach dem Chaboche Modell [3] in sehr guter Übereinstimmung simuliert. Allerdings gestattet dieses Modell nicht, das Bruchverhalten einzuschließen. Daher wurde zur Simulation des Schädigungsverhaltens das Modell gemäß dem Ansatz von Gurson, Tvergaard und Needleman unter Berücksichtigung der mikrostrukturellen Parameter erweitert. Während das Chaboche Modell eine homogene Spannungsverteilung generiert, zeigt das erweiterte Modell die Ausbildung von Scher¬bändern und die korrekte Bruchdehnung. Der Schwerpunkt des Vortrages liegt auf den Röntgenverfahren zur experimentellen Bestimmung der Mikrostruktur. T2 - DGM-Symposium "Additive Fertigung in der Kunststoffindustrie" CY - Würzburg, Germany DA - 14.11.2019 KW - Additive Fertigung KW - Selektives Lasersintern KW - Polyamid 12 KW - Röntgenrefraktion KW - Computertomographie KW - Porosität PY - 2019 AN - OPUS4-49707 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Avila, Luis A1 - Rehmer, Birgit A1 - Skrotzki, Birgit A1 - Graf, B. A1 - Rethmeier, Michael A1 - Ulbricht, Alexander T1 - Ermüdungsverhalten und Versagensmechanismen von additiv mittels LPA hergestelltem TiAl6V4 N2 - Die Untersuchung und Charakterisierung der Entwicklung/Änderung der Mikrostruktur, der mechanischen Eigenschaften sowie der Lebensdauer additiv gefertigter metallischer Werkstoffe hat bisher, vor allem im Hinblick auf die komplexe Belastungsfälle bei sicherheitsrelevanten Anwendungen, mit der rasanten Entwicklung der Fertigungstechniken nicht Schritt gehalten. Im Rahmen dieser Arbeit wurde eine Charakterisierung des Ermüdungsverhaltens von additiv gefertigten TiAl6V4 im Low-Cycle-Fatigue Bereich (niederzyklische Ermüdung) nach Norm ISO 12206 mit Dehnungsamplituden von 0.3 bis zu 1.0 % und bei Raumtemperatur, 250°C und 400°C durchgeführt. Die TiAl6V4 Proben wurden aus zylindrischen Halbzeugen gefertigt, welche durch Laser-Pulver-Auftragsschweißen mit einer optimierten Aufbaustrategie hergestellt wurden. Die optimierte Aufbaustrategie beinhaltet variierende Spurüberlappungsgraden, die die Fertigung der dünnen zylindrischen Körper ohne weitere Ausgleichslagen ermöglicht. Das Werkstoffverhalten wird anhand von Wechselverformungskurven sowie einer Darstellung der Lebensdauer in einem Wöhler-Diagramm beschrieben. Ein Fitting der Lebensdauer-Daten erfolgt anhand der Manson-Coffin-Basquin Beziehung. Eine Eingangscharakterisierung der mikrostrukturellen Merkmale inklusive Bindefehler aus dem Herstellungsprozess wird durch Lichtmikroskopie und hochauflösende Computertomographie (CT) durchgeführt. Der Versagensmechanismus während der Belastung wird anhand von Zwischenuntersuchungen mit CT und einem unterbrochenen Versuch mit ausgewählten Versuchsparametern beschrieben. Nach dem Versagen wurden die Proben am REM, mit Lichtmikroskopie und mit CT fraktographisch in Längs- und Querrichtung untersucht. Die erfassten Lebensdauern sind ähnlich zu denen aus herkömmlichen Studien und liegen unter derjenigen von dem konventionell hergestellten (geschmiedeten) Werkstoff. In dieser Arbeit wurden für den untersuchten Werkstoff bei anwendungs- und sicherheitsrelevanten Belastungszuständen (hohe Temperaturen, zyklische Plastizität) neue experimentelle Daten und Kennwerte ermittelt und Verständnis über das mechanische Verhalten und die Entwicklung der Mikrostruktur aufgebaut. Darüber hinaus wurde Verständnis über die Rolle von Bindefehlern und anderen typisch für AM auftretenden Gefügemerkmalen auf das Versagensverhalten von DED-L TiAl6V4 gewonnen. T2 - Werkstoffwoche 2019 CY - Dresden, Germany DA - 18.09.2019 KW - Titan KW - TiAl5V4 KW - Ti-6Al-4V KW - Ti64 KW - Additive Fertigung KW - CT KW - Mikrostruktur KW - Zugeigenschaften KW - Low Cycle Fatigue KW - LCF PY - 2019 AN - OPUS4-49755 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Avila, Luis A1 - Rehmer, Birgit A1 - Skrotzki, Birgit A1 - Graf, B. A1 - Rethmeier, Michael A1 - Ulbricht, Alexander T1 - Ermüdungsverhalten und Versagensmechanismen von additiv mittels LPA hergestelltem TiAl6V4 N2 - Die Untersuchung und Charakterisierung der Entwicklung/Änderung der Mikrostruktur, der mechanischen Eigenschaften sowie der Lebensdauer additiv gefertigter metallischer Werkstoffe hat bisher, vor allem im Hinblick auf die komplexe Belastungsfälle bei sicherheitsrelevanten Anwendungen, mit der rasanten Entwicklung der Fertigungstechniken nicht Schritt gehalten. Im Rahmen dieser Arbeit wurde eine Charakterisierung des Ermüdungsverhaltens von additiv gefertigten TiAl6V4 im Low-Cycle-Fatigue Bereich (niederzyklische Ermüdung) nach Norm ISO 12206 mit Dehnungsamplituden von 0.3 bis zu 1.0 % und bei Raumtemperatur, 250°C und 400°C durchgeführt. Die TiAl6V4 Proben wurden aus zylindrischen Halbzeugen gefertigt, welche durch Laser-Pulver-Auftragsschweißen mit einer optimierten Aufbaustrategie hergestellt wurden. Die optimierte Aufbaustrategie beinhaltet variierende Spurüberlappungsgraden, die die Fertigung der dünnen zylindrischen Körper ohne weitere Ausgleichslagen ermöglicht. Das Werkstoffverhalten wird anhand von Wechselverformungskurven sowie einer Darstellung der Lebensdauer in einem Wöhler-Diagramm beschrieben. Ein Fitting der Lebensdauer-Daten erfolgt anhand der Manson-Coffin-Basquin Beziehung. Eine Eingangscharakterisierung der mikrostrukturellen Merkmale inklusive Bindefehler aus dem Herstellungsprozess wird durch Lichtmikroskopie und hochauflösende Computertomographie (CT) durchgeführt. Der Versagensmechanismus während der Belastung wird anhand von Zwischenuntersuchungen mit CT und einem unterbrochenen Versuch mit ausgewählten Versuchsparametern beschrieben. Nach dem Versagen wurden die Proben am REM, mit Lichtmikroskopie und mit CT fraktographisch in Längs- und Querrichtung untersucht. Die erfassten Lebensdauern sind ähnlich zu denen aus herkömmlichen Studien und liegen unter derjenigen von dem konventionell hergestellten (geschmiedeten) Werkstoff. In dieser Arbeit wurden für den untersuchten Werkstoff bei anwendungs- und sicherheitsrelevanten Belastungszuständen (hohe Temperaturen, zyklische Plastizität) neue experimentelle Daten und Kennwerte ermittelt und Verständnis über das mechanische Verhalten und die Entwicklung der Mikrostruktur aufgebaut. Darüber hinaus wurde Verständnis über die Rolle von Bindefehlern und anderen typisch für AM auftretenden Gefügemerkmalen auf das Versagensverhalten von DED-L TiAl6V4 gewonnen. T2 - DGM Fachausschuss Titan CY - Liebherr-Aerospace Lindenberg GmbH, Germany DA - 12.11.2019 KW - LCF KW - Titan KW - Ti-6Al-4V KW - Ti64 KW - TiAl5V4 KW - Additive Fertigung KW - CT KW - Mikrostruktur KW - Zugeigenschaften KW - Low Cycle Fatigue PY - 2019 AN - OPUS4-49758 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mohr, Gunther A1 - Altenburg, Simon A1 - Hilgenberg, Kai T1 - Effects of inter layer time and build height on resulting properties of 316L stainless steel processed by laser powder bed fusion N2 - Laser powder bed fusion (L-PBF) is the most prominent additive manufacturing (AM) technology for metal part production. Among the high number of factors influencing part quality and mechanical properties, the inter layer time (ILT) between iterative melting of volume elements in subsequent layers is almost completely unappreciated in the relevant literature on L-PBF. This study investigates the effect of ILT with respect to build height and under distinct levels of volumetric energy density (VED) using the example of 316L stainless steel. In-situ thermography is used to gather information on cooling conditions during the process, which is followed by an extensive metallographic analysis. Significant effects of ILT and build height on heat accumulation, sub-grain sizes, melt pool geometries and hardness are presented. Furthermore, the rise of defect densities can be attributed to a mutual interplay of build height and ILT. Hence, ILT has been identified as a crucial factor for L-PBF of real part components especially for those with small cross sections. KW - Laser powder bed fusion (L-PBF) KW - Laser beam melting (LBM) KW - Selective laser melting (SLM) KW - Dwell-time KW - Thermography PY - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-503300 SN - 2214-8604 VL - 32 SP - 101080-1 EP - 101080-13 PB - Elsevier CY - Amsterdam AN - OPUS4-50330 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mohr, Gunther A1 - Altenburg, Simon A1 - Ulbricht, Alexander A1 - Heinrich, Ph. A1 - Baum, D. A1 - Maierhofer, Christiane A1 - Hilgenberg, Kai T1 - In-Situ Defect Detection in Laser Powder Bed Fusion by Using Thermography and Optical Tomography—Comparison to Computed Tomography N2 - Among additive manufacturing (AM) technologies, the laser powder bed fusion (L-PBF) is one of the most important technologies to produce metallic components. The layer-wise build-up of components and the complex process conditions increase the probability of the occurrence of defects. However, due to the iterative nature of its manufacturing process and in contrast to conventional manufacturing technologies such as casting, L-PBF offers unique opportunities for in-situ monitoring. In this study, two cameras were successfully tested simultaneously as a machine manufacturer independent process monitoring setup: a high-frequency infrared camera and a camera for long time exposure, working in the visible and infrared spectrum and equipped with a near infrared filter. An AISI 316L stainless steel specimen with integrated artificial defects has been monitored during the build. The acquired camera data was compared to data obtained by computed tomography. A promising and easy to use examination method for data analysis was developed and correlations between measured signals and defects were identified. Moreover, sources of possible data misinterpretation were specified. Lastly, attempts for automatic data analysis by data Integration are presented. KW - Laser powder bed fusion (L-PBF) KW - Selective laser melting (SLM) KW - Additive manufacturing (AM) KW - Process monitoring KW - Infrared thermography KW - Optical tomography KW - Computed tomography (CT) KW - Data fusion KW - Lack-of-fusion PY - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-502417 VL - 10 IS - 1 SP - 103 PB - MDPI CY - Basel, Schweiz AN - OPUS4-50241 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zerbst, Uwe A1 - Bruno, Giovanni A1 - Buffière, J.-Y. A1 - Wegener, T. A1 - Niendorf, T. A1 - Wu, T. A1 - Zhang, X. A1 - Kashaev, N. A1 - Meneghetti, G. A1 - Hrabe, Nik A1 - Madia, Mauro A1 - Werner, Tiago A1 - Hilgenberg, Kai A1 - Koukolikova, M. A1 - Prochazka, R. A1 - Dzugan, J. A1 - Möller, B. A1 - Beretta, S. A1 - Evans, Alexander A1 - Wagener, R. A1 - Schnabel, K. T1 - Damage tolerant design of additively manufactured metallic components subjected to cyclic loading: State of the art and challenges N2 - This article is an outcome of a workshop on Fatigue of Additive Manufactured Metallic Components jointly organized by the Federal Institute for Materials Research and Testing (BAM) Berlin, Germany and the National Institute of Standards and Technology (NIST) Boulder, CO, U.S.A. The aim of the workshop was a comprehensive discussion of the specific aspects of additively manufactured (AM) components in regard to failure under cyclic loading. Undoubtedly, a better understanding and the further development of approaches for damage tolerant component design of AM parts are among the most significant challenges currently facing the use of these new technologies. This article presents a thorough overview of the workshop discussions. It aims to provide a review of the parameters affecting the damage tolerance of AM parts with special emphasis on the process parameters intrinsic to the AM technologies, the resulting defects and residual stresses. Based on these aspects, concepts for damage tolerant component design for AM are reviewed and critically discussed. KW - Additive manufacturing KW - Fatigue loading KW - Component assessment KW - Damage tolerance KW - Defects KW - Residual stresses PY - 2021 U6 - https://doi.org/10.1016/j.pmatsci.2021.100786 SN - 0079-6425 VL - 121 PB - Elsevier CY - Amsterdam AN - OPUS4-51937 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Charmi, Amir T1 - Mechanical anisotropy of additively manufactured stainless steel 316l: an experimental and numerical study N2 - This work aims for a yield function description of additively manufactured (AM) parts of stainless steel 316L at the continuum-mechanical macro-scale by means of so-called virtual experiments using a crystal plasticity model at meso-scale. T2 - 1st Workshop on In-situ Monitoring and Microstructure Development in Additive Manufacturing CY - BAM, Berlin DA - 10.12.2020 KW - Anisotropy KW - Crystal plasticity KW - Additive manufacturing PY - 2020 AN - OPUS4-51941 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nadammal, Naresh A1 - Mishurova, Tatiana A1 - Fritsch, Tobias A1 - Serrano Munoz, Itziar A1 - Kromm, Arne A1 - Haberland, C. A1 - Portella, Pedro Dolabella A1 - Bruno, Giovanni T1 - Critical role of scan strategies on the development of microstructure, texture, and residual stresses during laser powder bed fusion additive manufacturing N2 - Laser based powder bed fusion additive manufacturing offers the flexibility to incorporate standard and userdefined scan strategies in a layer or in between the layers for the customized fabrication of metallic components. In the present study, four different scan strategies and their impact on the development of microstructure, texture, and residual stresses in laser powder bed fusion additive manufacturing of a nickel-based superalloy Inconel 718 was investigated. Light microscopy, scanning electron microscopy combined with electron backscatter diffraction, and neutron diffraction were used as the characterization tools. Strong textures with epitaxially grown columnar grains were observed along the build direction for the two individual scan strategies. Patterns depicting the respective scan strategies were visible in the build plane, which dictated the microstructure development in the other planes. An alternating strategy combining the individual strategies in the successive layers and a 67◦ rotational strategy weakened the texture by forming finer microstructural features. Von Mises equivalent stress plots revealed lower stress values and gradients, which translates as lower distortions for the alternating and rotational strategies. Overall results confirmed the scope for manipulating the microstructure, texture, and residual stresses during laser powder bed fusion additive manufacturing by effectively controlling the scan strategies. KW - Additive manufacturing KW - Laser powder bed fusion KW - Nickel-based superalloys KW - Scan strategies KW - Residual stresses KW - Microstructure and texture PY - 2021 U6 - https://doi.org/10.1016/j.addma.2020.101792 VL - 38 SP - 1792 PB - Elsevier B.V. AN - OPUS4-51944 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Serrano Munoz, Itziar A1 - Fritsch, Tobias A1 - Mishurova, Tatiana A1 - Trofimov, Anton A1 - Apel, D. A1 - Ulbricht, Alexander A1 - Kromm, Arne A1 - Hesse, René A1 - Evans, Alexander A1 - Bruno, Giovanni T1 - On the interplay of microstructure and residual stress in LPBF IN718 N2 - The relationship between residual stresses and microstructure associated with a laser powder bed fusion (LPBF) IN718 alloy has been investigated on specimens produced with three different scanning strategies (unidirectional Y-scan, 90° XY-scan, and 67° Rot-scan). Synchrotron X-ray energy-dispersive diffraction (EDXRD) combined with optical profilometry was used to study residual stress (RS) distribution and distortion upon removal of the specimens from the baseplate. The microstructural characterization of both the bulk and the nearsurface regions was conducted using scanning electron microscopy (SEM) and electron backscatter diffraction (EBSD). On the top surfaces of the specimens, the highest RS values are observed in the Y-scan specimen and the lowest in the Rot-scan specimen, while the tendency is inversed on the side lateral surfaces. A considerable amount of RS remains in the specimens after their removal from the baseplate, especially in the Y- and Z-direction (short specimen Dimension and building direction (BD), respectively). The distortion measured on the top surface following baseplate thinning and subsequent removal is mainly attributed to the amount of RS released in the build direction. Importantly, it is observed that the additive manufacturing microstructures challenge the use of classic theoretical models for the calculation of diffraction elastic constants (DEC) required for diffraction-based RS analysis. It is found that when the Reuß model is used for the calculation of RS for different crystal planes, as opposed to the conventionally used Kröner model, the results exhibit lower scatter. This is discussed in context of experimental measurements of DEC available in the literature for conventional and additively manufactured Ni-base alloys. KW - L-PBF IN718 material KW - Effect of scanning strategies KW - Near-surface X-ray diffraction KW - Residual stress in AM KW - Distortion upon baseplate removal PY - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-519460 SN - 0022-2461 VL - 56 IS - 9 SP - 5845 EP - 5867 PB - Springer AN - OPUS4-51946 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Altenburg, Simon A1 - Scheuschner, Nils A1 - Maierhofer, Christiane A1 - Mohr, Gunther A1 - Hilgenberg, Kai T1 - Thermography in laser powder bed fusion of metals: time over threshold as feasible feature in thermographic data N2 - Thermography is one on the most promising techniques for in-situ monitoring of metal additive manufacturing processes. Especially in laser powder bed fusion processes, the high process dynamics and the strong focus of the laser beam cause a very complex thermal history within the produced specimens, such as multiple heating cycles within single layer expositions. This complicates data interpretation, e.g., in terms of cooling rates. A quantity that is easily calculated is the time a specific area of the specimen is at a temperature above a chosen threshold value (TOT). Here, we discuss variations occurring in time-over-threshold-maps during manufacturing of an almost defect free cuboid specimen. T2 - 15th Quantitative InfraRed Thermography conference CY - Online meeting DA - 21.09.2020 KW - Additive Manufacturing KW - Process monitoring KW - Thermography KW - L-PBF KW - Time over threshold PY - 2020 U6 - https://doi.org/10.21611/qirt.2020.005 SP - 1 EP - 5 PB - QIRT Council CY - Quebec, Canada AN - OPUS4-52014 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Altenburg, Simon T1 - Introduction to ProMoAM N2 - A brief introduction to the project ProMoAM is given. T2 - 2nd Workshop on In-situ Monitoring and Microstructure Development in Additive Manufactured Alloys CY - Online meeting DA - 19.04.2021 KW - Additive Manufacturing KW - Process monitoring KW - ProMoAM PY - 2021 AN - OPUS4-52513 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Altenburg, Simon A1 - Scheuschner, Nils A1 - Gumenyuk, Andrey A1 - Straße, Anne A1 - Maierhofer, Christiane T1 - Unraveling thermal radiation by multispectral thermography: Real temperatures in LMD N2 - Additive manufacturing of metals offers the opportunity to build parts with a high degree of complexity without additional costs, opening a new space for design optimization. However, the processes are highly complex and due to the rapid thermal cycles involved, high internal stresses and peculiar microstructures occur, which influence the parts mechanical properties. To systematically examine the formation of internal stresses and the microstructure, in-process spatially resolved measurements of the part temperature are needed. If the emissivity of the inspected part is known, its thermodynamic temperature can be reconstructed by a suited radiometric model. However, in additive manufacturing of metals, the emissivity of the part surface is strongly inhomogeneous and rapidly changing due to variations of, e.g., the degree of oxidation, the material state and temperature. Thus, here, the applicability of thermography in the determination of thermodynamic temperatures is limited. However, measuring the process thermal radiation at different wavelengths simultaneously enables one to separate temperature and emissivity spatially resolved to obtain further insight into the process. Here, we present results of an initial study using multispectral thermography to obtain real temperatures and emissivities in the powderfree LMD process. T2 - 2nd Workshop on In-situ Monitoring and Microstructure Development in Additive Manufactured Alloys CY - Online meeting DA - 19.04.2021 KW - Additive Manufacturing KW - Process monitoring KW - Multispectral thermography KW - Laser metal deposition KW - TES KW - LMD KW - Temperature emissivity separation PY - 2021 AN - OPUS4-52514 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Altenburg, Simon A1 - Scheuschner, Nils A1 - Gumenyuk, Andrey A1 - Straße, Anne A1 - Maierhofer, Christiane T1 - Towards the determination of real process temperatures in the LMD process my multispectral thermography N2 - Due to the rapid thermal cycles involved in additive manufacturing of metals, high internal stresses and peculiar microstructures occur, which influence the parts mechanical properties. To systematically examine their formation, in-process measurements of the temperature are needed. Since the part emissivity is strongly inhomogeneous and rapidly changing in the process, the applicability of thermography for the determination of thermodynamic temperatures is limited. Measuring the thermal radiation in different wavelengths simultaneously, temperature and emissivity can be separated. Here, we present results of a preliminary study using multispectral thermography to obtain real temperatures and emissivities in directed energy deposition (DED) processes. T2 - Thermosense: Thermal Infrared Applications XLIII CY - Online meeting DA - 12.04.2021 KW - Additive Manufacturing KW - Process monitoring KW - Multispectral thermography KW - Laser metal deposition KW - TES KW - LMD KW - Temperature emissivity separation PY - 2021 U6 - https://doi.org/10.1117/12.2587881 AN - OPUS4-52515 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Altenburg, Simon A1 - Scheuschner, Nils A1 - Straße, Anne A1 - Gumenyuk, Andrey A1 - Maierhofer, Christiane T1 - Towards the determination of real process temperatures in the LMD process by multispectral thermography N2 - Due to the rapid thermal cycles involved in additive manufacturing of metals, high internal stresses and peculiar microstructures occur, which influence the parts mechanical properties. To systematically examine their formation, in-process measurements of the temperature are needed. Since the part emissivity is strongly inhomogeneous and rapidly changing in the process, the applicability of thermography for the determination of thermodynamic temperatures is limited. Measuring the thermal radiation in different wavelengths simultaneously, temperature and emissivity can be separated. Here, we present results of a preliminary study using multispectral thermography to obtain real temperatures and emissivities in directed energy deposition (DED) processes. T2 - Thermosense: Thermal Infrared Applications XLIII CY - Online meeting DA - 12.04.2021 KW - Additive Manufacturing KW - Process monitoring KW - Multispectral thermography KW - Laser metal deposition KW - TES KW - LMD KW - Temperature emissivity separation PY - 2021 U6 - https://doi.org/10.1117/12.2587881 VL - 2021 SP - 77 EP - 83 PB - SPIE AN - OPUS4-52516 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schröpfer, Dirk A1 - Treutler, K. A1 - Börner, Andreas A1 - Gustus, R. A1 - Kannengießer, Thomas A1 - Wesling, V. A1 - Maus-Friedrichs, W. T1 - Surface finishing of hard-to-machine cladding alloys for highly stressed components N2 - The supply and processing of materials for highly stressed components are usually cost-intensive. Efforts to achieve cost and resource efficiency lead to more complex structures and contours. Additive manufacturing steps for component repair and production offer significant economic advantages. Machining needs to be coordinated with additive manufacturing steps in a complementary way to produce functional surfaces suitable for the demands. Regarding inhomogeneity and anisotropy of the microstructure and properties as well as production-related stresses, a great deal of knowledge is still required for efficient use by small- and medium-size enterprises, especially for the interactions of subsequent machining of these difficult-to-machine materials. Therefore, investigations on these influences and interactions were carried out using a highly innovative cost-intensive NiCrMo alloy (IN725). These alloys are applied for claddings as well as for additive component manufacturing and repair welding using gas metal arc welding processes. For the welded specimens, the adequate solidification morphology, microstructure and property profile were investigated. The machinability in terms of finishing milling of the welded surfaces and comparative analyses for ultrasonic-assisted milling processes was examined focussing on surface integrity. It was shown that appropriate cutting parameters and superimposed oscillating of the milling tool in the direction of the tool rotation significantly reduce the mechanical loads for tool and workpiece surface. This contributes to ensure a high surface integrity, especially when cutting has to be carried out without cooling lubricants. KW - WAAM KW - IN725 KW - Machining KW - Ultrasonic-assisted milling KW - Residual stresses KW - Cutting forces KW - Surface integrity KW - Microstructure PY - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-524872 VL - 114 IS - 5-6 SP - 1427 EP - 1442 PB - Springer AN - OPUS4-52487 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mishurova, Tatiana A1 - Artzt, K. A1 - Rehmer, Birgit A1 - Haubrich, J. A1 - Avila, Luis A1 - Schoenstein, F. A1 - Serrano Munoz, Itziar A1 - Requena, G. A1 - Bruno, Giovanni T1 - Separation of the impact of residual stress and microstructure on the fatigue performance of LPBF Ti-6Al-4V at elevated temperature N2 - Manufacturing defects, high residual stress (RS), and microstructures affect the structural integrity of laser powder bed fusion (LPBF) Ti-6Al-4V. In this study, the individual effect of these factors on fatigue performance at elevated temperature (300 °C) was evaluated. Material in as-built condition and subjected to post-processing, including two heat treatments and hot isostatic pressing, was investigated. It was found that in the absence of tensile RS, the fatigue life at elevated temperature is primary controlled by the defects; and densification has a much stronger effect than the considered heat treatments on the improvement of the mechanical performance. KW - Additive manufacturing KW - Ti-6Al-4V KW - Residual stress KW - Fatigue performance KW - Computed tomography PY - 2021 U6 - https://doi.org/10.1016/j.ijfatigue.2021.106239 SN - 0142-1123 VL - 148 SP - 106239 PB - Elsevier Ltd. AN - OPUS4-52369 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Abdel-Wakil, W. A1 - Fahmy, Alaa A1 - Kamoun, E. A1 - Hassan, W. A1 - Abdelhai, Q. A1 - Salama, T. T1 - A New Route for Synthesis of Polyurethanevinyl Acetate Acrylate Emulsions as Binders for Pigment Printing of Cotton Fabrics N2 - Herein, two polyurethane oligomers were successfully synthesized using a prepolymer mixing process. The prepolymers were synthesized based on the step-growth addition polymerization of polypropylene glycol, Methylene diphenyl diisocyanate and 2-hydroxyethyl methacrylate or 2-hydroxyethyl acrylate. Isopropanol was functioned as the isocyanate blocking agent. Thereafter, different terpolymer emulsions were prepared by the emulsion graft copolymerization with the vinyl acetate monomer in presence of 2-ethylhexyl acrylate as a vinyl monomer. The chemical structures of the synthesized oligomeric monomers were probed by FTIR spectroscopy and found to vary with the content of acrylic monomer used in the oligomer synthesis phase (i.e.hydroxyethyl acrylate or hydroxyethyl methacrylate). The topography, thermal stability, and particle size of terpolymers were investigated by SEM, TGA, and zeta potential, respectively. The TGA results demonstrated marked enhancement in thermal stability of the synthesized terpolymers up to ca. 600°C, which was concurrent with enhanced surface homogeneity and film properties as evidenced by the SEM images. These terpolymers showed also property enhancement as binders for textile pigment printing in terms of rubbing resistance, color strength and fastness to washing when compared to the commercial binders. These judgments would provide a new competent synthesis route by introducing polyurethane acetate vinyl acrylate as the binder for use in pigment printing of cotton fabrics. KW - Vinyl monomer KW - Polyurethane acetate vinyl acrylate KW - Surface coating KW - Terpolymer KW - Textile binder PY - 2020 U6 - https://doi.org/10.21608/ejchem.2020.21712.2292 VL - 63 IS - 3 SP - 1063 EP - 1073 AN - OPUS4-52300 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Biegler, M. A1 - Graf, B. A1 - Rethmeier, Michael T1 - In-situ distortions in LMD additive manufacturing walls can be measured with digital image correlation and predicted using numerical simulations N2 - Distortions in Additive Manufacturing (AM) Laser Metal Deposition (LMD) occur in the newly-built component due to rapid heating and solidification and can lead to shape deviations and cracking. This paper presents a novel approach to quantify the distortions experimentally and to use the results in numerical simulation validation. Digital Image Correlation (DIC) is applied together with optical filters to measure in-situ distortions directly on a wall geometry produced with LMD. The wall shows cyclic Expansion and shrinking with the edges bending inward and the top of the sample exhibiting a slight u-shape as residual distortions. Subsequently, a structural Finite Element Analysis (FEA) of the experiment is established, calibrated against experimental temperature profiles and used to predict the in-situ distortions of the sample. A comparison of the experimental and numerical results reveals a good agreement in length direction of the sample and quantitative deviations in height direction, which are attributed to the material model used. The suitability of the novel experimental approach for measurements on an AM sample is shown and the potential for the validated numerical model as a predictive tool to reduce trial-and-error and improve part quality is evaluated. KW - Laser metal deposition KW - DIC KW - Dimensional accuracy KW - AM KW - Welding simulation PY - 2018 U6 - https://doi.org/10.1016/j.addma.2017.12.007 SN - 2214-8604 SN - 2214-7810 VL - 20 SP - 101 EP - 110 PB - Elsevier AN - OPUS4-43776 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Thiede, Tobias A1 - Mishurova, Tatiana A1 - Cabeza, S. A1 - Nadammal, Naresh A1 - Bode, Johannes A1 - Kromm, Arne A1 - Haberland, C. A1 - Bruno, Giovanni T1 - An assessment of bulk residual stress in selective laser melted Inconel 718 N2 - Having been introduced almost two decades ago, Additive Manufacturing (AM) of metals has become industrially viable for a large variety of applications, including aerospace, automotive and medicine. Powder bed techniques such as Selective Laser Melting (SLM) based on layer-by-layer deposition and laser melt enable numerous degrees of freedom for the geometrical design. Developing during the manufacturing process, residual stresses may limit the application of SLM parts by reducing the load bearing capacity as well as induce unwanted distortion depending on the boundary conditions specified in manufacturing. The residual stress distribution in IN718 elongated prisms produced by SLM was studied non-destructively by means of neutron (bulk) and laboratory X-ray (surface) diffraction. The samples with different scanning strategies, i.e. hatching length, were measured in as-build condition (on a build plate) and after removal from the build plate. The absolute values of all stress components decreased after removal from the build plate. Together with surface scan utilizing a coordinate-measuring machine (CMM), it is possible to link the stress release to the sample distortion. Obtained results indicated different residual stress states for each of the transversal, longitudinal and normal component depending on the thermal gradient in the respective direction. T2 - ECNDT 2018 CY - Götheburg, Sweden DA - 11.06.2018 KW - Additive manufacturing KW - Ressidual stress KW - Neutron diffraction PY - 2018 AN - OPUS4-45761 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Thiede, Tobias A1 - Mishurova, Tatiana A1 - Cabeza, S. A1 - Nadammal, Naresh A1 - Bode, Johannes A1 - Haberland, C. A1 - Bruno, Giovanni T1 - An assessment of bulk residual stress in selective laser melted Inconel 718 N2 - Having been introduced almost two decades ago, Additive Manufacturing (AM) of metals has become industrially viable for a large variety of applications, including aerospace, automotive and medicine. Powder bed techniques such as Selective Laser Melting (SLM) based on layer-by-layer deposition and laser melt enable numerous degrees of freedom for the geometrical design. Developing during the manufacturing process, residual stresses may limit the application of SLM parts by reducing the load bearing capacity as well as induce unwanted distortion depending on the boundary conditions specified in manufacturing. The residual stress distribution in IN718 elongated prisms produced by SLM was studied non-destructively by means of neutron (bulk) and laboratory X-ray (surface) diffraction. The samples with different scanning strategies, i.e. hatching length, were measured in as-build condition (on a build plate) and after removal from the build plate. The absolute values of all stress components decreased after removal from the build plate. Together with surface scan utilizing a coordinate-measuring machine (CMM), it is possible to link the stress release to the sample distortion. Obtained results indicated different residual stress states for each of the transversal, longitudinal and normal component depending on the thermal gradient in the respective direction. T2 - VAMAS - Workshop CY - BAM, Berlin, Germany DA - 25.06.2018 KW - Additive manufacturing KW - Neutron diffraction KW - Ressidual stress PY - 2018 AN - OPUS4-45762 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Petrat, T. A1 - Winterkorn, René A1 - Graf, B. A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - Build-up strategies for temperature control using laser metal deposition for additive manufacturing N2 - The track geometry created with laser metal deposition (LMD) is influenced by various parameters. In this case, the laser power has an influence on the width of the track because of an increasing energy input. A larger melt pool is caused by a rising temperature. In the case of a longer welding process, there is also a rise in temperature, resulting in a change of the track geometry. This paper deals with the temperature profiles of different zigzag strategies and spiral strategies for additive manufacturing. A two-color pyrometer is used for temperature measurement on the component surface near the melt pool. Thermocouples measure the temperatures in deeper regions of a component. The welds are located in the center and in the edge area on a test part to investigate the temperature evolution under different boundary conditions. The experiments are carried out on substrates made from mild steel 1.0038 and with the filler material 316L. The investigations show an influence on the temperature evolution by the travel path strategy as well as the position on the part. This shows the necessity for the development and selection of build-up strategies for different part geometries in additive manufacturing by LMD. KW - Laser welding KW - Clad steels KW - Temperature distribution KW - Heat flow KW - Laser surfacing PY - 2018 U6 - https://doi.org/10.1007/s40194-018-0604-8 SN - 0043-2288 SN - 1878-6669 VL - 62 IS - 5 SP - 1073 EP - 1081 PB - Springer AN - OPUS4-45773 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kotschate, Daniel A1 - Wendland, Saskia A1 - Gaal, Mate T1 - Airborne testing of molded polymer compounds N2 - Modern and energy-efficient materials are essential for innovative designs for aerospace and automotive industries. Current technologies for rapid manufacturing such as additive manufacturing and liquid composite moulding by polymer Extrusion allow innovative ways of creating robust and lightweight constructions. Commercially available printing devices often use polylactide (PLA) or acrylonitrile butadiene styrene (ABS) as raw material. Therefore, parameters like the infill ratio, influencing the ability to resist mechanical stress, may have a beneficial impact on the lifetime of components. These manufacturing technologies require a good knowledge about materials and even adapted non-destructive testing technologies and methods. Airborne ultrasonic testing has beneficial advantages for testing those lightweight constructions. It is a contact-free testing method, which does not require a liquid couplant. Therefore, it allows fast test cycles without any unwanted alternations of the material properties due to interactions with any coupling liquid. This contribution deals with the characterisation of printed specimens based on PLA by using airborne ultrasound and presents the current edge of non-destructive testing and evaluation using airborne ultrasonic transducers. The specimens, manufactured by polymer extrusion, are printed as thin plates. The infill ratio, as well as the material thickness, were varied to model density imperfections with different geometric shapes and properties. For better understanding of the limits of airborne ultrasonic testing in transmission, we compared own-developed transducers based on different physical principles: on ferroelectrets, on the thermoacoustic effect, as well as a new type of transducers based on gas discharges. T2 - 10th International Symposium on NDT in Aerospace CY - Dresden, Germany DA - 24.10.2018 KW - Air-coupled ultrasonic testing KW - Polymer KW - Plasma acoustics KW - Gas discharges KW - Atmospheric pressure plasma PY - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-465609 VL - 168 SP - Th.6.C.1, 1 EP - 7 AN - OPUS4-46560 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Altenburg, Simon A1 - Maierhofer, Christiane A1 - Mohr, Gunther A1 - Hilgenberg, Kai A1 - Straße, Anne A1 - Gumenyuk, Andrey T1 - Verfahrensentwicklung für das Prozessmonitoring in der additiven Fertigung von Metallen - Thermografie N2 - Aktuell werden Prozessmonitoringsysteme in der additiven Fertigung (AM) zur Überwachung der Energiequelle, des Bauraums, des Schmelzbades und der Bauteilgeometrie zumindest im metallbasierten AM schon kommerziell angeboten. Weitere Verfahren aus den Bereichen der Optik, Spektroskopie und zerstörungsfreien Prüfung werden in der Literatur als geeignet für die in-situ Anwendung bezeichnet, es finden sich aber nur wenige Berichte über konkrete Umsetzungen in die Praxis. Die Bundesanstalt für Materialforschung und -prüfung hat ein neues Projekt gestartet, dessen Ziel die Entwicklung von Verfahren des Prozessmonitorings zur in-situ Bewertung der Qualität additiv gefertigter Bauteile in AM-Prozessen mit Laser- bzw. Lichtbogenquellen ist. Verschiedene Verfahren der zerstörungsfreien Prüfung, wie Thermografie, optische Tomografie, optische Emissionsspektroskopie, Wirbelstromprüfung und Laminografie werden in verschiedenen AM-Prozessen zum Einsatz gebracht und die Ergebnisse fusioniert. Die evaluierten Ergebnisse werden mit Referenzverfahren wie Computertomografie und Ultraschall-Tauchtechnik verglichen. Ziel ist eine deutliche Reduzierung aufwändiger und zeitintensiver, zerstörender oder zerstörungsfreier Prüfungen nach der Fertigung des Bauteiles und zugleich eine Verringerung von Ausschussproduktion. Hier wird das Projekt als Ganzes vorgestellt und der Fokus auf verschiedene Methoden der Temperaturmessung mit Hilfe der Thermografie gelegt. Anforderungen an die Messtechnik für verschiedene AM-Systeme werden diskutiert und erste experimentelle Ergebnisse werden präsentiert. T2 - 3. Tagung des DVM-Arbeitskreises Additiv gefertigte Bauteile und Strukturen CY - Berlin, Germany DA - 07.11.2018 KW - Additive Fertigung KW - Prozessmonitoring KW - ProMoAM KW - Thermografie PY - 2018 AN - OPUS4-46562 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Falkenberg, Rainer A1 - Charmi, Amir T1 - Virtual-lab-based determination of a macroscopic yield function for additively manufactured parts N2 - Diese Arbeit beschreibt eine Methode für die Ermittlung einer Fließfunktion für additiv gefertigte Bauteile des Werkstoffs S316L. Ein Kristallplastizitätsmodell wird zunächst mit experimentellen Daten kalibriert. Anschließend werden mit diesem Modell sogenannte virtuelle Experimente durchgeführt, die die prozeßspezifische Mikrostruktur in Form von kristallographischen und morphologischen Texturen miteinbeziehen. Diese Simulationen werden mit einem representativen Volumenelement (RVE) durchgeführt, das aus EBSD/CT-Scans an additiv gefertigten Proben generiert wurde und daher die Kornstruktur und Kristallorientierungen enthält. Die virtuellen Experimente werden durchgeführt, um anhand der damit erhaltenen Fließpunkte eine anisotrope Barlat-Fließfunktion zu bestimmen. Dieser skalenübergreifende Ansatz ermöglicht die Simulation großer Strukturen, für die die Anwendung eines Kristallplastizitätsmodells numerisch zu teuer wäre. N2 - This work presents a method for the yield function determination of additively manufactured parts of S316L steel. A crystal plasticity model is calibrated with test results and used afterwards to perform so-called virtual experiments, that account for the specific process-related microstructure including crystallographic and morphological textures. These simulations are undertaken on a representative volume element (RVE), that is generated from EBSD/CT-Scans on in-house additively manufactured specimen, considering grain structure and crystal orientations. The results of the virtual experiments are used to determine an anisotropic Barlat yield function, that can be used in a macroscopical continuum-sense afterwards. This scale-bridging approach enables the calculation of large-scale parts, that would be numerically too expensive to be simulated by a crystal plasticity model. T2 - 3. Tagung des DVM-Arbeitskreises Additiv gefertigte Bauteile und Strukturen CY - Berlin, Germany DA - 07.11.2018 KW - Additive manufacturing KW - Scale-bridging KW - Crystal plasticity KW - Virtual experiments KW - Anisotropy PY - 2018 SN - 2509-8772 SP - 153 EP - 158 PB - DVM CY - Berlin AN - OPUS4-46570 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF ED - Marko, Angelina ED - Petrat, Torsten ED - Graf, Benjamin ED - Rethmeier, Michael T1 - Prognose der Oberflächenbeschaffenheit für die additive Fertigung mittels Laser-Pulver-Auftragschweißen N2 - In den letzten Jahren hat vor allem die Nachfrage nach additiven Fertigungstechnologien und Reparaturverfahren für Hochfeste Werkstoffe einen starken Aufschwung erlebt. Ein Verfahren, welches sich neben der Herstellung von Beschichtungen besonders für diese Anwendungen eignet, ist das Laser-Pulver-Auftragschweißen. Es wird besonders für Reparaturen bzw. zur Herstellung von teuren Bauteilen, wie Werkzeuge oder Turbinenteilen, eingesetzt. Da diese Teile oft großen mechanischen sowie thermischen Belastungen ausgesetzt sind, ist es besonders wichtig, dass die erzeugte Struktur eine hohe Qualität aufweist. In dieser Arbeit wird die statistische Versuchsplanung genutzt, um Modelle für die Oberflächenbeschaffenheiten von Inconel 718 zu generieren. Als Grundlage dient hierbei ein zentral zusammengesetzter Versuchsplan mit großem Parameterfenster. So wird die Leistung zwischen 550 Watt und 1950 Watt, der Vorschub von 530 mm/min bis 920 mm/min, der Pulvermassenstrom von 3 g/min bis 12 g/min sowie der Spotdurchmesser von 1 mm bis 2 mm variiert. Auf diese Weise wird die Spurgeometrie beeinflusst. Darüber hinaus wird das Überlappungsverhältnis zwischen 20% bis 50% verändert. Die Auswertung der Oberflächenbeschaffenheit erfolgt mit dem auf der Fokusvariation basierendem Oberflächenmessgerät Alicona Infinite-Focus. Dieses Verfahren der 3D Mikrokoordinatenmesstechnik gewährleistet eine zuverlässige Auswertung der Spurgeometrie, der Welligkeit sowie die Messung der mittleren arithmetischen Höhe Sa zur Bestimmung der Oberflächenrauheit. Anschließend werden die generierten Modelle verifiziert. Ziel dabei ist, kostenintensive Vorversuche in Zukunft einzusparen. Darüber hinaus wird das Prozessverständnis erweitert und signifikante Einflussfaktoren identifiziert. T2 - DVS Kongreß 2018 CY - Friedrichshafen, Germany DA - 17.09.2018 KW - Laser-Pulver-Auftragschweißen KW - Statistische Versuchsplanung KW - Oberflächenmessung KW - Additive Manufacturing PY - 2018 SN - 978-3-96144-036-8 VL - 2018 SP - 265 EP - 270 PB - DVS Media CY - Düsseldorf AN - OPUS4-47092 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Marko, A. A1 - Raute, J. A1 - Linaschke, D. A1 - Graf, B. A1 - Rethmeier, Michael T1 - Porosity of LMD manufactured parts analyzed by Archmimedes method and CT N2 - Pores in additive manufactured metal parts occur due to different reasons and affect the part Quality negatively. Few investigations on the origins of porosity are available, especially for Ni-based super alloys. This paper presents a new study to examine the influence of common processing Parameters on the Formation of pores in parts built by laser metal Deposition using Inconel 718 powder. Further, a comparison between the computed tomography (CT) and the Archimedes method was made. The Investigation Shows that CT is able to identify different kinds of pores and to give further Information about their distribution. The identification of some pores as well as their shape can be dependent on the Parameter Setting of the Analysis tool. Due to limited measurement Resolution, CT is not able to identify correctly pores with Diameters smaller than 0.1 mm, which leads to a false decrease on Overall porosity. The applied Archimedes method is unable to differentiate between gas porosity and other Kinds of holes like internal cracks or lack of Fusion, but it delivered a proper value for Overall porosity. The method was able to provide suitable data for the statistical Evaluation with design of Experiments, which revealed significant Parameters ont he Formation of pores in LMD. KW - Laser metal deposition KW - Additive manufacturing KW - Density measurement KW - Porosity KW - Design of experiments PY - 2018 U6 - https://doi.org/10.3139/120.111232 SN - 0025-5300 VL - 60 IS - 11 SP - 1055 EP - 1060 PB - Hanser CY - Berlin AN - OPUS4-47094 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Daum, Werner A1 - Maierhofer, Christiane A1 - Thiel, Erik A1 - Altenburg, Simon A1 - Pelkner, Matthias A1 - Evans, Alexander T1 - Zerstörungsfreie Prüfung von AM Komponenten - Ein Überblick N2 - Der Vortag erläutert typische Fehlstellen und Inhomogenitäten, die bei der additiven Fertigung entstehen können. Weiterhin wird über den aktuellen Stand der herstellungsbegleitenden zerstörungsfreien Prüfung und der zerstörungsfreien Prüfung fertiger AM-Komponenten berichtet. T2 - 3. ROUND TABLE - Additiv gefertigte Druckgeräte aus metallischen Werkstoffen CY - Frankfurt a.M., Germany DA - 22.01.2019 KW - Additive Fertigung KW - Zerstörungsfreie Prüfung PY - 2019 AN - OPUS4-47344 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Altenburg, Simon A1 - Maierhofer, Christiane A1 - Mohr, Gunther A1 - Hilgenberg, Kai T1 - Process monitoring in LBM using thermography and optical tomography N2 - Additive manufacturing (AM) opens the route to a range of novel applications. However, the complexity of the manufacturing process poses a challenge to produce defect-free parts with a high reliability. Since process dynamics and resulting microstructures of AM parts are strongly influenced by the involved temperature fields and cooling rates, thermography is a valuable tool for process monitoring. Another approach to monitor the energy input into the part during process is the use of optical tomography. Common visual camera systems reach much higher spatial resolution than infrared thermography cameras, whereas infrared thermography provides a much higher temperature dynamic. Therefore, the combined application increases the depth of information. Here, we present first measurement results using a laser beam melting setup that allows simultaneous acquisition of thermography and optical tomography from the same point of view using a beam splitter. A high-resolution CMOS camera operating in the visible spectral range is equipped with a near infrared bandpass filter and images of the build plate are recorded with long-term exposure during the whole layer exposing time. Thus, areas that reach higher maximum temperature or are at elevated temperature for an extended period of time appear brighter in the images. The used thermography camera is sensitive to the mid wavelength infrared range and records thermal videos of each layer exposure at an acquisition rate close to 1 kHz. As a next step, we will use computer tomographic data of the built part as a reference for defect detection. This research was funded by BAM within the focus area Materials. T2 - 3rd International Symposium Additive Manufacturing (ISAM 2019) CY - Dresden, Germany DA - 30.01.2019 KW - Additive manufacturing KW - Laser beam melting KW - Thermography KW - Optical Tomography PY - 2019 AN - OPUS4-47299 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pfretzschner, Beate T1 - Characterization of texture in SLM IN 718 samples using monochromatic neutron radiography N2 - Additive Manufacturing (AM) offers the opportunity to produce easier geometrically complex parts compared to traditional production technologies. An important AM technology for metals is selective laser melting (SLM) where a part is produced by melting and solidifying powder in layers. This technique is known to cause a pronounced texture in the produced AM products due to the specific heat flow and the associated solidification of the material during SLM deposition. In order to evaluate the influence of the deposition hatch length during SLM of nickel based superalloy Inconel 718 samples on the texture and in order to identify any preferred crystallographic direction, we performed monochromatic neutron radiography scans (using wavelength from 1.6 Å to 4.4 Å, step size 0.05 Å) to image the samples while rotating it through 90°. Samples produced with short hatch length showed fine textured columnar grains oriented along the sample building direction in high-resolution radiographs. Whereas processing the sample using a ten-fold longer hatch length reduced the texture. The neutron radiographic experiments were accompanied by scanning electron microscopy including electron back-scattered diffraction to visualize and verify the microstructure and texture. T2 - German Conference for Research with Synchrotron Radiation, Neutrons and Ion Beams at Large Facilities CY - Garching, Germany DA - 17.09.2018 KW - Bragg-edge KW - Neutron KW - Texture KW - Additive manufacturing PY - 2018 AN - OPUS4-47260 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bruno, Giovanni A1 - Thiede, Tobias A1 - Léonard, Fabien A1 - Farahbod, L. T1 - In-Situ Compression CT on Additively Manufactured in 625 Lattice Structures N2 - The porosity and the surface roughness are recently discussed problems for SLM parts. The influence of SLM process parameters on porosity is well studied for different materials. Nevertheless, the build angle (i.e. the angle between part orientation and build plate) needs to be understood as an additional SLM process parameter, as it has been shown, that the microstructure and hence the mechanical performance of various materials depend on the build angle. The inherent build angle of each strut as a part of a lattice structure is the motivation to investigate the influence of the build angle on the porosity and roughness on round-shaped (1 mm diameter) struts by means of CT. Conventional Coordinate Measuring Machine (CMM) has the limitation towards small and round shaped samples. The need for Computed Tomography (CT) regarding investigations of SLM parts will increase because no other non-destructive technique allows the assessment of complex geometries with inner laying surfaces. We used CT to assess the pores and the strut surface. Seven struts out of the nickel alloy Inconel 625 with build angles from 30° to 90° were studied. It was found that the number of pores is smaller, and the size of pores is larger for the 90° strut. In case of 30° strut, the number of pores is increased towards down-skin side, additionally, this strut orientation showed to have the largest number of attached powder particles. The elongated pores exist exclusively near the strut surface. While the roughness at the down-skin surface is highly depending of the biud angle, the roughness at the up-skin surface is the same for all struts. The mechanisms of pore and surface roughness formation is not mainly driven by gravity. T2 - ISAM Konferenz 2019 CY - Dresden, Germany DA - 29.01.2019 KW - Computed Tomography KW - Additive Manufacturing KW - Metals KW - Microstructure PY - 2019 AN - OPUS4-47327 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Evans, Alexander A1 - Mishurova, Tatiana A1 - Bruno, Giovanni A1 - Artzt, K. A1 - Haubrich, J. A1 - Requena, G. T1 - Influence of manufacturing parameters on microstructure and subsurface residual stress in SLM Ti-6Al-4V N2 - Using non-optimum combination of manufacturing parameters in selective laser melting (SLM) may lead to reduction of quality of component: defects generation, distortion of geometry and even cracking. Usually, the optimization of parameters is performed by changing volumetric energy density (Ev) and selecting parameters giving low porosity values. However, not only low porosity but also stable microstructure and low residual stresses will help to achieve advanced mechanical behavior of the component. In present work, we investigated cuboid-shaped Ti-6Al-4V samples produced with different manufacturing parameters. The parameters leading to the same Ev were considered as well as parameters which are not included in Ev. Residual stresses in subsurface region were investigated by synchrotron X-ray diffraction, which allows to penetrate around 100 µm from the surface therefore overcome the problem of high roughness of SLM components without additional sample preparation. Only tensile stresses were found along the building direction, that can play critical role especially during cyclic loading. In parallel, using X-ray computed tomography we also observe that porosity is mainly concentrated in the contour region, except in case where the laser speed is small. However, by using some process parameters it was possible to decrease residual stresses and obtain uniform α+β Ti microstructure and relatively low porosity. Additionally, it was found that not included in Ev (e.g., base plate position, focus distance) should be considered as additional manufacturing parameters during SLM process. T2 - ISAM Konferenz 2019 CY - Dresden, Germany DA - 29.01.2019 KW - Computed Tomography KW - Additive Manufacturing KW - Metals KW - Microstructure PY - 2019 AN - OPUS4-47328 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bruno, Giovanni A1 - Evans, Alexander T1 - Avoid living dangerously: non-destructive characterization of AM parts from powder to end-of-life N2 - The freeform and the revolutionary design possibilities offered by additive manufacturing have skyrocketed the amount of optimization studies in the realm of engineering, and metallic additive manufactured parts are becoming a reality in industry. Not surprisingly, this has not been paralleled by a similar enthusiastic wave in the realm of materials science, and still very little is known about AM materials properties. This has the consequence that, typically, conventional materials properties are still used in design and even in simulations. lt is necessary to dig a lot deeper than at present, in order to understand these new materials classes, and in particular their microstructure and their intemal stresses, largely different from their cast or wrought companions. T2 - ISAM Konferenz 2019 CY - Dresden, Germany DA - 29.01.2019 KW - Computed Tomography KW - Microstructure KW - Metals KW - Additive Manufacturing PY - 2019 AN - OPUS4-47331 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Müller, Bernd R. A1 - Kupsch, Andreas A1 - Laquai, René A1 - Nellesen, J. A1 - Tillmann, W. A1 - Kasperovich, G. A1 - Bruno, Giovanni T1 - Microstructure characterisation of advanced materials via 2D and 3D X-ray refraction techniques N2 - 3D imaging techniques have an enormous potential to understand the microstructure, its evolution, and its link to mechanical, thermal, and transport properties. In this conference paper we report the use of a powerful, yet not so wide-spread, set of X-ray techniques based on refraction effects. X-ray refraction allows determining internal specific surface (surface per unit volume) in a non-destructive fashion, position and orientation sensitive, and with a nanometric detectability. We demonstrate showcases of ceramics and composite materials, where microstructural parameters could be achieved in a way unrivalled even by high-resolution techniques such as electron microscopy or computed tomography. We present in situ analysis of the damage evolution in an Al/Al2O3 metal matrix composite during tensile load and the identification of void formation (different kinds of defects, particularly unsintered powder hidden in pores, and small inhomogeneity’s like cracks) in Ti64 parts produced by selective laser melting using synchrotron X-ray refraction radiography and tomography. T2 - THERMEC 2018: 10TH international conference on processing and manufacturing of advanced materials CY - Paris, France DA - 08.07.2018 KW - Additive manufacturing (AM) KW - Creep KW - Damage evolution KW - Synchrotron X-ray refraction radiography KW - Metal matrix composites PY - 2018 UR - https://www.scientific.net/MSF.941.2401 SN - 978-3-0357-1208-7 U6 - https://doi.org/10.4028/www.scientific.net/MSF.941.2401 SN - 1662-9752 SN - 0255-5476 VL - 941 SP - 2401 EP - 2406 PB - Trans Tech Publications CY - Switzerland AN - OPUS4-47148 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Serrano Munoz, Itziar A1 - Mishurova, Tatiana A1 - Thiede, Tobias A1 - Ulbricht, Alexander A1 - Bruno, Giovanni T1 - Residual stress analysis in selective laser melted parts of superalloy IN718 N2 - Additive Manufacturing by Selective Laser Melting (SLM) offers an ample scope for producing geometrically complex parts as compared to the traditional subtractive manufacturing strategies. However, the residual stresses (RS) developed during the processing can reduce the load bearing capacity as well as induce unwanted distortion, limiting the life time and the application of SLM parts. T2 - BESSY II User meeting CY - BESSY II Photon Source, Adlershof Berlin, Germany DA - 06.12.2018 KW - Laser Beam Melting KW - AM IN718 KW - Residual stress measurements PY - 2018 AN - OPUS4-47179 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Biegler, P. ED - Marko, A. ED - Graf, B. ED - Rethmeier, Michael T1 - Finite element analysis of in-situ distortion and bulging for an arbitrarily curved additive manufacturing directed energy deposition geometry N2 - With the recent rise in the demand for additive manufacturing (AM), the need for reliable simulation tools to support experimental efforts grows steadily. Computational welding mechanics approaches can simulate the AM processes but are generally not validated for AM-specific effects originating from multiple heating and cooling cycles. To increase confidence in the outcomes and to use numerical simulation reliably, the result quality Needs to be validated against experiments for in-situ and post-process cases. In this article, a validation is demonstrated for a structural thermomechanical simulation model on an arbitrarily curved Directed Energy Deposition (DED)part: at first, the validity of the heat input is ensured and subsequently, the model’s predictive quality for in-situ deformation and the bulging behaviour is investigated. For the in-situ deformations, 3D-Digital Image Correlation measurements are conducted that quantify periodic expansion and shrinkage as they occur. The results show a strong dependency of the local stiffness of the surrounding geometry. The numerical Simulation model is set up in accordance with the experiment and can reproduce the measured 3-dimensional in-situ displacements. Furthermore, the deformations due to removal from the substrate are quantified via 3D-scanning, exhibiting considerable distortions due to stress relaxation. Finally, the prediction of the deformed shape is discussed in regards to bulging simulation: to improve the accuracy of the calculated final shape, a novel Extension of the model relying on the modified stiffness of inactive upper layers is proposed and the experimentally observed bulging could be reproduced in the finite element model. KW - DED KW - Welding simulation KW - Additive manufacturing KW - Dimensional accuracy KW - Digital image correlation PY - 2018 U6 - https://doi.org/10.1016/j.addma.2018.10.006 SN - 2214-8604 SN - 2214-7810 VL - 24 SP - 264 EP - 272 PB - Elsevier AN - OPUS4-47226 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Khrapov, D. A1 - Surmeneva, M. A1 - Koptioug, A. A1 - Evsevleev, Sergei A1 - Léonard, Fabien A1 - Bruno, Giovanni A1 - Surmenev, R. T1 - X-ray computed tomography of multiple-layered scaffolds with controlled gradient cell lattice structures fabricated via additive manufacturing N2 - In this paper we report on the characterization by X-ray computed tomography of calcium phosphate (CaP) and polycaprolactone (PCL) coatings on Ti-6Al-4V alloy scaffolds used as a material for medical implants. The cylindrical scaffold has greater porosity of the inner part than the external part, thus, mimicking trabecular and cortical bone, respectively. The prismatic scaffolds have uniform porosity. Surface of the scaffolds was modified with calcium phosphate (CaP) and polycaprolactone (PCL) by dip-coating to improve biocompatibility and mechanical properties. Computed tomography performed with X-ray and synchrotron radiation revealed the defects of structure and morphology of CaP and PCL coatings showing small platelet-like and spider-web-like structures, respectively. KW - Additive manufacturing KW - Lattice structure KW - Multiple-layered scaffold KW - Coating KW - Medical implants KW - Computed tomography KW - Polycaprolactone KW - Calcium phosphate PY - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-471931 UR - http://stacks.iop.org/1742-6596/1145/i=1/a=012044 SN - 1742-6596 VL - 1145 SP - 012044, 1 EP - 7 PB - IOP AN - OPUS4-47193 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Koch, Claudia ED - Mangelsdorf, Axel ED - Weiler, Petra T1 - Normung für neue Technologien am Beispiel Additiver Fertigung N2 - Der Beitrag beleuchtet die Normung für neue Technologien am Beispiel Additiver Fertigung im Hinblick auf ihren Beitrag zur Diffusion in den Markt KW - Additive Fertigung KW - Innovation KW - Normen KW - Standards PY - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-473812 UR - https://www.degruyter.com/view/books/9783110629057/9783110629057-003/9783110629057-003.xml SN - 978-3-11062-905-7 VL - 2019 SP - 18 EP - 36 PB - De Gruyter CY - Berlin, Boston ET - 1 AN - OPUS4-47381 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ehlers, Henrik A1 - Pelkner, Matthias A1 - Pohl, Rainer A1 - Thewes, R. T1 - Hochauflösende Wirbelstromprüfung in der Additiven Fertigung N2 - Additive Fertigung hat in den letzten Jahren aufgrund der hohen Flexibilität stark an Bedeutung gewonnen. Insbesondere in der Luft- und Raumfahrttechnik werden hohe Anforderungen an die Qualitätskontrolle additiv gefertigter Bauteile gestellt. Teile die mit dem selektiven Laserschmelzen (SLM) hergestellt werden, bilden schon währen des Fertigungsprozesses Poren oder Risse aus. Aus diesem Grund ist die zerstörungsfreie Prüfung jedes Bauteils notwendig. Erste Versuche haben gezeigt, dass die ex-situ Wirbelstromprüfung von SLM-Bauteilen mit hochauflösenden MR Sonden möglich ist und dass Fehler im Bereich von einiger µm detektiert werden können. In dem Vortrag wird eine automatisierte in-situ Wirbelstromprüfung von SLM-Bauteilen vorgestellt. Für die Prüfung wird eine Vielzahl hochauflösender MR Sensoren verwendet, um die benötige hohe Ortsauflösung bei gleichzeitig kurzer Prüfzeit zu erreichen. Zusätzlich werden klassische Methoden der Signalverarbeitung verwendet, um die Kosten und die Komplexität des Systems trotz hoher Prüffrequenz zu minimieren. Das vorgestellte System kann in der Zukunft helfen automatisiert Prüfberichte zu generieren, den SLM-Prozess zu kontrollieren oder automatisiert Fehlstellen auszuheilen. T2 - Innotesting 2019 CY - Wildau, Germany DA - 21.02.2019 KW - GMR KW - Wirbesltrom KW - Additive Fertigung KW - SLM KW - LBM KW - Eddy Current KW - 316L KW - additive manufacturing PY - 2019 AN - OPUS4-47425 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mishurova, Tatiana A1 - Artzt, K. A1 - Haubrich, J. A1 - Requena, G. A1 - Bruno, Giovanni T1 - Exploring the correlation between subsurface residual stresses and manufacturing parameters in laser powder bed fused Ti-6Al-4V N2 - Subsurface residual stresses (RS) were investigated in Ti-6Al-4V cuboid samples by means of X-ray synchrotron diffraction. The samples were manufactured by laser powder bed fusion (LPBF) applying different processing parameters, not commonly considered in open literature, in order to assess their influence on RS state. While investigating the effect of process parameters used for the calculation of volumetric energy density (such as laser velocity, laser power and hatch distance), we observed that an increase of energy density led to a decrease of RS, although not to the same extent for every parameter variation. Additionally, the effect of support structure, sample roughness and LPBF machine effects potentially coming from Ar flow were studied. We observed no influence of support structure on subsurface RS while the orientation with respect to Ar flow showed to have an impact on RS.We conclude recommending monitoring such parameters to improve part reliability and reproducibility. KW - Additive manufacturing KW - Synchrotron X-ray diffraction KW - Residual stress KW - Ti-6Al-4V PY - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-474281 SN - 2075-4701 VL - 9 IS - 2 SP - 261, 1 EP - 13 PB - MDPI AN - OPUS4-47428 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Koch, Claudia T1 - Standardization for emerging technologies - Additive manufacturing case study N2 - This was a short presentation on the role of Standards and standardization for the development and diffusion of an emerging technology - using additive manufacturing as an example. T2 - 6th Annual Meeting of the Indo-German Working Group on Quality Infrastructure CY - Berlin, Germany DA - 17.01.2019 KW - 3D-Printing KW - Additive Manufacturing KW - Emerging technologies KW - Standardization KW - Standards KW - Technological innovation PY - 2019 AN - OPUS4-47397 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Thiede, Tobias A1 - Mishurova, Tatiana A1 - Evsevleev, Sergei A1 - Serrano Munoz, Itziar A1 - Gollwitzer, Christian A1 - Bruno, Giovanni T1 - 3D shape analysis of powder for laser beam melting by synchrotron X-ray CT N2 - The quality of components made by laser beam melting (LBM) additive manufacturing is naturally influenced by the quality of the powder bed. A packing density <1 and porosity inside the powder particles lead to intrinsic voids in the powder bed. Since the packing density is determined by the particle size and shape distribution, the determination of these properties is of significant interest to assess the printing process. In this work, the size and shape distribution, the amount of the particle’s intrinsic porosity, as well as the packing density of micrometric powder used for LBM, have been investigated by means of synchrotron X-ray computed tomography (CT). Two different powder batches were investigated: Ti–6Al–4V produced by plasma atomization and stainless steel 316L produced by gas atomization. Plasma atomization particles were observed to be more spherical in terms of the mean anisotropy compared to particles produced by gas atomization. The two kinds of particles were comparable in size according to the equivalent diameter. The packing density was lower (i.e., the powder bed contained more voids in between particles) for the Ti–6Al–4V particles. The comparison of the tomographic results with laser diffraction, as another particle size measurement technique, proved to be in agreement. KW - Additive manufacturing KW - Laser beam melting KW - Synchrotron computed tomography KW - Powder analysis KW - Imaging PY - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-474070 SN - 2412-382X VL - 3 IS - 1 SP - 3, 1 EP - 12 PB - MDPI AN - OPUS4-47407 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Altenburg, Simon A1 - Maierhofer, Christiane A1 - Mohr, Gunther A1 - Hilgenberg, Kai A1 - Straße, Anne A1 - Gumenyuk, Andrey T1 - Verfahrensentwicklung für die Prozessüberwachung in der additiven Fertigung - Thermografie N2 - Aktuell werden Prozessmonitoringsysteme in der additiven Fertigung (AM) zur Überwachung der Energiequelle, des Bauraums, des Schmelzbades und der Bauteilgeometrie zumindest im metallbasierten AM schon kommerziell angeboten. Weitere Verfahren aus den Bereichen der Optik, Spektroskopie und zerstörungsfreien Prüfung werden in der Literatur als geeignet für die in-situ Anwendung bezeichnet, es finden sich aber nur wenige Berichte über konkrete Umsetzungen in die Praxis. Die Bundesanstalt für Materialforschung und -prüfung hat ein neues Projekt gestartet, dessen Ziel die Entwicklung von Verfahren des Prozessmonitorings zur in-situ Bewertung der Qualität additiv gefertigter Bauteile in AM-Prozessen mit Laser- bzw. Lichtbogenquellen ist. Verschiedene Verfahren der zerstörungsfreien Prüfung, wie Thermografie, optische Tomografie, optische Emissionsspektroskopie, Wirbelstromprüfung und Laminografie werden in verschiedenen AM-Prozessen zum Einsatz gebracht und die Ergebnisse fusioniert. Die evaluierten Ergebnisse werden mit Referenzverfahren wie Computertomografie und Ultraschall-Tauchtechnik verglichen. Ziel ist eine deutliche Reduzierung aufwändiger und zeitintensiver, zerstörender oder zerstörungsfreier Prüfungen nach der Fertigung des Bauteiles und zugleich eine Verringerung von Ausschussproduktion. Hier wird das Projekt als Ganzes vorgestellt und der Fokus auf verschiedene Methoden der Temperaturmessung mit Hilfe der Thermografie gelegt. Anforderungen an die Messtechnik für verschiedene AM-Systeme werden diskutiert und erste experimentelle Ergebnisse werden präsentiert. T2 - Innotesting 2019 CY - Wildau, Germany DA - 21.02.2019 KW - Additive Fertigung KW - Thermografie KW - Prozessüberwachung PY - 2019 AN - OPUS4-47457 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kromm, Arne A1 - Cabeza, S. A1 - Mishurova, Tatiana A1 - Thiede, Tobias A1 - Nadammal, Naresh A1 - Bruno, Giovanni A1 - Portella, Pedro Dolabella T1 - Residual stress Formation in selective laser melted parts of Alloy 718 N2 - Additive Manufacturing (AM) through the Selective Laser Melting (SLM) route offers ample scope for producing geometrically complex parts compared to the conventional subtractive manufacturing strategies. Nevertheless, the residual stresses which develop during the fabrication can limit application of the SLM components by reducing the load bearing capacity and by inducing unwanted distortion, depending on the boundary conditions specified during manufacturing. The present study aims at characterizing the residual stress states in the SLM parts using different diffraction methods. The material used is the nickel based superalloy Inconel 718. Microstructure as well as the surface and bulk residual stresses were characterized. For the residual stress analysis, X-ray, synchrotron and neutron diffraction methods were used. The measurements were performed at BAM, at the EDDI beamline of -BESSY II synchrotronand the E3 line -BER II neutron reactor- of the Helmholtz-Zentrum für Materialien und Energie (HZB) Berlin. The results reveal significant differences in the residual stress states for the different characterization techniques employed, which indicates the dependence of the residual state on the penetration depth in the sample. For the surface residual stresses, longitudinal and transverse stress components from X-ray and synchrotron agree well and the obtained values were around the yield strength of the material. Furthermore, synchrotron mapping disclosed gradients along the width and length of the sample for the longitudinal and transverse stress components. On the other hand, lower residual stresses were found in the bulk of the material measured using neutron diffraction. The longitudinal component was tensile and decreased towards the boundary of the sample. In contrast, the normal component was nearly constant and compressive in nature. The transversal component was almost negligible. The results indicate that a stress re-distribution takes place during the deposition of the consecutive layers. Further investigations are planned to study the phenomenon in detail. T2 - European Conference on Residual Stresses - ECRS10 CY - Leuven, Belgium DA - 11.09.2018 KW - Additive Manufacturing KW - Selective Laser Melting KW - Residual Stresses PY - 2018 AN - OPUS4-45979 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kromm, Arne A1 - Cabeza, S. A1 - Mishurova, Tatiana A1 - Nadammal, Naresh A1 - Thiede, Tobias A1 - Bruno, Giovanni T1 - Residual Stresses in Selective Laser Melted Samples of a Nickel Based Superalloy N2 - Additive Manufacturing (AM) through the Selective Laser Melting (SLM) route offers ample scope for producing geometrically complex parts compared to the conventional subtractive manufacturing strategies. Nevertheless, the residual stresses which develop during the fabrication can limit application of the SLM components by reducing the load bearing capacity and by inducing unwanted distortion, depending on the boundary conditions specified during manufacturing. The present study aims at characterizing the residual stress states in the SLM parts using different diffraction methods. The material used is the nickel based superalloy Inconel 718. Microstructure as well as the surface and bulk residual stresses were characterized. For the residual stress analysis, X-ray, synchrotron and neutron diffraction methods were used. The measurements were performed at BAM, at the EDDI beamline of -BESSY II synchrotronand the E3 line -BER II neutron reactor- of the Helmholtz-Zentrum für Materialien und Energie (HZB) Berlin. The results reveal significant differences in the residual stress states for the different characterization techniques employed, which indicates the dependence of the residual state on the penetration depth in the sample. For the surface residual stresses, longitudinal and transverse stress components from X-ray and synchrotron agree well and the obtained values were around the yield strength of the material. Furthermore, synchrotron mapping disclosed gradients along the width and length of the sample for the longitudinal and transverse stress components. On the other hand, lower residual stresses were found in the bulk of the material measured using neutron diffraction. The longitudinal component was tensile and decreased towards the boundary of the sample. In contrast, the normal component was nearly constant and compressive in nature. The transversal component was almost negligible. The results indicate that a stress re-distribution takes place during the deposition of the consecutive layers. Further investigations are planned to study the phenomenon in detail. T2 - European Conference on Residual Stresses - ECRS10 CY - Leuven, Belgium DA - 11.09.2018 KW - Additive Manufacturing KW - Selective Laser Melting KW - Residual Stresses PY - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-459818 SN - 978-1-94529-189-0 SN - 978-1-94529-188-3 SN - 2474-395X SN - 2474-3941 VL - 6 SP - 259 EP - 264 PB - Materials Research Forum LLC CY - Millersville, PA 17551, USA AN - OPUS4-45981 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Léonard, Fabien A1 - Tiede, Tobias A1 - Mishurova, Tatiana A1 - Laquai, René A1 - Bruno, Giovanni T1 - Selective laser melting process optimisation: X-ray and neutron sources for information from powder grains to printed structures N2 - Selective laser melting process optimisation: X-ray and neutron sources for information from powder grains to printed structures T2 - BPWT/BAM Workshop " Innovative Materialien und Qualitätskontrolle für additive Fertigung" CY - Berlin, Germany DA - 12.09.2018 KW - SLS KW - X-ray computed tomography KW - Refraction KW - Neutron diffraction KW - Additive manufacturing KW - Industry 4.0 PY - 2018 AN - OPUS4-45924 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Léonard, Fabien A1 - Bruno, Giovanni T1 - Metrology for Additively Manufactured Medical Implants: The MetAMMI project N2 - Additive manufacturing (AM) offers an effective solution to the medical sector. It enables the production, on demand, of customised implants which match the patient’s anatomy, with grafts that promote bone growth, as well as surgical guides that help the surgeons. The objective of this project is to provide a comprehensive basis to enable the safe use of medical AM products with traceable and reliable dimensionalmeasurements. This will guarantee the reliability of medical AM products to notified bodies and facilitate acceptance of AM in the medical sector for a better quality of life. T2 - BPWT/BAM Workshop " Innovative Materialien und Qualitätskontrolle für additive Fertigung" CY - Berlin, Germany DA - 12.09.2018 KW - Additive manufacturing KW - X-ray computed tomography PY - 2018 AN - OPUS4-45926 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Deubener, J. A1 - Allix, M. A1 - Davis, M.J. A1 - Duran, A. A1 - Höche, T. A1 - Honma, T. A1 - Komatsu, T. A1 - Krüger, S. A1 - Mitra, I. A1 - Müller, Ralf A1 - Nakane, S. A1 - Pascual, M.J. A1 - Schmelzer, J.W. A1 - Zanotto, E.D. A1 - Zhou, S. T1 - Updated definition of glass-ceramics N2 - Glass-ceramics are noted for their unusual combination of properties and manifold commercialized products for consumer and specialized markets. Evolution of novel glass and ceramic processing routes, a plethora of new compositions, and unique exotic nano- and microstructures over the past 60 years led us to review the Definition of glass-ceramics. Well-established and emerging processing methods, such as co-firing, additive manufacturing, and laser patterning are analyzed concerning the core requirements of processing glass-ceramics and the Performance of the final products. In this communication, we propose a revised, updated definition of glass-ceramics, which reads “Glass-ceramics are inorganic, non-metallic materials prepared by controlled crystallization of glasses via different processing methods. They contain at least one type of functional crystalline phase and a residual glass. The volume fraction crystallized may vary from ppm to almost 100%”. KW - Glass-ceramics definition PY - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-464711 SN - 0022-3093 SN - 1873-4812 VL - 501 SP - 3 EP - 10 PB - Elsevier B.V. AN - OPUS4-46471 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Saadeh, Qais A1 - Pauw, Brian Richard A1 - Thünemann, Andreas A1 - Günster, Jens T1 - In-Situ SAXS Techniques N2 - Our project's aim is to enhance the capabilities of additive manufacturing techniques, where enabling a Two-Photon-Polymerization (TPP) 3D printer of producing arrays of precisely aligned nanoparticles is of an enormous value. As heterogeneous functional nanostructures with arrays of oriented nanoparticles are very promising in many fields; electrochemistry, energy storage, nanoelectronics among other vital fields. The feasibility and the convenience of orienting nanoparticles using magnetic, electric fields and ultrasonic vibrations will be systematically investigated, using Small Angle X-ray Scattering (SAXS), since SAXS can provide detailed information about the orientation characteristics of nano-Ensembles. Corresponding to our prerequisites, a set ad hoc functional sample holders, sample stages and other In-Situ SAXS solutions were developed, and incorporated to be compatible with a state-of-the-arts SAXS machine, called Multi-scale Analyzer for Ultrafine Structures (MAUS). The MAUS has been customized and engineered to serve as a miniaturized synchrotron, and that is exactly what we need. Experiments attempting to orient superparamagnetic nanoparticles will be discussed, where the outcomes will not only help in understanding the mechanics of field-particle interactions, it will also help in further developing the adequate needed set of corrections to the SAXS data, that is especially regards oriented samples. T2 - XVII International Small Angle Scattering Conference – SAS 2018 CY - Traverse City, Michigan, USA DA - 07.10.2018 KW - In-Situ Techniques KW - SAXS KW - Magnetic nano-particles PY - 2018 AN - OPUS4-46443 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Metz, Christian A1 - Franz, Philipp A1 - Wachtendorf, Volker A1 - Maierhofer, Christiane A1 - Fischer, Christian T1 - Additiv gefertigte Polymerbauteile: Untersuchung der Beständigkeit durch künstliche Bewitterung und zerstörungsfreie Charakterisierung (PolyMatAM) N2 - Es wird ein Verfahren zur Charakterisierung der Beständigkeit und Langzeitstabilität von additiv gefertigten Kunststoff-Bauteilen vorgestellt. Dabei sollen die Prüfkörper über 2000 Stunden künstlich bewittert und währenddessen die Änderungen der Eigenschaften der Bauteile zerstörungsfrei untersucht werden. T2 - 47. Jahrestagung der Gesellschaft für Umweltsimulation e.V. (GUS) CY - Stutensee, Germany DA - 21.03.2018 KW - Additive Fertigung KW - Künstliche Bewitterung KW - Thermografie PY - 2018 AN - OPUS4-46545 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mohr, Gunther A1 - Hilgenberg, Kai T1 - Überblick und Beispiele zur additiven Fertigung N2 - Im Vortrag wird in die Grundlagen der additiven Fertigungsverfahren eingeführt und dies für metallbasierte Verfahren vertieft. Es werden zudem aktuelle industrielle Anwendungsbeispiele aufgezeigt sowie Forschungsbedarfe und Herausforderungen benannt. T2 - DVS-Bezirksverbandstreffen Berlin CY - Berlin, Germany DA - 28.02.2018 KW - Additive Fertigung KW - Additive manufacturing KW - Laserstrahlschmelzen PY - 2018 AN - OPUS4-46003 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bruno, Giovanni A1 - Thiede, Tobias A1 - Mishurova, Tatiana A1 - Cabeza, S. A1 - Nadammal, Naresh A1 - Kromm, Arne A1 - Haberland, C. A1 - Bode, Joannes T1 - An assessment of bulk residual stress in selective laser melted in 718 N2 - Having been introduced almost two decades ago, Additive Manufacturing (AM) of metals has become industrially viable for a large variety of applications, including aerospace, automotive and medicine. Powder bed techniques such as Selective Laser Melting (SLM) based on layer-by-layer deposition and laser melt enable numerous degrees of freedom for the geometrical design. Developing during the manufacturing process, residual stresses may limit the application of SLM parts by reducing the load bearing capacity as well as induce unwanted distortion depending on the boundary conditions specified in manufacturing. The residual stress distribution in IN718 elongated prisms produced by SLM was studied non-destructively by means of neutron (bulk) and laboratory X-ray (surface) diffraction. The samples with different scanning strategies, i.e. hatching length, were measured in as-built condition (on a build plate) and after removal from the build plate. While surface stress fields seem constant for AB condition, X-ray diffraction shows stress gradients along the hatch direction in the RE condition. The stress profiles correlate with the distortion maps obtained by tactile probe measurements. Neutron diffraction shows bulk stress gradients for all principal components along the main sample directions. We correlate the observed stress patterns with the hatch length, i.e. with its effect on temperature gradients and heat flow. The bulk stress gradients partially disappear after removal from the baseplate. Together with surface scan utilizing a coordinate-measuring machine (CMM), it is possible to link the stress release to the sample distortion. We finally propose an explanation of those stress profiles based on the deposition strategy. T2 - ECRS10 CY - Leuven, Belgium DA - 09.09.2018 KW - Residual stress KW - Influence of rheology modifying admixtures on hydration of cementitious suspensions PY - 2018 AN - OPUS4-45997 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bruno, Giovanni A1 - Thiede, Tobias A1 - Serrano Munoz, Itziar A1 - Léonard, Fabien A1 - Farahbod, L. T1 - Computed tomography of LBM produced In625 lattices: Integrity analysis from powder particles to structures N2 - We investigated lattice structure manufactured by laser beam melting with computed tomography on difference scales, such as powder scale, strut scale and lattice scale. The raw powder has been evaluated by means of synchrotron computed tomography (CT) at the BAM-Line (HZB Bessy II, Berlin). Therefore, the particle size distribution and even the pore size distribution was investigated and compared with results received by the producer by means of sieving. Studies with laboratory X-ray CT of porosity and roughness of manufactured struts in dependence of the build angle exhibited the tendency that elongated pores appear solely in a certain range near the edge. The integrity and load-bearing capacity of a lattice structure was investigated by means of in-situ CT during compression. The lattice structure was compressed by 10 % in height with an applied maximum force of 5 kN. We applied digital volume correlation algorithm on volumes of different load steps to quantifies the displacement within the structure. T2 - Metallographie-Tagung 2018 CY - Leoben, Austria DA - 19.09.2018 KW - Additive manufacturing KW - Laser beam melting KW - Computed tomography KW - Lattice structures KW - In-situ CT KW - Porosity KW - Roughness PY - 2018 AN - OPUS4-45998 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Thiede, Tobias A1 - Farahbod, L. A1 - Léonard, Fabien A1 - Serrano Munoz, Itziar A1 - Bruno, Giovanni T1 - Computed tomography of SLM produced IN625 parts: From powder grains to lattice structures N2 - Im Fokus dieser Arbeit steht die computertomographische (CT) Untersuchung (Synchrotron- und Labor-CT) von IN625-Pulver und den daraus gefertigten Streben, welche wiederum zu Gitterstrukturen zusammengesetzt werden. Aufgrund der Filigranität wurde zur Fertigung dieser Proben das pulverbettbasierte selektive Laserschmelzen verwendet. Porositätsanalysen und Größenverteilungen wurden für das Pulver bei einer rekonstruierten Voxelgröße von 0,5µm ermittelt. 6,0mm lange Streben variierten im Aufbauwinkel von 30° bis 90° zur Bauplattform und zeigten so den Unterschied zwischen Up- und Down-Skin hinsichtlich der Rauigkeit und Porenverteilung. Die Gitterstrukturen konnten in-situ mit bis zu 5,0kN belastet werden, um deren Verformung computertomographisch zu erfassen. T2 - 7. VDI-TUM Expertenforum CY - Garching b. München, Germany DA - 13.09.2018 KW - Additive manufacturing KW - Laser beam melting KW - Computed tomography KW - Lattice structures PY - 2018 AN - OPUS4-46069 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schnieder, Verena A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - Additive Fertigung von Nickel-Titan-Formgedächtnislegierungen aus den Elementpulvern mittels Laserpulverauftragschweißen N2 - Additive Fertigungsverfahren gewinnen aufgrund der schnellen, flexiblen und kostengünstigen Fertigung von Bauteilen zunehmend an Bedeutung. Das Laserpulverauftragschweißen (LPA) wurde anfangs hauptsächlich als Beschichtungsverfahren eingesetzt. Diese Technologie bewerkstelligt aber auch das Reparieren von verschlissenen Bauteilen, sodass diese zeitsparend und ressourcenschonend erneuert werden können. Die hohe Aufbaurate, die flexible Pulverzusammensetzung sowie die hohe Endkonturnähe ermöglichen die Entwicklung und additive Fertigung von neuen Materialien. Im Rahmen dieses Beitrages wurde das Verfahren des Laserpulverauftragschweißens zur additiven Fertigung von Nickel-Titan-Formgedächtnislegierungen angewandt. Diese Legierungsgruppe ist aufgrund der Eigenschaft der Gestalterinnerung ein äußerst interessantes Legierungssystem mit unterschiedlichen Anwendungsbereichen, wie zum Beispiel in der Luft- und Raumfahrttechnik sowie in der Medizintechnik. Zur Erzeugung einer äquiatomaren NiTi-Legierung wurden die Elementpulver in einem Verhältnis von 55,9 wt.% Nickel und 44,1 wt.% Titan miteinander vermischt. Das Auftragen von Einzelspuren, Schichten und dreidimensionalen Körpern erfolgte auf unterschiedlichen Substratplatten aus Titan-, Nickel- und Nickeltitanlegierungen. Die metallographischen Untersuchungen zeigten, dass sich in Abhängigkeit des Substratmaterials unterschiedliche Phasen ausbilden und Risse vom Substrat durch den additiven Aufbau auftreten. Bei mehrlagigem Aufbau kam es sogar zur Ablösung des additiven Aufbaus von der Substratplatte. Der artgleiche additive Aufbau, sprich NiTi-Legierung auf einem NiTi-Substrat (Ni50,8Ti49,2 in at.%), führte zur keiner Materialablösung. Das Gefüge sowie die Phasenzusammensetzungen bieten in diesem Bereich noch viel Forschungsbedarf. T2 - 39. Assistentenseminar CY - Eupen, Belgium DA - 12.09.2018 KW - Additive Fertigung KW - Additive Manufacturing KW - Laserpulverauftragschweißen KW - Formgedächtnislegierungen KW - NiTi-Legierungen PY - 2018 AN - OPUS4-46092 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Madia, Mauro A1 - Zerbst, Uwe T1 - On the modelling of the fatigue strength of am components N2 - The topic of the presentation consists in some basic considerations on the application of fracture mechanics to fatigue live and strengh prediction of metallic componends manufatured by additive manufacturing. These are based on an approach developed at BAM which comprises elements such as the elastic-plastic modelling of the cyclic crack driving force, a physically meaningfull determination of the initial crack size and multipile crack initiation and propagation due to variations of the local geometry and material charactaristics. Spezial emphasis is put to spezific aspects of materials composed by selectiv laser melting such as surface roughness, porosity and gradiants in the microstructure. N2 - Beschreibung der IBESS-Prozedur zur zukünftigen Anwendung zur Berechnung der Schwingfestigkeit von Schweißverbindungen T2 - Additive Manufracturing Benchmarks 2018 CY - Gaithersburg, Maryland, USA DA - 18.06.2018 KW - Structural Integrity KW - Fartigue Strength KW - Additive Manufacturing PY - 2018 AN - OPUS4-46062 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Evans, Alexander T1 - AGIL Project - Microstructure development in additively manufactured metallic components: from powder to mechanical failure N2 - Overview of the concept of the AGIL Project, work packages and Prior published work from BAM on the subject T2 - Challenges in Additive Manufacturing: Innovative Materials and Quality Control CY - BAM, Berlin-Adlershof, Germany DA - 12.09.2018 KW - AGIL KW - Additive manufacturing PY - 2018 AN - OPUS4-46100 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zocca, Andrea A1 - Lima, Pedro A1 - Lüchtenborg, Jörg A1 - Günster, Jens A1 - Mühler, T. T1 - Layerwise Slurry Deposition for the Additive Manufacturing of Ceramics N2 - Powder bed -based technologies are amongst the most successful Additive Manufacturing (AM) techniques. "Selective laser sintering/melting" (SLS/SLM) and "binder jetting 3D printing" (3DP) especially are leading AM technologies for metals and polymers, thanks to their high productivity and scalability. In this context, the "layerwise slurry deposition" (LSD) has been developed as a layer deposition method which enables the use of SLS/SLM and 3DP technologies for advanced ceramic materials. LSD consists in the layer-by-layer deposition of a ceramic slurry by means of a doctor blade. Each layer is deposited and dried to achieve a highly packed powder layer, which can be used for SLM or for 3DP. This technique offers high flexibility in the ceramic feedstock used, especially concerning material and particle size, and is capable of producing parts with physical and mechanical properties comparable to traditionally shaped parts. In this presentation, the LSD technique will be introduced and several examples of application to porcelain, SiC and alumina products will be reported. T2 - CIMTEC - International Ceramics Congress CY - Perugia, Italy DA - 04.06.2018 KW - Ceramic KW - Additive Manufacturing PY - 2018 AN - OPUS4-46337 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zocca, Andrea A1 - Lima, Pedro A1 - Lüchtenborg, Jörg A1 - Günster, Jens A1 - Mühler, T. T1 - Powder-based Additive Manufacturing: beyond the comfort zone of powder deposition N2 - In powder-based Additive Manufacturing (AM) processes, an object is produced by successively depositing thin layers of a powder material and by inscribing the cross section of the object in each layer. The main methods to inscribe a layer are by binder jetting (also known as powder 3D printing) or by selective laser sintering/melting (SLS/SLM). Powder-based AM processes have found wide application for several metallic, polymeric and also ceramic materials, due to their advantages in combining flexibility, easy upscaling and (often) good material properties of their products. The deposition of homogeneous layers is key to the reproducibility of these processes and has a direct influence on the quality of the final parts. Accordingly, powder properties such as particle size distribution, shape, roughness and process related properties such as powder flowability and packing density need to be carefully evaluated. Due to these requirements, these processes have been so far precluded to find commercial use for certain applications. In the following, two outstanding cases will be presented. A first example is that powder-based AM processes are widely used for many metallic and polymeric materials, but they find no commercial application for most technical ceramics. This seemingly contradicting observation is explained by the fact that in powder based AM, a dry flowable powder needs to be used. The processing of technical ceramics in fact typically requires very fine and poorly flowable powder, which makes them not suitable for the standard processes. There have been several approaches to adapt the raw materials to the process (e.g. by granulation), but in order to maintain the superior properties of technical ceramics it seems necessary to follow the opposite approach and adapt the process to the raw materials instead. This was the motivation for developing the Layerwise Slurry Deposition (LSD), an innovative process for the deposition of powder layers with a high packing density. In the LSD process, a ceramic slurry is deposited to form thin powder layers, rather than using a dry powder. This allows achieving high packing density (55-60%) in the layers after drying. It is also important, that standard ceramic raw materials can be used. When coupled with a printing head or with a laser source, the LSD enables novel AM technologies which are similar to 3D printing or selective laser sintering, but taking advantage of having a highly dense powder bed. The LSD -3D printing, in particular, offers the potential of producing large (> 100 mm) and high quality ceramic parts, with microstructure and properties similar to traditional processing. Moreover, due to the compact powder bed, no support structures are required for fixation of the part in the printing process. Figure 1 shows the schematics of the working principle of the LSD-3D print and illustrates some examples of the resolution and features achievable. The second outstanding case here described is the application of powder-based AM in environments with reduced or zero gravity. The vision is to be able to produce repair parts, tools and other objects during a space mission, such as on the International Space Station (ISS), without the need of delivering such parts from Earth or carrying them during the mission. AM technologies are also envisioned to play an important role even for future missions to bring mankind to colonize other planets, be it on Mars or on the Moon. In this situation, reduced gravity is also experienced (the gravitational acceleration is 0.16 g on the Moon and 0.38 g on Mars). These environments cause the use of AM powder technologies to be very problematic: the powder layers need to be stabilized in order to avoid dispersion of the particles in the chamber. This is impossible for standard AM powder deposition systems, which rely on gravitation to spread the powder. Also in this case, an innovative approach has been implemented to face this technological challenge. The application of a gas flow through a powder has a very strong effect on its flowability, by generating a force on each particle, which is following the gas flow field. This principle can be applied in a simple setup such as the one shown in Figure 2. In this setup, the gas flow causes an average pressure on the powder bed in direction of the arrows, generating a stabilizing effect which acts in the same direction of the gravitational force. This effect can be used in addition to normal gravity on Earth to achieve a better stabilization of 3D printed parts in the powder bed. In this case, even a significant increase of packing density of the powder was measured, compared to the same experimental setup without gas flow. This is due to the fact that the force on each single particle follows the gas flow field, which is guiding the particles to settle between the pores of the powder bed, thus achieving an efficient packing. The same principle can be applied in absence of gravitation, where the gas flow acts to stabilize the powder layers. It has been shown that ceramic powder could be deposited in layers and laser sintered in µ-gravity conditions during a DLR (Deutsches Zentrum für Luft- und Raumfahrt) campaign of parabolic flights, as shown in Figure 2. A follow-up campaign is dedicated to the deposition of metallic (stainless steel) powder in inert atmosphere and to study the effects of laser melting in µ-gravity. In conclusion, the description of these two example cases shows how the development of novel technological processes can address some of the limitations of standard powder-based AM, in order to enable the use of new materials, such as technical ceramics, or to tackle the challenges of AM in space. T2 - WMRIF 2018 Early Career Scientist Summit CY - London, NPL, UK DA - 18.06.2018 KW - 3D-printing KW - Additive Manufacturing KW - Powder KW - SLM PY - 2018 AN - OPUS4-46338 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hilgenberg, Kai A1 - Jahn, S. A1 - Böllinghaus, Thomas T1 - Defekte bei Additiven Fertigungsprozessen metallischer Werkstoffe N2 - Überblick über typische Defekte bei der Additiven Fertigung sowie Vergleich zu Defekten bei Schmelzschweißverfahren und deren Normung. T2 - 2. Round-Table Zertifizierung additiv gefertigter Druckgeräte CY - Berlin, Germany DA - 10.10.2018 KW - Normen KW - Additive Fertigung KW - Defekte PY - 2018 AN - OPUS4-46349 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kromm, Arne A1 - Cabeza, Sandra A1 - Mishurova, Tatiana A1 - Thiede, Tobias A1 - Nadammal, Naresh A1 - Bruno, Giovanni T1 - Residual stress formation in selective laser melted parts of alloy 718 N2 - Additive Manufacturing (AM) through the Selective Laser Melting (SLM) route offers ample scope for producing geometrically complex parts compared to the conventional subtractive manufacturing strategies. Nevertheless, the residual stresses which develop during the fabrication can limit application of the SLM components by reducing the load bearing capacity and by inducing unwanted distortion, depending on the boundary conditions specified during manufacturing. The present study aims at characterizing the residual stress states in the SLM parts using different diffraction methods. The material used is the nickel based superalloy Inconel 718. Microstructure as well as the surface and bulk residual stresses were characterized. For the residual stress analysis, X-ray, synchrotron and neutron diffraction methods were used. The measurements were performed at BAM, at the EDDI beamline of -BESSY II synchrotron- and the E3 line -BER II neutron reactor- of the Helmholtz-Zentrum für Materialien und Energie (HZB) Berlin. The results reveal significant differences in the residual stress states for the different characterization techniques employed, which indicates a dependence of the residual state on the penetration depth in the sample. For the surface residual stresses, longitudinal and transverse stress components from both X-ray and synchrotron agree well and the obtained values were around the yield strength of the material. Furthermore, synchrotron mapping disclosed gradients along the width and length of the sample for the longitudinal and transverse stress components. On the other hand, lower residual stresses were found in the bulk of the material measured using neutron diffraction. The longitudinal component was tensile and decreased towards the boundary of the sample. In contrast, the normal component was nearly constant and compressive in nature. The transversal component was almost negligible. The results indicate that a stress re-distribution takes place during the deposition of the consecutive layers. Further investigations are planned to study the phenomenon in detail. T2 - Forschungsseminar OvGU Magdeburg CY - Magdeburg, Germany DA - 15.11.2018 KW - Additive Manufacturing KW - Selective Laser Melting KW - Residual Stresses PY - 2018 AN - OPUS4-46876 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Falkenberg, Rainer A1 - Charmi, Amir T1 - Virtual-lab-based determination of a macroscopic yield function for additively manufactured parts N2 - This work presents a method for the yield function determination of additively manufactured parts of S316L steel. A crystal plasticity model is calibrated with test results and used afterwards to perform so-called virtual experiments, that account for the specific process-related microstructure including crystallographic and morphological textures. These simulations are undertaken on a representative volume element (RVE), that is generated from EBSD/CT-Scans on in-house additively manufactured specimen, considering grain structure and crystal orientations. The results of the virtual experiments are used to determine an anisotropic Barlat yield function, that can be used in a macroscopical continuum-sense afterwards. This scale-bridging approach enables the calculation of large-scale parts, that would be numerically too expensive to be simulated by a crystal plasticity model. T2 - 3. Tagung des DVM-Arbeitskreises Additiv gefertigte Bauteile und Strukturen CY - Berlin, Germany DA - 07.11.2018 KW - Virtual experiments KW - Additive manufacturing KW - Anisotropy KW - Crystal plasticity KW - Scale-bridging PY - 2018 AN - OPUS4-46895 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Bäßler, Ralph T1 - Additive manufacturing of metals – From fundamental technology to rocket nozzles, medical implants, and custom jewelry (Book review) N2 - This book fulfills its intention to provide a comprehensive overview on 3D-printing of metals. The interested reader can get a lot of information about the topics one should deal with when working with additively manufactured metallic parts. It gives a general roadmap where to start, what to learn and how it fits together. KW - Additive manufacturing KW - Alloys KW - Cladding KW - 3D-Metal-Printing PY - 2018 U6 - https://doi.org/10.1002/maco.201870124 SN - 0947-5117 VL - 69 IS - 12 SP - 1881 PB - WILEY-VCH Verlag GmbH & Co. KGaA CY - Weinheim AN - OPUS4-46902 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Taparli, Ugur Alp T1 - In situ Laser Induced Breakdown Spectroscopy Analysen beim Schweißen N2 - Eine in situ Analytik für additive Fertigung, mit der eine orts- und zeitaufgelöste Messung des Konzentrationsverlaufs einzelner Elemente in der Schmelze wird mittels LIBS vorgestellt. T2 - Forschungsseminar OvGU Magdeburg CY - Magdeburg, Germany DA - 15.11.2018 KW - Additive Fertigung KW - LIBS PY - 2018 AN - OPUS4-46757 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mishurova, Tatiana A1 - Thiede, Tobias A1 - Evsevleev, Sergei A1 - Serrano Munoz, Itziar A1 - Gollwitzer, Christian A1 - Bruno, Giovanni T1 - 3D Shape Analysis of Powder for Laser Beam Melting by Synchrotron X-ray CT N2 - The quality of components made by laser beam melting (LBM) additive manufacturing is naturally influenced by the quality of the powder bed. A packing density < 1 and porosity inside the powder particles lead to intrinsic voids in the powder bed. Since the packing density is determined by the particle size and shape distribution, the determination of these properties is of significant interest to assess the printing process. In this work, the size and shape distribution, the amount of particle’s intrinsic porosity as well as the packing density of micrometric powder used for LBM have been investigated by means of synchrotron X-ray computed tomography (CT). Two different powder batches were investigated: Ti-6Al-4V produced by plasma atomization and Stainless Steel 316L produced by gas atomization. Plasma atomization particles were observed to be more spherical in terms of the mean anisotropy compared to particles produced by gas atomization. The two kinds of particles are comparable in size according to the equivalent diameter. The packing density is lower (i.e. the powder bed contains more voids in between particles) for the Ti-6Al-4V particles. The comparison of the tomographic results with laser diffraction, as another particle size measurements techniques, proved agreement. T2 - User Meeting HZB 2018 CY - Berlin, BESSY II DA - 06.12.2018 KW - BAMline KW - Computed tomography KW - Laser beam melting KW - Powder PY - 2018 AN - OPUS4-46933 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Lüchtenborg, Jörg A1 - Mühler, T. A1 - Zocca, Andrea A1 - Günster, Jens T1 - Additive Manufacturing of Dense Ceramics with Laser Induced Slip Casting (LIS) N2 - Most additive manufacturing processes which produce dense ceramics are nowadays limited in size because of inevitable post-processing steps like for example binder removal in stereolithography. The additive manufacturing of voluminous ceramic parts is realized by powder bed based processes which, however, generate parts with residual porosity. Via infiltration these parts can be processed to dense parts like for example SiC but this is not possible for all ceramics like for example Si3N4. There is a lack of methods for the additive manufacturing of dense voluminous parts for most ceramics. We have developed a new additive manufacturing technology, the Laser Induced Slip casting (LIS), based on the layerwise deposition of slurries and their local drying by laser radiation. Laser Induced Slip casting generates ceramic green bodies which can be sintered to dense ceramic components like traditional formed ceramic powder compacts. We will introduce the LIS technology, green bodies and sintered parts will be shown and their microstructure and mechanical properties will be discussed. T2 - CIMTEC 2018 14th Ceramics Congress CY - Perugia, Italy DA - 04.06.2018 KW - Additive Manufacturing PY - 2018 AN - OPUS4-45781 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Lüchtenborg, Jörg A1 - Mühler, T. A1 - Zocca, Andrea A1 - Günster, Jens T1 - Additive manufacturing of dense ceramics with laser induced slip casting (LIS) N2 - Most additive manufacturing processes which produce dense ceramics are nowadays limited in size because of inevitable post-processing steps like for example binder removal in stereolithography. The additive manufacturing of voluminous ceramic parts is realized by powder bed based processes which, however, generate parts with residual porosity. Via infiltration these parts can be processed to dense parts like for example SiC but this is not possible for all ceramics like for example Si3N4. There is a lack of methods for the additive manufacturing of dense voluminous parts for most ceramics. We have developed a new additive manufacturing technology, the Laser Induced Slip casting (LIS), based on the layerwise deposition of slurries and their local drying by laser radiation. Laser Induced Slip casting generates ceramic green bodies which can be sintered to dense ceramic components like traditional formed ceramic powder compacts. We will introduce the LIS technology, green bodies and sintered parts will be shown and their microstructure and mechanical properties will be discussed. T2 - yCAM (Young Ceramists Additive Manufacturing Forum) CY - Padua, Italy DA - 03.05.2018 KW - Additive manufacturing PY - 2018 AN - OPUS4-45782 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Thiede, Tobias A1 - Cabeza, S. A1 - Mishurova, Tatiana A1 - Nadammal, N. A1 - Kromm, Arne A1 - Bode, Johannes A1 - Haberland, C. A1 - Bruno, Giovanni T1 - Residual stress in selective laser melted Inconel 718: Influence of the removal from base plate and deposition hatch length N2 - The residual stress distribution in IN718 elongated prisms produced by Selective Laser Melting was studied by means of neutron (bulk) and laboratory X-ray (surface) diffraction. Two deposition hatch lengths were considered. A horizontal plane near the top surface (perpendicular to the building direction) and a vertical plane near the lateral surface (parallel to the building direction) were investigated. Samples both in as-built (AB) condition and removed (RE) from the base plate were characterized. While surface stress fields seem constant for AB condition, X-ray diffraction shows stress gradients along the hatch direction in the RE condition. The stress profiles correlate with the distortion maps obtained by tactile probe measurements. Neutron diffraction shows bulk stress gradients for all principal components along the main sample directions. We correlate the observed stress patterns with the hatch length, i.e. with its effect on temperature gradients and heat flow. The bulk stress gradients partially disappear after removal from the baseplate. KW - Residual stress KW - Additive manufacturing KW - Neutron diffraction KW - Selective laser melting KW - Laboratory X-ray diffraction KW - Coordinate measurement machine KW - IN718 PY - 2018 U6 - https://doi.org/10.1520/MPC20170119 SN - 2379-1365 VL - 7 IS - 4 SP - 717 EP - 735 PB - ASTM International CY - USA, West Conshohocken AN - OPUS4-46673 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mishurova, Tatiana A1 - Artzt, K. A1 - Haubrich, J. A1 - Requena, G. A1 - Bruno, Giovanni T1 - New aspects about the search for the most relevant parameters optimizing SLM materials N2 - While the volumetric energy density is commonly used to qualify a process parameter set, and to quantify its influence on the microstructure and performance of additively manufactured (AM) materials and components, it has been already shown that this description is by no means exhaustive. In this work, new aspects of the optimization of the selective laser melting process are investigated for AM Ti-6Al-4V. We focus on the amount of near-surface residual stress (RS), often blamed for the failure of components, and on the porosity characteristics (amount and spatial distribution). First, using synchrotron x-ray diffraction we show that higher RS in the subsurface region is generated if a lower energy density is used. Second, we show that laser de-focusing and sample positioning inside the build chamber also play an eminent role, and we quantify this influence. In parallel, using X-ray Computed Tomography, we observe that porosity is mainly concentrated in the contour region, except in the case where the laser speed is small. The low values of porosity (less than 1%) do not influence RS. KW - Additive manufacturing KW - Selective laser melting KW - Residual stress KW - Computed tomography PY - 2019 U6 - https://doi.org/10.1016/j.addma.2018.11.023 SN - 2214-8604 VL - 25 SP - 325 EP - 334 PB - Elsevier AN - OPUS4-46737 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ehlers, Henrik A1 - Pelkner, Matthias A1 - Pohl, Rainer A1 - Thewes, R. T1 - Einsatz der Wirbelstromprüfung in der additiven Fertigung für die in-situ Prüfung N2 - Additive Fertigung hat in den letzten Jahren aufgrund der hohen Flexibilität stark an Bedeutung gewonnen. Insbesondere in der Luft- und Raumfahrttechnik werden hohe Anforderungen an die Qualitätskontrolle additiv gefertigter Bauteile gestellt. Teile die mit dem selektiven Laserschmelzen (SLM) hergestellt werden, bilden schon währen des Fertigungsprozesses Poren oder Risse aus. Aus diesem Grund ist die zerstörungsfreie Prüfung jedes Bauteils notwendig. Erste Versuche haben gezeigt, dass die ex-situ Wirbelstromprüfung von SLM-Bauteilen mit hochauflösenden MR Sonden möglich ist und dass Fehler im Bereich von einiger µm detektiert werden können. In dem Vortrag wird eine automatisierte in-situ Wirbelstromprüfung von SLM-Bauteilen vorgestellt. Für die Prüfung wird eine Vielzahl hochauflösender MR Sensoren verwendet, um die benötige hohe Ortsauflösung bei gleichzeitig kurzer Prüfzeit zu erreichen. Zusätzlich werden klassische Methoden der Signalverarbeitung verwendet, um die Kosten und die Komplexität des Systems trotz hoher Prüffrequenz zu minimieren. Das vorgestellte System kann in der Zukunft helfen automatisiert Prüfberichte zu generieren, den SLM-Prozess zu kontrollieren oder automatisiert Fehlstellen auszuheilen. T2 - DGZfP Arbeitskreis 406 CY - Berlin, Germany DA - 05.03.2019 KW - 316L KW - Additive Fertigung KW - GMR KW - LBM KW - SLM KW - Wirbelstrom KW - Eddy Current KW - Additive manufacturing PY - 2019 AN - OPUS4-47496 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wilke, Marco A1 - Weller, Michael G. T1 - Affinitätschromatografie - Neues Trägermaterial aus Borosilikatglas N2 - Therapeutische Antikörper sind innerhalb weniger Jahre zur wichtigsten pharmazeutischen Produktklasse aufgestiegen. Für 2023 werden weltweite Umsätze von über 200 Milliarden USD erwartet. Auch diagnostische Antikörper sind mittlerweile unverzichtbare Produkte, auf deren Basis zahllose Immunoassays und andere Schnelltests entwickelt wurden. Neben der bereits sehr aufwendigen Herstellung von Antikörpern ist deren Aufreinigung aus komplexen Zellkulturmedien oder Blutseren und -plasmen zu einem Engpass in der Produktion und Nutzung dieser komplexen Proteine geworden. Schnelle und einfache Reinigungsmethoden für Antikörper sind daher sehr gefragt. KW - Affinitätschromatographie KW - Affinitätsextraktion KW - Antikörper KW - Glasmonolith KW - Additive Fertigung KW - IgG KW - Immunglobulin KW - HPLC KW - FPLC KW - biokompatibel KW - Borosilikatglas KW - gesintert KW - Titan-Halterung KW - Druckstabilität PY - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-477490 UR - https://www.chemiextra.com/ IS - 4 SP - 16 EP - 17 PB - Sigwerb CY - Zug AN - OPUS4-47749 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Petrat, T. A1 - Kersting, R. A1 - Graf, B. A1 - Rethmeier, Michael T1 - Embedding electronics into additive manufactured components using laser metal deposition and selective laser melting N2 - The paper deals with the integration of a light emitting diode (LED) into an additive manufactured metal component. Selective laser melting (SLM) and laser metal deposition (LMD) are used. The material used is the chrome-nickel steel 316L. The basic component is manufactured by means of SLM and consists of a solid body and an area with grid structure. The solid body includes a duct in the shape of a groove with a recess for the positioning of the power cable. The LED is embedded in the grid structure via an inlet from the solid body. In further processing, the groove is filled with LMD. Two strategies with different parameter combinations were investigated. It shows that a high energy input near the power cable leads to its destruction. By using multiple parameter combinations during the manufacturing process, this destruction can be prevented. There was a comparison of both strategies with regard to the necessary number of tracks and duration of welding time. KW - Additive manufacturing KW - Condition monitoring KW - Process chain KW - Laser-metal-deposition KW - Selektive-laser-melting KW - Embedded electronics PY - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-479469 SP - 168 EP - 171 PB - Elsevier Ltd. AN - OPUS4-47946 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Petrat, T. A1 - Kersting, R. A1 - Graf, B. A1 - Rethmeier, Michael T1 - Embedding electronics into additive manufactured components using laser metal deposition and selective laser melting N2 - The paper deals with the integration of a light emitting diode (LED) into an additive manufactured metal component. Selective laser melting (SLM) and laser metal deposition (LMD) are used. The material used is the chrome-nickel steel 316L. The basic component is manufactured by means of SLM and consists of a solid body and an area with grid structure. The solid body includes a duct in the shape of a groove with a recess for the positioning of the power cable. The LED is embedded in the grid structure via an inlet from the solid body. In further processing, the groove is filled with LMD. Two strategies with different parameter combinations were investigated. It shows that a high energy input near the power cable leads to its destruction. By using multiple parameter combinations during the manufacturing process, this destruction can be prevented. There was a comparison of both strategies with regard to the necessary number of tracks and duration of welding time. T2 - LANE 2018 CY - Fürth, Germany DA - 03.09.2018 KW - Additive manufacturing KW - Condition monitoring KW - Process chain KW - Laser-metal-depositon KW - Selektive-laser-melting KW - Embedded electronics PY - 2018 AN - OPUS4-47947 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zocca, Andrea A1 - Lüchtenborg, Jörg A1 - Günster, Jens A1 - Diener, S. A1 - Lima, P. A1 - Katsikis, N. T1 - Layerwise Slurry Deposition for the Additive Manufacturing of Ceramics N2 - In powder bed Additive Manufacturing (AM) technologies, a part is produced by depositing and piling up thin powder layers. In each layer, the cross section of the object to build is defined by locally consolidating the powder, by sintering/melting the material (powder bed fusion technologies) or by ink jetting a binder (binder jetting technologies). These are already leading AM technologies for metals and polymers, thanks to their high productivity and scalability. The application of these techniques to most ceramics has been challenging so far, because of the challenges related to the deposition of homogeneous powder layers when using fine powders. In this context, the "layerwise slurry deposition" (LSD) has been developed as a layer deposition method which enables the use of SLS/SLM and 3DP technologies for advanced ceramic materials. LSD consists in the layer-by-layer deposition of a ceramic slurry by means of a doctor blade. Each layer is deposited and dried to achieve a highly packed powder layer. The LSD offers high flexibility in the ceramic feedstock used, especially concerning material and particle size, and enables the production of parts with physical and mechanical properties comparable to pressed or slip-casted parts. In this presentation, the LSD technique will be introduced and several examples of application to porcelain, SiC and alumina products will be reported. T2 - ICACC 2019 - 43rd International Conference and Exposition on Advanced Ceramics and Composites CY - Daytona Beach, FL, USA DA - 27.01.2019 KW - Additive Manufacturing KW - Ceramic KW - Layerwise KW - Slurry PY - 2019 AN - OPUS4-47865 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zocca, Andrea A1 - Lima, P. A1 - Lüchtenborg, Jörg A1 - Mühler, T. A1 - Günster, Jens T1 - Advanced ceramics by powder bed 3D printing N2 - Powder bed -based technologies are amongst the most successful Additive Manufacturing (AM) techniques. "Selective laser sintering/melting" (SLS/SLM) and "binder jetting 3D printing" (3DP) especially are leading AM technologies for metals and polymers, thanks to their high productivity and scalability. However, the flowability of the powder used in these processes is essential to achieve defect-free and densely packed powder layers. For standard powder bed AM technologies, this limits the use of many raw materials which are too fine or too cohesive. This presentation will discuss the possibilities to either optimize the powder raw material to adapt it to the specific AM process, or to develop novel AM technologies which are able to process powders in a wider range of conditions. In this context, the "layerwise slurry deposition" (LSD) has been developed as a layer deposition method which enables the use of very fine ceramic particles. Another technology, the Gas Flow Assisted Powder Deposition, can increase the stability of the powder bed and the packing density, even in extreme conditions such as in absence of gravitational forces. T2 - yCAM 2019 - young Ceramists Additive Manufacturing Forum CY - Mons, Belgium DA - 03.04.2019 KW - Additive Manufacturing KW - Flowability KW - Ceramic KW - Powder PY - 2019 AN - OPUS4-47867 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Léonard, Fabien A1 - Bruno, Giovanni T1 - On nominal-actual comparisons for additive manufacturing applications N2 - Nominal-actual comparisons are routinely performed to compare a manufactured specimen to a reference specimen. X-ray Computed Tomography (CT) has brought a profound change in the way that tolerance verifications are performed in industry, by allowing the inner and outer geometries of an object to be measured, without the need for external access or destructive testing. As a results, CT is increasingly used in additive manufacturing applications, where a nominal-actual comparison performed between the digital model (CAD file), used as an input for the 3D printer, and the CT volume from the printed part, can provide invaluable information as to the accuracy of the printing process. However, the nominal-actual comparison process is somewhat different when applied to additively manufactured specimens by comparison to conventionally manufactured specimens. T2 - 9th Conference on Industrial Computed Tomography CY - Padova, Italy DA - 14.02.2019 KW - Computed tomography KW - X-ray computed tomography KW - Implants PY - 2019 AN - OPUS4-47832 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Léonard, Fabien A1 - Bruno, Giovanni T1 - On nominal-actual comparisons for additive manufacturing applications N2 - Nominal-actual comparisons are routinely performed to compare a manufactured specimen to a reference specimen. X-ray Computed Tomography (CT) has brought a profound change in the way that tolerance verifications are performed in industry, by allowing the inner and outer geometries of an object to be measured, without the need for external access or destructive testing. As a results, CT is increasingly used in additive manufacturing applications, where a nominal-actual comparison performed between the digital model (CAD file), used as an input for the 3D printer, and the CT volume from the printed part, can provide invaluable information as to the accuracy of the printing process. However, the nominal-actual comparison process is somewhat different when applied to additively manufactured specimens by comparison to conventionally manufactured specimens. T2 - 9th Conference on Industrial Computed Tomography CY - Padova, Italy DA - 14.02.2019 KW - Computed tomography KW - X-ray computed tomography PY - 2019 AN - OPUS4-47833 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zocca, Andrea A1 - Lüchtenborg, Jörg A1 - Lima, P. A1 - Günster, Jens T1 - Additive Manufacturing of Ceramic Materials N2 - Powder bed -based technologies are amongst the most successful Additive Manufacturing (AM) techniques. "Selective laser sintering/melting" (SLS/SLM) and "binder jetting 3D printing" (3DP) especially are leading AM technologies for metals and polymers, thanks to their high productivity and scalability. In this context, the "layerwise slurry deposition" (LSD) has been developed as a layer deposition method which enables the use of SLS/SLM and 3DP technologies for advanced ceramic materials. LSD consists in the layer-by-layer deposition of a ceramic slurry by means of a doctor blade. Each layer is deposited and dried to achieve a highly packed powder layer, which can be used for SLM or for 3DP. This technique offers high flexibility in the ceramic feedstock used, especially concerning material and particle size, and is capable of producing parts with physical and mechanical properties comparable to traditionally shaped parts. In this presentation, the LSD technique will be introduced and several examples of application to porcelain, SiC and alumina products will be reported. T2 - First Sino-German Workshop on 3D Printing in Space CY - Beijin, China DA - 20.02.2019 KW - Additive Manufacturing KW - Ceramic KW - Layerwise PY - 2019 AN - OPUS4-47868 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Thiede, Tobias A1 - Farahbod, L. A1 - Serrano Munoz, Itziar A1 - Gollwitzer, Christian A1 - Léonard, Fabien A1 - Bruno, Giovanni T1 - µCT Surface Analysis of LBM Struts - Influence of the Build Angle N2 - In this work, the structural integrity of LBM fabricated IN625 small cylinders (d = 1 mm, h = 6 mm) was investigated regarding the porosity and the surface roughness by means of computed tomography. The measurements were carried out on a GE v|tome|x L 300/180 with a reconstructed voxel size of 2 µm. The pores were analyzed for size, shape and spatial distribution. The correlation between compactness C and spatial distribution showed that elongated pores (C < 0.2) appear exclusively within a distance of 80 µm to the sample surface. The reconstructed surface was digitally meshed and unwrapped to evaluate the mean roughness Ra. Since the gravity correlates linearly with the sine of the build angle, the influence of gravity on porosity and surface roughness was determined. T2 - iCT 2019 CY - Padua, Italien DA - 13.02.2019 KW - Additive Manufacturing KW - Laser Beam Melting KW - Selective Laser Melting KW - Computed Tomography KW - Roughness KW - Porosity KW - Build Angle PY - 2019 AN - OPUS4-47775 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Drendel, Jan A1 - Logvinov, Ruslan A1 - Heinrichsdorff, Frank A1 - Hilgenberg, Kai T1 - Simulation-based controlling of local surface temperature in laser powder bed fusion using the process laser N2 - State-of-the-art laser powder bed fusion (PBF-LB/M) machines allow pre-heating of the substrate plate to reduce stress and improve part quality. However, two major issues have been shown in the past: First, with increasing build height the apparent pre-heat temperature at the surface can deviate drastically from the nominal pre-heat temperature in the substrate plate. Second, even within a single layer the local surface pre-heat temperature can show large gradients due to thermal bottlenecks in the part geometry underneath the top surface. Both lead to unwanted changes in microstructure or defects in the final parts. In this study, a first attempt is taken to show the feasibility of pre-heating the top surface with the onboard laser beam to overcome the mentioned issues. A single layer of a group of three parts built from IN718 to a height of 33.5 mm is pre-heated in a commercially available PBF-LB/M machine to an average steady state surface temperature of 200 °C using the onboard laser beam. The parts are continuously heated, omitting powder deposition and melting step. Temperatures are measured by thermocouples underneath the surface. The experiments are supported by a thermal finite element (FE) model that predicts the temperature field in the parts. When heating the parts uniformly with the laser beam, differences in surface temperatures as large as 170 K are observed. To overcome this inhomogeneity, the heat flux supplied by the laser beam is modulated. An optimized, spatial heat flow distribution is provided by the thermal FE model and translated into a scan pattern that reproduces the optimized heat distribution on the PBF-LB/M machine by locally modulating hatch distance and scan velocity. This successfully reduces the differences in surface temperature to 20 K. Thermographic imaging shows that a homogeneous surface temperature can be achieved despite the localized heat input by the beam. The potential for industrial application of the optimized laser-heating technique is discussed. KW - Additive Manufacturing KW - Simulation KW - Surface temperature KW - Laser powder bed fusion PY - 2023 U6 - https://doi.org/10.1016/j.addma.2023.103854 SN - 2214-8604 VL - 78 SP - 1 EP - 16 PB - Elsevier B.V. AN - OPUS4-58825 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mishurova, Tatiana A1 - Bruno, Giovanni T1 - BAM activities in material characterization by advanced X-ray imaging N2 - The overview of the activity of Federal Institute for Material Research and Testing (BAM, Belin, Germany) in the field of additively manufacturing material characterization will be presented. The research of our group is focused on the 3D imaging of AM materials by means of X-ray Computed Tomography at the lab and at synchrotron, and the residual stress characterization by diffraction (nondestructive technique). Also, two successful research project in collaboration with CAM2, Sweden are presented. T2 - CAM2 Annual Meeting CY - Gothenburg, Sweden DA - 25.10.2023 KW - Additive manufacturing KW - Residual stress KW - X-ray computed tomography PY - 2023 AN - OPUS4-58828 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hilgenberg, Kai T1 - Eine digitale QI für die moderne Produktion: Digital Quality Assurance in der Additiven Fertigung N2 - Der Vortragt stellt den Use Case Additive Fertigung und das zugehörige Reallabor in QI Digital in Kürze vor und zeigt, mit welchen digitalen Tools das Reallabor mit der übergeordneten Plattform QualityX Daten austauscht. T2 - QI Forum 2023 CY - Berlin, Germany DA - 10.10.2023 KW - Additive Fertigung KW - Digitale Qualitätssicherung KW - QI Digital PY - 2023 AN - OPUS4-58830 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Madia, Mauro A1 - Roveda, Ilaria A1 - Serrano-Munoz, Itziar A1 - Haubrich, J. A1 - Requena, G. T1 - Prediction of the fatigue limit of additively manufactured metallic materials N2 - Structural alloys are largely employed in key industrial sectors and their demand is predicted to rise rapidly for the next decades. Most of these materials require a large amount of energy for extraction and manufacturing, which causes the emission of greenhouse gases and other pollutants. Therefore, strategies for improving the sustainability of structural metallic alloys are urgently needed. Additive Manufacturing (AM), in particular Laser Powder Bed Fusion (PBF-LB/M), aims to be a sustainable manufacturing process, as it allows the build-up of complex geometry in near net-shape from 3D models, while minimizing material waste and the energy required for the process and post-process treatments. Nevertheless, the application of additively manufactured parts in structural safety-relevant applications is still hindered by the poor fatigue performance. The cause of this has been mainly attributed to the presence of manufacturing defects and surface roughness. Therefore, a huge effort has been made to optimize the process parameters and to introduce post-process treatments to minimize the defect content. However, material flaws cannot be fully eliminated, but these can be considered in a damage tolerance framework for the prediction of the fatigue performance of additively manufactured metallic materials, which is essential for part design and qualification. This work aims at presenting different modelling strategies for the prediction of the fatigue limit of AM metals. Simple empirical models and more complex models based on fatigue short crack propagation are proposed. The investigated material is an AlSi10Mg alloy fabricated by PBF-LB/M and subjected to two different low-temperature heat-treatments (265°C for 1 h and 300°C for 2h). The results show that the models can provide good approximation of the fatigue limits and help in the interpretation of the scatter of fatigue data. T2 - ASTM International Conference on Advanced Manufacturing CY - Washington DC, USA DA - 30.10.2023 KW - Additive Manufacturing KW - AlSi10Mg KW - Fatigue KW - Residual stress KW - Microstructure PY - 2023 AN - OPUS4-58866 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tavasolyzadeh, Zeynab A1 - Tang, Peng A1 - Hahn, Marc Benjamin A1 - Hweidi, Gada A1 - Nordholt, Niclas A1 - Haag, Rainer A1 - Sturm, Heinz A1 - Topolniak, Ievgeniia T1 - 2D and 3D Micropatterning of Mussel‐Inspired Functional Materials by Direct Laser Writing N2 - AbstractThis work addresses the critical need for multifunctional materials and substrate‐independent high‐precision surface modification techniques that are essential for advancing microdevices and sensing elements. To overcome existing limitations, the versatility of mussel‐inspired materials (MIMs) is combined with state‐of‐the‐art multiphoton direct laser writing (DLW) microfabrication. In this way, 2D and 3D MIM microstructures of complex designs are demonstrated with sub‐micron to micron resolution and extensive post‐functionalization capabilities. This study includes polydopamine (PDA), mussel‐inspired linear, and dendritic polyglycerols (MI‐lPG and MI‐dPG), allowing their direct microstructure on the substrate of choice with the option to tailor the patterned topography and morphology in a controllable manner. The functionality potential of MIMs is demonstrated by successfully immobilizing and detecting single‐stranded DNA on MIM micropattern and nanoarray surfaces. In addition, easy modification of MIM microstructure with silver nanoparticles without the need of any reducing agent is shown. The methodology developed here enables the integration of MIMs in advanced applications where precise surface functionalization is essential. KW - Direct laser writing KW - Mussel-inspired materials KW - Polyglycerol KW - Polydopamine KW - Micropatterning PY - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-588778 SN - 1613-6829 SP - 1 EP - 12 PB - Wiley-VCH CY - Weinheim AN - OPUS4-58877 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Topolniak, Ievgeniia A1 - Knigge, Xenia A1 - Radnik, Jörg A1 - Sturm, Heinz T1 - Maskless Micropatterning of Polydopamine for versatile surface functionalization N2 - Inspired by the chemistry of mussel adhesive proteins, polydopamine (PDA has been shown as one of the most versatile platforms for altering the properties and incorporating new functionalities to nearby any material surface despite its nature. Rich chemistry of PDA enables broad variety of surface modification and diverse secondary reactions that makes it extremely interesting for a wide range of application including biomedical field, e.g., drug delivery, adhesives, cell adhesion, biosensing. Despite high potential of polydopamine, the lack of deposition control and precision in existed methods limits their applications in microdevices and miniaturized functional systems like, for example, MEMS, microfluidic and sensorics. Herein, we demonstrate a novel maskless approach for surface micropatterning with polydopamine based on Multiphoton Lithography that overcomes present limitations. Neither strong oxidants, metal ions nor adjustment of pH to alkaline is required by this technique. The spatial resolution down to 0.8 µm has been achieved which is at least an order of magnitude smaller than shown by other existed methods. We are able to control the morphology and thickness of the micropattern by altering fabrication parameters allowing structure gradient. Apart from the glass substrate, we achieved PDA patterning at surfaces of different nature such as polychlorotrifluoroethylene, polydimethylsiloxane, polyethylene terephthalate, silicon wafers, and fluorinated glass coverslips. Post-modification of polydopamine micropatterns with protein enzyme like trypsin is demonstrated to highlight its sensing potential. Presented in this work microfabrication technique empowers advanced applications of mussel-inspired materials in single-molecule bioassays, sensors and other complex microdevices. T2 - International Conference on Precision Engineering and Sustainable Manufacturing CY - Okinawa, Japan DA - 18.07.2023 KW - Multiphoton lithography KW - Polydopamine KW - Micropatterning PY - 2023 AN - OPUS4-58878 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Silbernagl, Dorothee A1 - Szymoniak, Paulina A1 - Tavasolyzadeh, Zeynab A1 - Sturm, Heinz A1 - Topolniak, Ievgeniia T1 - Interpenetrating networks with tuned thermal and mechanical properties N2 - Text Multiphoton lithography (MPL) has recently attracted significant research interest as a versatile tool capable of producing 2D and 3D micro- and nanoscopic features with high spatial resolution. The integrity of MPL microstructures, or their ability to respond to external stimuli, is of critical importance. However, achieving the desired properties of fabricated microcomponents for a specific application remains a challenge. In this work, we present new MPL materials based on epoxy-acrylate interpenetrating networks (IPNs). We aim at 3D microstructures, whose properties can be easily tuned by varying the ratio of the IPN components and fabrication parameters (Figure 1). The resulting library of 3D microstructures was investigated for their thermal and mechanical properties using highly-sensitive space-resolved methods. Flash scanning calorimetry revealed the influence of both, IPN composition and fabrication parameters, on glass transition temperature and material fragility. AFM force-distance curve and intermodulation methods were used to characterize the mechanical properties with a lateral resolution of 1 micron and 4 nm, respectively. The deformation, stiffness and elastic behavior are discussed in detail in relation to the morphology. Moreover, we found that some 3D IPN microstructures exhibit fully elastic behavior. Our funding encourages the further development of IPN systems as versatile and easily tunable MPL materials. T2 - Micro Nano Engineering (MNE conference) CY - Berlin, Germany DA - 25.09.2023 KW - Interpenetrating polymer network KW - Multiphoton Lithography KW - Two photon polymerisation KW - Direct laser writing KW - Polyethylene glycol diacrylate PY - 2023 AN - OPUS4-58879 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael T1 - Fügetechnik in Wasserstofftechnologien: Erzeugung, Transport, Speicherung, Nutzung N2 - Der Vortrag gibt einen kurzen Überblick über die Bedeutung der Fügetechnik in Wasserstofftechnologien und über zukünftige FuE-Bereiche. Fügetechnologien haben dabei wesentliche Bedeutung für die Umsetzung von technischen Komponenten der Wasserstofftechnologien. Forschungsschwerpunkte ergeben sich insbesondere für die Erzeugung und den Transport des Wasserstoffs. T2 - Vortragsreihe des DVS Bezirksverbandes Berlin CY - Berlin, Germany DA - 22.02.2023 KW - Wasserstoff KW - Fügetechnik KW - Forschung KW - Review PY - 2023 AN - OPUS4-57040 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mishurova, Tatiana A1 - Roveda, Ilaria A1 - Serrano Munoz, Itziar A1 - Evans, Alexander A1 - Bruno, Giovanni T1 - Effect of heat treatment on residual stress in additively manufactured AlSi10Mg N2 - Al-Si alloys produced by Laser Powder Bed Fusion (PBFLB) allow the fabrication of lightweight free-shape components. Due to the extremely heterogeneous cooling and heating, PBF-LB induces high magnitude residual stress (RS) and a fine Si microstructure. As the RS can be deleterious to the fatigue resistance of engineering components, great efforts are focused on understanding their evolution in as-built state (AB) and after post-process heat treatments (HT). RS in single edge notch bending (SENB) subjected to different HT are investigated (HT1: 1h at 265°C and HT2: 2h at 300°C). T2 - ESRF User Meeting 2023 CY - Grenoble, France DA - 07.02.2023 KW - Additive manufacturing KW - Laser powder bed fusion KW - Residual stress PY - 2023 AN - OPUS4-56982 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Huo, W. A1 - Bakir, Nasim A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael A1 - Wolter, K. T1 - Strain Prediction Using Deep Learning during Solidification Crack Initiation and Growth in Laser Beam Welding of Thin Metal Sheets N2 - The strain field can reflect the initiation time of solidification cracks during the welding process. The traditional strain measurement is to first obtain the displacement field through digital image correlation (DIC) or optical flow and then calculate the strain field. The main disadvantage is that the calculation takes a long time, limiting its suitability to real-time applications. Recently, convolutional neural networks (CNNs) have made impressive achievements in computer vision. To build a good prediction model, the network structure and dataset are two key factors. In this paper, we first create the training and test sets containing welding cracks using the controlled tensile weldability (CTW) test and obtain the real strain fields through the Lucas–Kanade algorithm. Then, two new networks using ResNet and DenseNet as encoders are developed for strain prediction, called StrainNetR and StrainNetD. The results show that the average endpoint error (AEE) of the two networks on our test set is about 0.04, close to the real strain value. The computation time could be reduced to the millisecond level, which would greatly improve efficiency. KW - Convolutional neural network KW - Strain fields prediction KW - Laser beam welding KW - Solidification cracking PY - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-570565 VL - 13 IS - 5 SP - 1 EP - 15 PB - MDPI AN - OPUS4-57056 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mishurova, Tatiana T1 - 3D imaging and residual stress analysis for AM Materials N2 - The overview of the activity of Federal Institute for Material Research and Testing (BAM, Belin, Germany) in the field of additively manufacturing material characterization will be presented. The research of our group is focused on the 3D imaging of AM materials by means of X-ray Computed Tomography at the lab and at synchrotron, and the residual stress characterization by diffraction (nondestructive technique). T2 - Seminar at Integrated Additive Manufacturing center, Politecnico Torino CY - Turin, Italy DA - 14.02.2023 KW - Additive manufacturing KW - Laser powder bed fusion KW - Residual stress KW - Computed tomography KW - Synchrotron X-ray diffraction PY - 2023 AN - OPUS4-57047 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Khrapov, D. A1 - Kozadayeva, M. A1 - Koptyug, A. A1 - Mishurova, Tatiana A1 - Meinel, Dietmar A1 - Surmenev, R. A1 - Surmeneva, M. T1 - Geometrical features and mechanical properties of the sheet-based gyroid scaffolds with functionally graded porosity manufactured by electron beam melting N2 - Functionally graded porous scaffolds (FGPS) constructed with pores of different size arranged as spatially continuous structure based on sheet-based gyroid with three different scaling factors of 0.05, 0.1 and 0.2 were produced by electron beam powder bed fusion. The pore dimensions of the obtained scaffolds satisfy the values required for optimal bone tissue ingrowth. Agglomerates of residual powder were found inside all structures, which required post-manufacturing treatment. Using X-ray Computed Tomography powder agglomerations were visualized and average wall thickness, wall-to-wall distances, micro- and macro-porosities were evaluated. The initial cleaning by powder recovery system (PRS) was insufficient for complete powder removal. Additional treatment by dry ultrasonic vibration (USV) was applied and was found successful for gyroids with the scaling factors of 0.05 and 0.1. Mechanical properties of the samples, including quasi-elastic gradients and first maximum compressive strengths of the structures before and after USV were evaluated to prove that additional treatment does not produce structural damage. The estimated quasi-elastic gradients for gyroids with different scaling factors lie in a range between 2.5 and 2.9 GPa, while the first maximum compressive strength vary from 52.5 for to 59.8 MPa, compressive offset stress vary from 46.2 for to 53.2 MPa. KW - Additive manufacturing KW - Electron beam KW - Powder bed fusion KW - Triply periodic minimal surfaces KW - Functionally graded porous scaffolds KW - X-ray computed tomography PY - 2023 U6 - https://doi.org/10.1016/j.mtcomm.2023.106410 SN - 2352-4928 VL - 35 SP - 1 EP - 9 PB - Elsevier Ltd. AN - OPUS4-57682 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wandtke, Karsten A1 - Schröpfer, Dirk A1 - Kannengießer, Thomas A1 - Scharf-Wildenhain, R. A1 - Hälsig, A. A1 - Hensel, J T1 - Neutronen- und Röntgendiffraktion zur Einflussanalyse des Bauteil-Designs auf die Eigenspannungen bei der additiven Fertigung mit hochfestem Stahl N2 - Vorstellung und Gegenüberstellung von Eigenspannungsanalysen mittels Röntgen- und Neutronenbeugung an einer additiven Prüfgeometrie aus hochfestem Stahl. Einflussanalyse des Designs (Länge, Höhe, Wandstärke) von additiv gefertigten Bauteilen aus hochfestem Stahl auf die Eigenspannungen. T2 - Bachelor-, Master-, Doktoranden-Kolloquium OvGU Magdeburg CY - Magdeburg, Germany DA - 25.01.2023 KW - Additive Fertigung KW - Hochfester Stahl KW - Eigenspannungen PY - 2023 AN - OPUS4-57688 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wandtke, Karsten A1 - Schröpfer, Dirk A1 - Kannengießer, Thomas A1 - Kromm, Arne A1 - Hälsig, A. A1 - Scharf-Wildenhain, R. A1 - Hensel, J. T1 - Einfluss trennender Fertigungsschritte auf die Eigenspannungen in additiv gefertigten Bauteilen aus hochfestem Stahl N2 - Additive Fertigungsverfahren wie das Wire Arc Additive Manufacturing (WAAM) ermöglichen die effiziente Fertigung von gewichtsoptimierten endkonturnahen Strukturen in modernen Stahlkonstruktionen. Ihre Effizienz kann weiter durch die Verwendung von hochfesten Stählen gesteigert werden. Dies erlaubt eine signifikante Einsparung von Kosten, Zeit und Ressourcen. Entsprechende Schweißzusatzwerkstoffe für Lichtbogenschweißverfahren sind kommerziell verfügbar. Fehlende Richtlinien und fehlende quantitative Kenntnisse über die schweißtechnische Beanspruchung während der Fertigung und im Betrieb limitieren den industriellen Einsatz stark. Daher werden in einem aktuellen Vorhaben (IGF-Nr. 21162 BG) der BAM und TU Chemnitz die wesentlichen Einflüsse und komplexen Interaktionen durch Werkstoff, Fertigungsprozess, Konstruktion und trennende Fertigungsschritte auf den Beanspruchungszustand untersucht. Der vorliegende Beitrag fokussiert hierfür die Auswirkungen trennender Fertigungsschritte auf Verzug und Eigenspannungen definierter WAAM-Prüfkörper. Die Eigenspannungsanalyse erfolgt mittels Röntgenbeugung. Die große Anzahl an Ergebnissen von zuvor untersuchten Referenzproben, die mit einem speziellen WAAM-Massivdraht (Streckgrenze >820 MPa) bei unterschiedlicher Wärmeführung und Geometrie vollautomatisiert geschweißt wurden, lässt eine Korrelation der Messdaten zu. Hierzu erfolgt die Analyse des Ausgangszustandes und abschließend des Zustandes nach trennender Bearbeitung, welche begleitend mittels digitaler Bildkorrelation hinsichtlich des Verzuges untersucht wurden. So ist zu beobachten, dass die Geometrie deutlichen Einfluss auf Relaxation und Umlagerung der Eigenspannungen hat und damit die Risssicherheit positiv beeinflussen kann. T2 - Bachelor-, Master-, Doktoranden-Kolloquium OvGU Magdeburg CY - Magdeburg, Germany DA - 31.05.2023 KW - Additive Fertigung KW - Hochfester Stahl KW - Eigenspannungen PY - 2023 AN - OPUS4-57689 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mishurova, Tatiana T1 - Failure Mechanisms Investigation by Means of in-situ Synchrotron Computed Tomography in Aluminum MMC-based Alloy Tailored for Additive Manufacturing N2 - Synchrotron X-ray computed tomography (SXCT) at BAMline has been paired with in-situ tensile loading to monitor damage evolution in LPBF Metal Matrix Composite (MMC) 7017 Aluminium alloy + 3 wt% Zr + 0.5 wt% TiC. The processing of the material leads formation to different categories of Zr-rich inclusions, precipitates and defects. In-situ SXCT test disclosed the critical role of the pre-cracks in the reinforcement phases in the failure mechanisms of LPBF MMC. The damage was initiated from lack-of-fusion defects and cracks propagated through coalescence with other defects. T2 - HZB Uer Meeting 2023 CY - Berlin, Germany DA - 22.06.23 KW - Additive manufacturing KW - BAMline KW - Synchrotron X-ray computed tomography KW - in-situ PY - 2023 AN - OPUS4-57801 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Serrano Munoz, Itziar A1 - Roveda, Ilaria A1 - Requena, Guillermo A1 - Evans, Alexander A1 - Madia, Mauro A1 - Haubrich, Jan T1 - Influence of microstructure and residual stress state on the fatigue behaviour of a PBF-LB/M AlSi10Mg alloy N2 - The high cooling rates (~106 K/s) occurring during Laser Powder Bed Fusion (PBF-LB/M) of AlSi10Mg induce to the formation of a fine nanometric silicon network in the as-built condition. Such unprecedented microstructure enhances the mechanical strength when compared to equivalent as-cast materials. Nevertheless, PBF-LB/M also leads to high magnitude residual stress (RS) due to the extreme localized temperature gradients. The presence of RS can be detrimental to the fatigue life of engineering components, and great efforts are focused on understanding their generation and evolution after post-process heat treatments. Typically, T6 heat treatments are used to mitigate RS and improve mechanical performances by Mg2Si precipitation during ageing at 160-180°C. Nevertheless, the solutionizing at 500-540°C vanishes the fine silicon network, leading to the formation of micrometric (average of ~2-5 µm) polygonal Si particles, similar to those observed in T6 heat-treated Al-Si cast materials. Therefore, the aim of this work is to evaluate the ability of two so-called low temperature heat treatments (i.e., at 265°C and 300°C) to mitigate RS while retaining the fine as-built microstructure inherent to PBF-LB/M AlSi10Mg. The fatigue behavior of the as-built material is subsequently compared to the two low temperature conditions. T2 - LightMat 2023 CY - Trondheim, Norway DA - 21.06.2023 KW - AlSi10Mg KW - Fatigue crack propagation KW - Residual stress KW - Post processing heat treatment PY - 2023 AN - OPUS4-57807 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Serrano Munoz, Itziar T1 - 3D imaging and residual stress analysis for AM Materials N2 - Metal Additive Manufacturing (AM) technologies such as Laser Powder Bed Fusion (LPBF) are characterized by layer wise construction, which enable advancements of component design, leading to potential efficiency and performance improvements. However, the rapid cooling rates associated with the process consequently leads to the generation of high magnitude residual stresses (RS). Therefore, a deep understanding of the formation of RS, the influence of process parameters on their magnitude and the impact on mechanical performance is crucial for widespread application. The experimental characterization of these RS is essential for safety related engineering application and supporting the development of reliable numerical models. Diffraction-based methods for RS analysis using high energy synchrotron X-rays and neutrons enable non-destructive spatially resolved characterization of both surface and bulk residual stresses in complex components. This presentation will provide an overview of recent research conducted by the BAM at large scale facilities for the characterization of residual stresses in LPBF metallic alloys. Special focus will be given to the challenges posed by textured LPBF materials for the reliable choice of the diffraction elastic constants (DECs), which is crucial to the accurate calculation of the level of RS. T2 - Seminar at LTDS, Ecole Centrale de Lyon CY - Lyon, France DA - 15.06.2023 KW - Residual stress KW - Additive manufacturing KW - Diffraction methods PY - 2023 AN - OPUS4-57808 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Serrano Munoz, Itziar A1 - Pfretzschner, Beate A1 - Kromm, Arne A1 - Nadammal, Naresh A1 - Kardjilov, N. A1 - Markötter, Henning A1 - Neuwirth, T. A1 - Schulz, M. A1 - Griesche, Axel T1 - High-resolution Bragg-edge neutron radiography detects grain morphology in PBF-LB/M IN718 N2 - One of the main advantages of metal additive manufacturing (MAM) techniques is their ability to produce components with site-specific microstructural features. Nevertheless, microstructural defects and lack of repeatability are still major concerns in MAM. In this study, a laser powder bed fusion (PBF-LB/M) IN718 material, produced using two different scan length vectors, is investigated using Bragg-edge neutron 2D imaging (BENI) combined with electron backscatter diffraction (EBSD) analysis. BENI is able to detect, on a macroscopic scale, process-induced changes in texture in a large field of view covering the entire sample (20×80 mm2). In addition, high-resolution BENI (HR-BENI), with a pixel size of 12.8 µm, provides a micro-scale examination of the local variations of texture and grain morphology, otherwise undistinguishable using the standard resolution. As such, HR-BENI offers a straightforward and detailed way of screening the integrity of MAM parts at cm-length scales. KW - Bragg-edge neutron 2D imaging (BENI) KW - Metal additive manufacturing (MAM) KW - IN718 PBF-LB/M KW - Crystallographic texture control KW - Electron backscatter diffraction (EBSD) PY - 2023 U6 - https://doi.org/10.1016/j.mtla.2023.101827 SN - 2589-1529 VL - 30 SP - 1 EP - 6 PB - Elsevier CY - Amsterdam AN - OPUS4-57819 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Roveda, Ilaria A1 - Serrano Munoz, Itziar A1 - Haubrich, J. A1 - Requena, G. A1 - Madia, Mauro T1 - Influence of post-process heat treatments on the fatigue crack propagation behaviour of a PBF-LB/M AlSi10Mg alloy N2 - The microstructure has a great influence on short fatigue crack growth in metallic materials. Laser-based Powder Bed Fusion AlSi10Mg alloys exhibit in the as-built condition a fine fibrous Si structure and a supersaturated solid solution of Si in the α-Al matrix, which is significantly modified by heat treatments starting already at temperatures under 260 °C. This study focuses on the influence of post-process heat treatments on the microstructural evolution and the resulting fatigue crack growth resistance. As compared to the as-built condition, two heat treatments at 265 °C/1 h and at 300 °C/2 h are found to be beneficial to the fatigue crack growth resistance of the investigated material. KW - Additive manufacturing KW - Fatigue crack growth KW - Cyclic R-curve KW - Heat treatment PY - 2023 U6 - https://doi.org/10.1016/j.ijfatigue.2023.107808 SN - 0142-1123 VL - 175 SP - 1 EP - 12 PB - Elsevier Ltd. AN - OPUS4-57822 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Merz, Benjamin A1 - Nilsson, R. A1 - Garske, C. A1 - Hilgenberg, Kai T1 - Camera-based high precision position detection for hybrid additive manufacturing with laser powder bed fusion N2 - Additive manufacturing (AM) in general and laser powder bed fusion (PBF-LB/M) in particular are becoming increasingly important in the field of production technologies. Especially the high achievable accuracies and the great freedom in design make PBF-LB/M interesting for the manufacturing and repair of gas turbine blades. Part repair involves building AM-geometries onto an existing component. To minimise the offset between component and AM-geometry, a precise knowledge of the position of the component in the PBF-LB/M machine is mandatory. However, components cannot be inserted into the PBF-LB/M machine with repeatable accuracy, so the actual position will differ for each part. For an offset-free build-up, the actual position of the component in the PBF-LB/M machine has to be determined. In this paper, a camera-based position detection system is developed considering PBF-LB/M constraints and system requirements. This includes finding an optimal camera position considering the spatial limitations of the PBF-LB/M machine and analysing the resulting process coordinate systems. In addition, a workflow is developed to align different coordinate systems and simultaneously correct the perspective distortion in the acquired camera images. Thus, position characteristics can be determined from images by image moments. For this purpose, different image segmentation algorithms are compared. The precision of the system developed is evaluated in tests with 2D objects. A precision of up to 30μm in translational direction and an angular precision of 0.021∘ is achieved. Finally, a 3D demonstrator was built using this proposed hybrid strategy. The offset between base component and AM-geometry is determined by 3D scanning and is 69μm. KW - Laser powder bed fusion KW - Additive manufacturing KW - Hybrid repair KW - Machine vision KW - Image processing KW - Position detection PY - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-568583 SP - 1 EP - 16 PB - Springer AN - OPUS4-56858 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Diener, S. A1 - Schubert, Hendrik A1 - Günster, Jens A1 - Zocca, Andrea T1 - Ink development for the additive manufacturing of strong green parts by layerwise slurry deposition (LSD-print) N2 - Obtaining dense fine ceramics by the binder jetting additive manufacturing process is challenging. A slurry-based binder jetting process, such as the layerwise slurry deposition (LSD-print) process, can enable the printing of dense ceramic parts. This work describes a procedure to develop and qualify a suitable ink to manufacture silicon carbide green parts by LSD-print. Not only the printability but also the compatibility of the ink with the powder bed and the effect of the binding agent on the properties of the green parts are considered. Both aspects are important to obtain high green strength, which is necessary for printing large or thin-walled parts. Characterization methods, such as rheological and surface tension measurements, are applied to optimize three selected inks. The interplay between ink and powder bed is tested by contact angle measurements and by comparing the biaxial strength of cast and additively manufactured specimens. Out of the three binding agents tested, a polyethyleneimine and a phenolic resin have a high potential for their use in the LSD-print of silicon carbide green bodies, whereas a polyacrylate binding agent did not show the required properties. KW - Silicon carbide KW - Binders/binding KW - Inkjet KW - Printing PY - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-567911 SN - 0002-7820 SP - 1 EP - 12 PB - Wiley online library AN - OPUS4-56791 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Panzier, Nicole A1 - Zocca, Andrea T1 - Silikatkeramik und Hochleistungskeramik aus dem 3-D-Druck N2 - In diesem Artikel werden die verschiedenen additiven Fertigungsverfahren und ihre Anwendungsmöglichkeiten vorgestellt. Der Fokus liegt hierbei auf Silikatkeramik. Für jedes 3D Druckverfahren werden die Möglichkeiten mit Silikatkeramik, Hochleistungskeramik und Dentalkeramik aufgezeigt. Auf den Nutzen der verschiedenen 3D Druckverfahren für industrielle Anwendungen, den privaten Bereich, sowie die Verwendung für Kunst und Design wird eingegangen. Das Potenzial der Additiven Fertigung wird auch für den Bereich der Keramik in der dentalen Anwendung bewertet. KW - Additive Fertigung KW - 3D Druck KW - Silikatkeramik KW - Hochleistungskeramik PY - 2022 UR - https://www.quintessence-publishing.com/deu/de/article/3634513/quintessenz-zahntechnik/2022/12/silikatkeramik-und-hochleistungskeramik-aus-dem-3-d-druck SN - 0340-4641 VL - 48 IS - 12 SP - 1260 EP - 1268 PB - Quintessence Publ. CY - Berlin AN - OPUS4-56792 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mehta, B. A1 - Mishurova, Tatiana A1 - Evsevleev, Sergei A1 - Markötter, Henning A1 - Bruno, Giovanni A1 - Hryha, E. A1 - Nyborg, L. A1 - Virtanen, E. T1 - Microstructure, mechanical properties and fracture mechanisms in a 7017 aluminium alloy tailored for powder bed fusion – laser beam N2 - This study addressed a 7017 Al-alloy tailored for powder bed fusion – laser beam (PBF-LB) process. The alloy was prepared by mixing 3 wt% Zr and 0.5 wt% TiC powder to standard pre-alloyed 7017 grade aluminium powder. This made printing of the alloys possible avoiding solidification cracking in the bulk and achieving high relative density (99.8 %). Such advanced alloys have significantly higher Young’s modulus (>80 GPa) than conventional Al-alloys (70–75 GPa), thus making them attractive for applications requiring high stiffness. The resulting microstructure in as-printed condition was rich in particles originating from admixed powders and primary precipitates/inclusions originating from the PBF-LB process. After performing a T6-like heat treatment designed for the PBF-LB process, the microstructure changed: Zr-nanoparticles and Fe- or Mg/Zn- containing precipitates formed thus providing 75 % increase in yield strength (from 254 MPa to 444 MPa) at the cost of decreasing ductility (∼20 % to ∼9 %). In-situ tensile testing combined with SXCT, and ex-situ tensile testing combined with fracture analysis confirmed that the fracture initiation in both conditions is highly dependent on defects originated during printing. However, cracks are deflected from decohesion around Zr-containing inclusions/precipitates embedded in the Al-matrix. This deflection is seen to improve the ductility of the material. KW - Additive manufacturing KW - Powder bed fusion Laser beam KW - X-ray computed tomography KW - Strengthening mechanisms KW - Crack propagation KW - Zirconium PY - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-568243 SN - 0264-1275 VL - 226 SP - 1 EP - 14 PB - Elsevier Science CY - Amsterdam [u.a.] AN - OPUS4-56824 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Srinivasan, Krishnanand A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - Laser Metal Deposition of Rene 80 – Microstructure and Solidification Behaviour Modelling N2 - New developments in nickel-based superalloys and production methods, such as the use of additive manufacturing (AM), can result in innovative designs for turbines. It is crucial to understand how the material behaves during the AM process to advance industrial use of these techniques. An analytical model based on reaction-diffusion formalism is developed to better explain the solidification behavior of the material during laser metal deposition (LMD). The well-known Scheil-Gulliver theory has some drawbacks, such as the assumption of equilibrium at the solid-liquid interface, which is addressed by this method. The solidified fractions under the Scheil model and the pure equilibrium model are calculated using CALPHAD simulations. Differential scanning calorimeter is used to measure the heat flow during the solid-liquid phase transformation, the result of which is further converted to solidified fractions. The analytical model is compared with all the other models for validation. T2 - Lasers in Manufacturing Conference 2023 CY - Munich, Germany DA - 26.06.2023 KW - Additive manufacturing KW - Laser metal deposition KW - Solidification behaviour KW - Analytical model KW - Nickel-based superalloy PY - 2023 SP - 1 EP - 10 AN - OPUS4-58612 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Epperlein, Martin A1 - Hilgenberg, Kai A1 - Hellfritz, Benjamin A1 - Löffler, Frank T1 - Digitisation of the quality infrastructure - using the example of additive manufacturing N2 - Rapidly advancing technologies and progressive digitisation are posing challenges to the established quality infrastructure (QI). In response, the key stakeholders of the German QI established the initiative QI-Digital aimed at developing new solutions for modern quality assurance. One of the central use cases herein is quality assurance for additive manufacturing, in which a fully interlinked additive manufacturing process chain is established. The intention is to collect and process data from each production step, allowing for a comprehensive digital view of the physical material flow. Within this process chain, prototypes of digital QI tools like machine readable standards and digital quality certificates are being demonstrated, tested, and evolved. This is complemented by research on the process level, comprising the evaluation and refinement of methods for in-situ and ex-situ quality assurance, as well as algorithms for registration, reduction, and analysis of process data. This paper presents the status, goals, and vision for the QI-Digital use case additive manufacturing. T2 - Metal Additive Manufacturing Conference 2023 CY - Wien, Austria DA - 17.10.2023 KW - Additive Manufacturing KW - Digitalisation KW - Quality Assurance PY - 2023 SP - 96 EP - 104 CY - Wien AN - OPUS4-58628 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Epperlein, Martin T1 - Digitisation of the quality infrastructure - Using the example of additive manufacturing N2 - Rapidly advancing technologies and progressive digitisation are posing challenges to the established quality infrastructure (QI). In response, the key stakeholders of the German QI established the initiative QI-Digital aimed at developing new solutions for modern quality assurance. One of the central use cases herein is quality assurance for additive manufacturing, in which a fully interlinked additive manufacturing process chain is established. The intention is to collect and process data from each production step, allowing for a comprehensive digital view of the physical material flow. Within this process chain, prototypes of digital QI tools like machine readable standards and digital quality certificates are being demonstrated, tested, and evolved. This is complemented by research on the process level, comprising the evaluation and refinement of methods for in-situ and ex-situ quality assurance, as well as algorithms for registration, reduction, and analysis of process data. This paper presents the status, goals, and vision for the QI-Digital use case additive manufacturing. T2 - Metal Additive Manufacturing Conference 2023 CY - Vienna, Austria DA - 17.10.2023 KW - Additive Manufacturing KW - Digitalisation KW - Quality Assurance PY - 2023 AN - OPUS4-58629 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mishurova, Tatiana A1 - Evsevleev, Sergei A1 - Piault, Pierre A1 - King, Andrew A1 - Henry, Laura A1 - Bruno, Giovanni T1 - Understanding the hot isostatic pressing efectiveness of laser powder bed fusion Ti‑6Al‑4V by in‑situ X‑ray imaging and difraction experiments N2 - In the present study, in-situ observation of Hot Isostatic Pressure (HIP) procedure of laser powder bed fusion manufactured Ti-6Al-4V parts was performed to quantitatively estimate the densifcation rate of the material and the infuence of the defect initial size and shape on such rate. The observations were performed in-situ using the Ultrafast Tomography Paris-Edinburgh Cell and the combination of fast phase-contrast synchrotron X-ray tomography and energy dispersive difraction. With this strategy, we could quantify how the efectiveness of HIP depends on the characteristics of a defect. Smaller defects showed a higher densifcation rate, while the defect shape did not have signifcant efect on such rate. KW - Additive manufacturing KW - Laser powder bed fusion KW - X-ray computed tomography KW - Hot isostatic pressing PY - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-587702 SN - 2045-2322 VL - 13 IS - 1 SP - 1 EP - 11 AN - OPUS4-58770 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mohr, Gunther A1 - Altenburg, Simon A1 - Hilgenberg, Kai T1 - On the limitations of small cubes as test coupons for process parameter optimization in laser powder bed fusion of metals N2 - The capability to produce complexly and individually shaped metallic parts is one of the main advantages of the laser powder bed fusion (PBF LB/M) process. Development of material and machine specific process parameters is commonly based on results acquired from small cubic test coupons of about 10 mm edge length. Such cubes are usually used to conduct an optimization of process parameters to produce dense material. The parameters are then taken as the basis for the manufacturing of real part geometries. However, complex geometries go along with complex thermal histories during the manufacturing process, which can significantly differ from thermal conditions prevalent during the production of simply shaped test coupons. This may lead to unexpected and unpredicted local inhomogeneities of the microstructure and defect distribution in the final part and it is a root cause of reservations against the use of additive manufacturing for the production of safety relevant parts. In this study, the influence of changing thermal conditions on the resulting melt pool depth of 316L stainless steel specimens is demonstrated. A variation of thermo-graphically measured intrinsic preheating temperatures was triggered by an alteration of inter layer times and a variation of cross section areas of specimens for three distinct sets of process parameters. Correlations between the preheating temperature, the melt pool depth, and occurring defects were analyzed. The limited expressiveness of the results of small density cubes is revealed throughout the systematic investigation. Finally, a clear recommendation to consider thermal conditions in future process parameter optimizations is given. T2 - Icaleo 2023 CY - Chicago, IL, USA DA - 16.10.2023 KW - Additive manufacturing KW - Heat accumulation KW - Thermal history KW - In situ monitoring KW - Representative specimens KW - Thermography PY - 2023 AN - OPUS4-58656 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael A1 - Kannengießer, Thomas T1 - Fügetechnik in Wasserstofftechnologien: Prozesse und Perspektiven N2 - Der Vortrag gibt einen tiefen Überblick über die Bedeutung der Füge- und Schweißtechnik in Wasserstofftechnologien. Dazu gliedert sich der Vortrag in die Komplexe H2-Erzeugung, Speicherung, Transport, Anwendung auf und gibt jeweils repräsentative Industriebeispiele für den heutigen Anwendungsstand. Insbesondere werden hier Fertigungstechnologien für Brennstoffzellen vorgestellt, sowie Herausforderungen beim Reparaturschweißen von Wasserstoffpipelines. Zeitgleich wird in einem eigenen Kapitel die Bedeutung der additiven Fertigung ebenso erläutert, wie die aktuellen und umfassenden Tätigkeiten auf dem Gebiet der Normung zu H2-Technologien. T2 - Vortragsreihe der VDI-Ortsgruppe Magdeburg CY - Magdeburg, Germany DA - 23.10.2023 KW - Wasserstofftechnologien KW - Fügetechnik KW - Pipelines KW - Additive Fertigung KW - Normung PY - 2023 AN - OPUS4-58671 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mohr, Gunther A1 - Altenburg, Simon A1 - Hilgenberg, Kai T1 - On the limitations of small cubes as test coupons for process parameter optimization in laser powder bed fusion of metals N2 - The capability to produce complexly and individually shaped metallic parts is one of the main advantages of the laser powder bed fusion (PBF LB/M) process. Development of material and machine specific process parameters is commonly based on results acquired from small cubic test coupons of about 10 mm edge length. Such cubes are usually used to conduct an optimization of process parameters to produce dense material. The parameters are then taken as the basis for the manufacturing of real part geometries. However, complex geometries go along with complex thermal histories during the manufacturing process, which can significantly differ from thermal conditions prevalent during the production of simply shaped test coupons. This may lead to unexpected and unpredicted local inhomogeneities of the microstructure and defect distribution in the final part and it is a root cause of reservations against the use of additive manufacturing for the production of safety relevant parts. In this study, the influence of changing thermal conditions on the resulting melt pool depth of 316L stainless steel specimens is demonstrated. A variation of thermo-graphically measured intrinsic preheating temperatures was triggered by an alteration of inter layer times and a variation of cross section areas of specimens for three distinct sets of process parameters. Correlations between the preheating temperature, the melt pool depth, and occurring defects were analyzed. The limited expressiveness of the results of small density cubes is revealed throughout the systematic investigation. Finally, a clear recommendation to consider thermal conditions in future process parameter optimizations is given. T2 - Icaleo 2023 CY - Chicago, IL, USA DA - 16.10.2023 KW - Additive manufacturing KW - Heat accumulation KW - Thermal history KW - In situ monitoring KW - Representative specimens KW - Thermography PY - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-586558 SN - 1042-346X VL - 35 IS - 4 SP - 1 EP - 10 AN - OPUS4-58655 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Marquardt, R. A1 - Bähring, S. A1 - Biegler, M. A1 - Rethmeier, Michael T1 - Künstliche Neuronale Netze zur Qualitätsprognose von Funktional Gradierten Materialien im laserbasierten Directed Energy Deposition N2 - Durch pulverbasiertes Directed-Energy Deposition lassen sich Gradierungen fertigen, um diskrete Materialübergänge zu vermeiden und die Lebensdauer von Hartschichten zu erhöhen. Die Kombination aus Stahl als Basiswerkstoff und einer verschleiß- und korrosionsbeständigen Co-Cr Legierung verspricht durch Vermeiden von Spannungskonzentrationen das Verhindern von Abplatzungen und Rissen in der Schutzschicht. Um die Qualität des gefertigten Bauteils zu beurteilen, liegen für solche Funktional Gradierten Materialien (FGM) wenig Erkenntnisse vor. Daher wird im Rahmen dieser Studie eine Methodik erarbeitet, um die relative Dichte eines Funktional Gradierten Materials auf Stahl und Co-Cr Basis mittels Maschinendaten zu bestimmen. Anschließend wird unter Einsatz eines künstlichen neuronalen Netzes anhand von Sensordaten die relative Dichte vorhergesagt. Das trainierte Netz erreicht eine Vorhersagegenauigkeiten von 99,83%. Abschließend wird eine Anwendung anhand von einem Demonstrator gezeigt. T2 - 3. Fachtagung Additive Manufacturing CY - Halle, Germany DA - 05.10.2023 KW - Directed Enery Deposition KW - Künstliche Neuronale Netze KW - Additive Manufacturing KW - DED KW - KI KW - AM PY - 2023 SP - 1 EP - 8 PB - SLV Halle AN - OPUS4-58692 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - El-Sari, B. A1 - Biegler, M. A1 - Rethmeier, Michael T1 - Verbesserung der Übertragbarkeit eines künstlichen neuronalen Netzes zur Qualitätsvorhersage beim Widerstandspunktschweißen von hochfesten Stählen N2 - Eine typische Automobilkarosserie kann bis zu 5000 Widerstandspunktschweißverbindungen aufweisen, welche hohen Qualitätsanforderungen genügen müssen. Daher ist eine durchgehende Prozessüberwachung unerlässlich. Die Transformation zur E-Mobilität in der Automobilindustrie und die damit einhergehende Reichweitenproblematik treiben die Entwicklung und Einführung neuer hochfester Stähle an. Dies resultiert in einem gesteigerten Fertigungsaufwand hinsichtlich einer stabilen Prozess-führung in der Fügetechnik. Um diesen Anstieg an Komplexität zu bewältigen, sind die Methoden der künstlichen Intelligenz ein geeignetes Mittel. Mit ihnen kann, durch Auswertung der Prozessparameter und -signale, die individuelle Schweißpunktqualität sichergesellt werden. Die Vorhersagegenauigkeit von neuen Daten, also das extrapolieren, stellt für die meisten Algorithmen eine große Herausforderung dar. In dieser Arbeit wird ein künstliches neuronales Netz zur Vorhersage des Punktdurchmessers von Widerstandspunktschweißungen anhand von Prozessparametern implementiert. Die Vorhersagegenauigkeit und Extrapolationsfähigkeit des Modells wird durch die Auswertung des dynamischen Widerstandssignals verbessert. Um die Extrapolationsfähigkeit zu untersuchen, wird die Vorhersagegenauigkeit des Modells mit Daten getestet, die sich in Bezug auf den Werkstoff und der Beschichtungszusammensetzung deutlich von den Trainingsdaten unterscheiden. Dazu wurden mehrere Schweißexperimente mit Werkstoffen verschiedener Hersteller durchgeführt und nur ein Teil der Daten in das Training einbezogen. Die Ergebnisse dieser Arbeit verdeutlichen den positiven Einfluss der Prozesssignale auf die Robustheit des Modells und die Skalierbarkeit der Algorithmen künstlicher neuronaler Netze auf Daten außerhalb des Trainingsraums. T2 - DVS Congress 2023 Große Schweißtechnische Tagung CY - Essen, Germany DA - 11.09.2023 KW - Widerstandspunktschweißen KW - Hochfester Stahl KW - Künstliche Intelligenz KW - Neuronales Netz KW - Fügequalität PY - 2023 SN - 978-3-96144-230-0 SP - 772 EP - 779 AN - OPUS4-58693 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Yang, K. A1 - Meschut, G. A1 - Seitz, G. A1 - Biegler, M. A1 - Rethmeier, Michael T1 - The Identification of a New Liquid Metal Embrittlement (LME) Type in Resistance Spot Welding of Advanced High Strength Steels on Reduced Flange Widths N2 - Liquid metal embrittlement (LME) cracking is a phenomenon observed during resistance spot welding (RSW) of zinc􀀀coated advanced high􀀀strength steels (AHSS) in automotive manufacturing. In this study, severe cracks are observed at the edge of the sheet under reduced flange widths. These cracks, traversing the AHSS sheet, culminate at the edge with a width of approximately 1.2 mm. Through combined numerical and experimental investigations, and material testing, these cracks are identified and validated as a new type of LME crack. The mechanism behind this crack formation is attributed to unique geometric conditions that, when compared to center welding, amplify radial material flow by ninefold to 0.87 mm. The resultant tangential tensile stresses approximate 760 MPa, which exceed the yield strength of the examined advanced high􀀀strength steel (AHSS) under heightened temperature conditions, and when combined with liquid zinc, promote the formation of this new type of LME crack. KW - Liquid metal embrittlement KW - Crack KW - Advanced high strength steels KW - Resistance spot welding KW - Simulation KW - Flange width PY - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-586940 VL - 13 IS - 10 SP - 1 EP - 13 PB - MDPI AN - OPUS4-58694 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rethmeier, Michael A1 - Artinov, Antoni A1 - Meng, Xiangmeng A1 - Bakir, Nasim A1 - Üstündag, Ömer A1 - Bachmann, Marcel A1 - Gumenyuk, Andrey T1 - The bulging effect and its relevance in high power laser beam welding N2 - The present work deals with the recently confirmed widening of the weld pool interface, known as a bulging effect, and its relevance in high power laser beam welding. A combined experimental and numerical approach is utilized to study the influence of the bulge on the hot cracking formation and the transport of alloying elements in the molten pool. A technique using a quartz glass, a direct-diode laser illumination, a high-speed camera, and two thermal imaging cameras is applied to visualize the weld pool geometry in the longitudinal section. The study examines the relevance of the bulging effect on both, partial and complete penetration, as well as for different sheet thicknesses ranging from 8 mm to 25 mm. The numerical analysis shows that the formation of a bulge region is highly dependent on the penetration depth and occurs above 10 mm penetration depth. The location of the bulge correlates strongly with the cracking location. The obtained experimental and numerical results reveal that the bulging effect increases the hot cracking susceptibility and limits the transfer of alloying elements from the top of the weld pool to the weld root. T2 - 1st Annual Assembly and Conference of The Welding Federation of Africa (TWF-Africa) CY - Cairo, Egypt DA - 14.03.2023 KW - Laser beam welding KW - Melt pool dinamics PY - 2023 AN - OPUS4-58695 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Scheuschner, Nils A1 - Heinrichsdorff, F. A1 - Oster, Simon A1 - Uhlmann, E. A1 - Polte, J. A1 - Gordei, A. A1 - Hilgenberg, Kai T1 - In-situ monitoring of the laser powder bed fusion process by thermography, optical tomography and melt pool monitoring for defect detection N2 - For the wide acceptance of the use of additive manufacturing (AM), it is required to provide reliable testing methods to ensure the safety of the additively manufactured parts. A possible solution could be the deployment of in-situ monitoring during the build process. However, for laser powder bed fusion using metal powders (PBF-LB/M ) only a few in-situ monitoring techniques are commercially available (optical tomography, melt pool monitoring) but not researched to an extent that allows to guarantee the adherence to strict quality and safety standards. In this contribution, we present results of a study of PBF-LB/M printed parts made of the nickel-based superalloy Haynes 282. The formation of defects was provoked by local variations of the process parameters and monitored by thermography, optical tomography and melt pool monitoring. Afterwards, the defects were characterized by computed tomography (CT) to identify the detection limits of the used in-situ techniques. T2 - LiM Conference 2023 - Lasers in Manufacturing CY - Munich, Germany DA - 26.06.2023 KW - Thermography KW - High temperature alloys KW - Additive Manufacturing KW - PBF-LB/M PY - 2023 AN - OPUS4-57947 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Breese, Philipp Peter A1 - Becker, Tina A1 - Oster, Simon A1 - Metz, C. A1 - Altenburg, Simon T1 - In-situ defect detection via active laser thermographic testing for PBF-LB/M N2 - Great complexity characterizes Additive Manufacturing (AM) of metallic components via laser powder bed fusion (PBF-LB/M). Due to this, defects in the printed components (like cracks and pores) are still common. Monitoring methods are commercially used, but the relationship between process data and defect formation is not well understood yet. Furthermore, defects and deformations might develop with a temporal delay to the laser energy input. The component’s actual quality is consequently only determinable after the finished process. To overcome this drawback, thermographic in-situ testing is introduced. The defocused process laser is utilized for nondestructive testing performed layer by layer throughout the build process. The results of the defect detection via infrared cameras are shown for a research PBF-LB/M machine. This creates the basis for a shift from in-situ monitoring towards in-situ testing during the AM process. Defects are detected immediately inside the process chamber, and the actual component quality is determined. T2 - Lasers in Manufacturing (LiM) CY - Munich, Germany DA - 26.06.2023 KW - Additive Manufacturing KW - Laser Powder Bed Fusion KW - Nondestructive Testing KW - Defect Detection KW - Flying Spot Laser Thermography PY - 2023 AN - OPUS4-57922 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Merz, Benjamin A1 - Poka, Konstantin A1 - Nilsson, R. A1 - Mohr, Gunther A1 - Hilgenberg, Kai T1 - On the challenges of hybrid repair of gas turbine blades using laser powder bed fusion N2 - Additive manufacturing (AM) processes such as laser powder bed fusion (PBF-LB/M) are rapidly gaining popularity in repair applications. Gas turbine components benefit from the hybrid repair process as only damaged areas are removed using conventional machining and rebuilt using an AM process. However, hybrid repair is associated with several challenges such as component fixation and precise geometry detection. This article introduces a novel fixturing system, including a sealing concept to prevent powder sag during the repair process. Furthermore, a high-resolution camera within an industrial PBF-LB/M machine is installed and used for object detection and laser recognition. Herein, process related inaccuracies such as PBF-LB/M laser drift is considered by detection of reference objects. This development is demonstrated by the repair of a representative gas turbine blade. The final offset between AM build-up and component is analysed. An approximate accuracy of 160 μm is achieved with the current setup. T2 - LiM 2023 CY - Munich, Germany DA - 26.06.2023 KW - Laser powder bed fusion KW - Additive manufacturing KW - Hybrid repair KW - Position detection KW - High-resolution camera PY - 2023 SP - 1 EP - 9 AN - OPUS4-57836 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Merz, Benjamin A1 - Poka, Konstantin A1 - Nilsson, Ricardo A1 - Mohr, Gunther A1 - Hilgenberg, Kai T1 - On the challenges of hybrid repair of gas turbine blades using laser powder bed fusion N2 - Additive manufacturing (AM) processes such as laser powder bed fusion (PBF-LB/M) are rapidly gaining popularity in repair applications. Gas turbine components benefit from the hybrid repair process as only damaged areas are removed using conventional machining and rebuilt using an AM process. However, hybrid repair is associated with several challenges such as component fixation and precise geometry detection. This article introduces a novel fixturing system, including a sealing concept to prevent powder sag during the repair process. Furthermore, a high-resolution camera within an industrial PBF-LB/M machine is installed and used for object detection and laser recognition. Herein, process related inaccuracies such as PBF-LB/M laser drift is considered by detection of reference objects. This development is demonstrated by the repair of a representative gas turbine blade. The final offset between AM build-up and component is analysed. An approximate accuracy of 160 μm is achieved with the current setup. T2 - LiM 2023 CY - Munich, Germany DA - 26.06.2023 KW - Laser powder bed fusion KW - Additive manufacturing KW - Hybrid repair KW - Position detection KW - High-resolution camera PY - 2023 AN - OPUS4-57837 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ginés-Palomares, Juan Carlos A1 - Fateri, Miranda A1 - Kalhöfer, Eckhard A1 - Schubert, Tim A1 - Meyer, Lena A1 - Kolsch, Nico A1 - Brandic Lipinska, Monica A1 - Davenport, Robert A1 - Imhof, Barbara A1 - Waclavicek, René A1 - Sperl, Matthias A1 - Makaya, Advenit A1 - Günster, Jens T1 - Laser melting manufacturing of large elements of lunar regolith simulant for paving on the Moon N2 - The next steps for the expansion of the human presence in the solar system will be taken on the Moon. However, due to the low lunar gravity, the suspended dust generated when lunar rovers move across the lunar soil is a significant risk for lunar missions as it can affect the systems of the exploration vehicles. One solution to mitigate this problem is the construction of roads and landing pads on the Moon. In addition, to increase the sustainability of future lunar missions, in-situ resource utilization (ISRU) techniques must be developed. In this paper, the use of concentrated light for paving on the Moon by melting the lunar regolith is investigated. As a substitute of the concentrated sunlight, a high-power CO2 laser is used in the experiments. With this set-up, a maximum laser spot diameter of 100 mm can be achieved, which translates in high thicknesses of the consolidated layers. Furthermore, the lunar regolith simulant EAC-1A is used as a substitute of the actual lunar soil. At the end of the study, large samples (approximately 250 × 250 mm) with interlocking capabilities were fabricated by melting the lunar simulant with the laser directly on the powder bed. Large areas of lunar soil can be covered with these samples and serve as roads and landing pads, decreasing the propagation of lunar dust. These manufactured samples were analysed regarding their ineralogical composition, internal structure and mechanical properties. KW - Regolith KW - ISRU KW - Moon KW - Laser KW - Additive manufacturing PY - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-585985 SN - 2045-2322 VL - 13 SP - 1 EP - 10 PB - Springer AN - OPUS4-58598 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Epperlein, Martin T1 - Eine digitale QI für die moderne Produktion: Datenbasierte Qualitätssicherung in der Additiven Fertigung N2 - Als Beispiel für moderne Produktion ist die additive Fertigung (ugs. „3D-Druck“) bei der Herstellung von hochkomplexen metallischen Bauteilen, bionisch inspiriertem Leichtbau oder Prototypen nicht mehr wegzudenken. Die Qualitätssicherung (QS) von Bauteilen für sicherheitskritische Anwendungen stellt jedoch noch eine Herausforderung dar. Die Additive Fertigung (AM) ist ein vergleichsweise junges und datenintensives Fertigungsverfahren. Daher ist es ideal geeignet, die neuen Werkzeuge einer digitalen Qualitätsinfrastruktur (QI) für die moderne Produktion zu erproben und weiterzuentwickeln. T2 - 2. QI-Digital Forum CY - Berlin, Germany DA - 10.10.2023 KW - Additive Manufacturing KW - Digitalisation KW - Quality Assurance PY - 2023 AN - OPUS4-58630 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kampffmeyer, D. A1 - Wolters, M. A1 - Raute, J. A1 - Biegler, M. A1 - Rethmeier, Michael T1 - Laserstrahlauftragschweißen – Einfluss von Schutzgasgemischen auf die Bauteilqualität N2 - Im Additive Manufacturing Verfahren Directed Energy Deposition (DED) wird bei der Verarbeitung von Werkzeugstahl in der Regel reines Argon als Schutzgas verwendet. Dabei kann die Verwendung von speziellen Schutzgasgemischen, auch bei geringen Anteilen zugemischter Gase, durchaus die Bauteilqualität positiv beeinflussen. In Vorarbeiten der Messer SE & Co. KGaA zeigte ein gewisser Sauerstoffanteil im Schutzgas die Tendenz, den Flankenwinkel von Schweißspuren beim DED zu verbessern. In der vorliegenden Studie wurde daher detailliert untersucht in wie weit unterschiedliche Schutzgasgemische einen Einfluss auf die Qualität sowie die geometrischen Eigenschaften der additiv gefertigten Strukturen des Werkzeugstahls 1.2709 beim Laser-DED ausüben. Es erfolgten zunächst Testschweißungen in Form von Einzelspuren mit unterschiedlichen Gemischen aus dem Basisschutzgas Argon mit geringen Anteilen verschiedener Gase. Dabei wurde der Einfluss der Zusätze auf die Spurgeometrie und Aufbauqualität untersucht. Auf Basis dieser Vorversuche wurde eine Auswahl vielversprechender Gasgemische getroffen und Detailuntersuchungen in Form von Spuren, Flächen und Quadern unter Zugabe verschiedener Mengen an Zusätzen durchgeführt. Zur Bewertung des Einflusses der Schutzgasbeimengungen wurden der Flankenwinkel, die Porosität und das Gefüge der Proben anhand metallografischer Schliffe untersucht. Es zeigte sich, dass eine Zugabe von geringen Anteilen an Zusätzen zunächst zu einer Vergrößerung des Flankenwinkels im Vergleich zu reinem Argon führt. Mit steigendem Anteil der Gase nimmt dieser Winkel jedoch ab. So kann je nach Menge des zugesetzten Gases eine individuelle Benetzung des aufgetragenen Materials an der Oberfläche erreicht werden. Auch die Porosität ließ sich durch Schutzgasgemische beeinflussen und zeigt ein abweichendes Verhalten im Vergleich zu reinem Argon. T2 - DVS Congress 2023 Große Schweißtechnische Tagung DVS CAMPUS CY - Essen, Germany DA - 11.09.2023 KW - Laser-Pulver-Auftragschweißen KW - DED-LB KW - Schutzgas KW - Additive Fertigung PY - 2023 SN - 978-3-96144-230-0 SP - 505 EP - 511 PB - DVS-Media AN - OPUS4-58585 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Raute, J. A1 - Biegler, M. A1 - Rethmeier, Michael T1 - Untersuchung zum Elektronenstrahlschweißen von additiv gefertigtem Inconel 939 N2 - Hochfeste Nickelbasislegierungen wie Inconel 939 spielen eine wesentliche Rolle im modernen Turbinenbau. Additive Fertigungstechnologien eröffnen hierbei neue Möglichkeiten für die Verarbeitung, jedoch fehlen verlässliche Fügeprozesse für die Absicherung der additiven Prozesskette im Bereich Neuteilfertigung und Instandsetzung. Insbesondere Heißrisse stellen eine große Herausforderung an die Fügetechnik. Die vorliegende Untersuchung befasst sich daher mit dem Verhalten von additiv gefertigten Blechen aus Inconel 939 beim Elektronenstrahlschweißen. Es werden grundlegende Zusammenhänge zwischen Prozessparametern, Härte und Rissneigung betrachtet und Ansätze für eine Optimierung auf Basis statistischer Versuchsplanung aufgezeigt. Hierbei erfolgt eine Einteilung der Risse nach bestimmten Nahtbereichen. Risse am Nahtkopf können durch die Faktoren Vorschub und Streckenenergie sowie die Härte des Schweißgutes beeinflusst werden. Risse im Bereich der parallelen Nahtflanken stehen hingegen im Zusammenhang mit der Härte der Wärmeinflusszone. Ein abschließender Vergleich der angepassten Parameter mit der Ausgangssituation zeigt, dass durch Anwendung der statistischen Optimierung eine deutliche Reduzierung der Rissneigung erreicht werden kann. T2 - 42. Assistentenseminar Fügetechnik CY - Beverungen, Germany DA - 06.10.2021 KW - Elektronenstrahlschweißen KW - Additive Fertigung KW - Schweißnahtbewertung PY - 2022 SN - 978-3-96144-210-2 VL - 385 SP - 1 EP - 8 PB - DVS Media GmbH AN - OPUS4-57320 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - RPRT A1 - Rethmeier, Michael A1 - Biegler, M. T1 - Qualifizierung der Schweißstruktursimulation für die wirtschaftliche Bearbeitung additiver fertigungstechnischer Fragestellungen am Beispiel des Laserpulverauftragschweißens N2 - Additive Fertigungsverfahren, speziell das selektive Laserschmelzen sowie das Laserpulverauftragsschweißen, ermöglichen eine enorme Steigerung der Flexibilität und erlauben Kleinserienteile mit hoher Genauigkeit und geringen Kosten herzustellen. Für den erfolgreichen wirtschaftlichen Einsatz dieser neuartigen Fertigungsverfahren spielt die Einhaltung des First-time-right-Prinzips eine entscheidende Rolle: Bauteile sollten bereits im ersten Versuch allen Anforderungen genügen. Aufgrund der jungen Geschichte dieses Fertigungszweigs und der damit einhergehenden fehlenden Erfahrungen und Richtlinien ist diese elementare Forderung heute nur in wenigen Fällen realisierbar. Die geforderten Qualitätsstandards können aktuell nur über experimentelle Iterationsschleifen eingehalten werden, sodass das große Potential einer flexiblen und schnellen Fertigung in erheblichem Maß reduziert wird. Die Komplexität der gefertigten Bauteile und die des Prozesses an sich lassen eine erfahrungsbasierte Vorhersage der Verzüge und Eigenspannungen kaum zu. Zudem werden auch in Zukunft Richtlinien und Normen nicht das komplette Anwendungsspektrum abbilden können. Die eigenspannungsbedingten Verzüge spielen demnach eine bedeutende Rolle und stellen zusammen mit dem Erreichen der Maßhaltigkeit eine entscheidende technologische Herausforderung beim Einsatz additiver Fertigungsverfahren dar. Die numerische Simulation ermöglicht die Vorhersage von Bauteilverzügen und –spannungen und kann durch virtuelle Abprüfung von Herstellstrategien die Anzahl von Experimente reduzieren. Bisherige numerische Betrachtungen von zusatzwerkstoffbasierten Verfahren, zu denen unter anderem das Laserpulverauftragschweißen (LPA) gehört, beschränkten sich primär auf akademische Beispiele mit geringer Komplexität. Für die Simulation von konkreten Anwendungsfällen auf Bauteilebene liegen bisher keine validierten, numerischen Methoden und Ansätze vor, die eine wirtschaftliche Anwendung der Schweißsimulation ermöglichen. Dieses Projekt wird Simulationsmodelle zur numerischen Betrachtung komplexer additiv gefertigter Bauteile entwickeln. Dafür wird der Prozess in vereinfachten Simulationen nachgebildet und anhand von Experimenten validiert. Anschließend werden Methoden zur automatisierten Pfadgenerierung für komplexe Bauteile erprobt und in der Simulation implementiert. Schließlich werden zur Reduktion der Rechenzeit verschiedene Methoden zur Vereinfachung evaluiert und verglichen. Das Ziel ist die Steigerung der Verlässlichkeit in der Simulation, um prädiktive Aussagen über die Qualität additiv gefertigter Bauteile zu ermöglichen. KW - Schweißstruktursimulation KW - LPA KW - Additive Manufacturing PY - 2019 SN - 978-3-96780-042-5 SP - 1 EP - 106 PB - Forschungsvereinigung Stahlanwendungen AN - OPUS4-57321 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - RPRT A1 - Rethmeier, Michael A1 - Biegler, M. A1 - Javaheri, E. T1 - Qualifizierung der instrumentierten Eindringprüfung zur Kennwertermittlung für hochfeste Stähle mit Schweißungen N2 - Der Einsatz von hochfesten Stählen im Karosseriebereich des Automobilbaus hat während der letzten Jahre stark zugenommen. Hierzu zählen Dual- und Komplexphasenstähle, welche durch Kombination unterschiedlicher Gefügebestandteile auch deren Vorteile kombinieren, sowie TRIP (TRansformation Induced Plasticity) und Mangan-Bor Stähle, welche sehr gute Umformeigenschaften mit hohen Festigkeiten durch Martensitbildung bei der Umformung kombinieren. TWIP (Twinning Induced Plasticity) Stähle erreichen ähnliche Effekte durch forcierte Zwillingsbildung. Die Ursachen für den Einsatz dieser Stähle liegen in dem Potential dieser Materialien zur Gewichts- und Kostenreduzierung, bei gleichzeitiger Erhöhung der Fahrgastsicherheit. Auf Grund der prinzipiell gegebenen Schweißeignung dieser Stähle, werden die klassischen Fügeverfahren im Karosseriebau wie das kostengünstige und effektive Widerstandspunktschweißen, das Metall-Schutzgas (MSG)-Schweißen oder das Laserschweißen angewendet. Allerdings treten teilweise Herausforderungen, beispielsweise durch Gefügeveränderungen in den Fügestellen auf, die zu ungewollten Aufhärtungen oder Erweichungen führen. In diesem Projekt wird ein Verfahren entwickelt, mit welchem die lokalen Werkstoffeigenschaften von im Automobilbau typischen Werkstoffen und deren Fügestellen bestimmt werden können. Relevante Kennwerte sind in erster Linie das SpannungsDehnungs-Verhalten der verschiedenen Zonen einer Schweißverbindung; relevante Zonen wiederum sind neben dem Grundwerkstoff die Wärmeeinflusszone und das Schweißgut. Zu diesem Zweck wird das Verfahren der instrumentierten Eindringprüfung für den Einsatz bei hochfesten Stählen weiterentwickelt. Zunächst werden hierzu Zugversuche an einfachen Grundwerkstoffgeometrien durchgeführt. Im Anschluss wird die optische Dehnungsfeldmessung an stark taillierten, geschweißten Zugversuchsproben durchgeführt. Die Taillierung dient dem Zweck, die WEZ auch mittels WPS über den gesamten Querschnitt der Probe erzeugen zu können, bzw. im Versuch auch Dehnungen in den relevanten Bereichen herbeizuführen. Das im Projekt angewendete Auswerteverfahren, welches auf nichtlinearen Regressionsmodellen in Form von künstlichen, neuronalen Netzwerken beruht, ermöglicht die Vorhersage des Festigkeitsverhaltens des Werkstoffes anhand der gemessenen Krafteindringwegdaten. KW - Eindringprüfung KW - Hochfester Stahl KW - Prüfverfahren PY - 2020 SN - 978-3-946885-98-6 SP - 1 EP - 164 PB - Forschungsvereinigung Stahlanwendungen AN - OPUS4-57322 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kolsch, Nico A1 - Meyer, Lena A1 - Zocca, Andrea A1 - Wilbig, Janka A1 - Günster, Jens T1 - Enabling online quality control of powder deposition for 3d printing in microgravity N2 - 3D printing or additive manufacturing in space is of great value for long-term human spaceflight missions and space stations, conveniently offering access to a ‘virtual warehouse’ of tools and spare parts on the push of a button. The process only needs one type of feedstock such as powder or filament and only as much material as the final part requires, giving it a huge weight benefit over traditional subtractive methods. While 3D printers are already operational on the ISS since 2014, the utilized processes are only capable of manufacturing relatively low strength parts from polymers not suitable for many tools or critical components. To gain access to high quality metal prints, a modified Laser Powder Bed Fusion (LPBF) process was developed to stabilize the critical powder bed in microgravity through a gas flow [2]. This setup was able to generate a (miniature) steel wrench during parabolic flights, but a reliable layer deposition has raised challenges due to the combination of gas flow parameters with microgravity conditions. Furthermore, the quality and density of the powder bed, which is critical for the process, cannot be examined afterward on the ground. This is due to hyper gravity phases during the flight that are influencing the properties of the powder bed. In this paper, the challenges of the layer deposition are revised, and the subsequent evolution of the recoating system explained. Later, the challenges of an in-situ quality control, evaluation, and quantification of the properties of the powder bed are examined. As a solution, a high-resolution line-scanner is proposed and its implementation int the compact LPBF system demonstrated. Its ability to measure common defects such as ridges in the deposited layer is shown in experiments at normal gravity. As an illustration, Figure 1 shows an extreme case of the formation of ridges. T2 - European Conference on Spacecraft Structures Materials and Environmental Testing CY - Toulouse, France DA - 28.03.2023 KW - Additive manufacturing KW - In-space manufacturing KW - Online quality control KW - Microgravity KW - Powder deposition PY - 2023 AN - OPUS4-57249 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Delgado Arroyo, Diego A1 - Richter, Tim A1 - Schroepfer, Dirk A1 - Boerner, Andreas A1 - Rhode, Michael A1 - Lindner, T. A1 - Preuß, B. A1 - Lampke, T. T1 - Influence of Milling Conditions on AlxCoCrFeNiMoy Multi-Principal-Element Alloys N2 - Multi-Principal-Element or High-Entropy Alloys (MPEAs/HEAs) have gained increasing interest in the past two decades largely due to their outstanding properties such as superior mechanical strength and corrosion resistance. However, research studies on their processability are still scarce. This work assesses the effect of different machining conditions on the machinability of these novel alloys, with the objective of advancing the introduction of MPEA systems into industrial applications. The present study focuses on the experimental analysis of finish-milling conditions and their effects on the milling process and resulting surface finish of CoCrFeNi, Al0.3CoCrFeNi and Al0.3CoCrFeNiMo0.2 alloys fabricated via Spark Plasma Sintering. Ball-nose-end milling experiments have been carried out various milling parameters such as cutting speed, feed per cutting edge, and ultrasonic assistance. In situ measurements of cutting forces and temperature on the tool edge were performed during the experiments, and surface finish and tool wear were analyzed afterwards. The results exhibited decreasing cutting forces by means of low feed per cutting edge and reduced process temperatures at low cutting speed, with the use of ultrasonic-assisted milling. It was shown that the machinability of these modern alloys through conventional, as well as modern machining methods such as ultrasonic-assisted milling, is viable, and common theories in machining can be transferred to these novel MPEAs. KW - Multi-principal element alloys KW - Finish milling KW - Spark plasma sintering KW - Ultrasonic-assisted milling KW - Microstructure characterization PY - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-572990 VL - 13 IS - 3 SP - 1 EP - 18 PB - MDPI (Multidisciplinary Digital Publishing Institute) CY - Basel (CH) AN - OPUS4-57299 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Oster, Simon A1 - Breese, Philipp Peter A1 - Ulbricht, Alexander A1 - Mohr, Gunther A1 - Altenburg, Simon T1 - A deep learning framework for defect prediction based on thermographic in-situmonitoring in laser powder bed fusion N2 - The prediction of porosity is a crucial task for metal based additive manufacturing techniques such as laser powder bed fusion. Short wave infrared thermography as an in-situ monitoring tool enables the measurement of the surface radiosity during the laser exposure. Based on the thermogram data, the thermal history of the component can be reconstructed which is closely related to the resulting mechanical properties and to the formation of porosity in the part. In this study, we present a novel framework for the local prediction of porosity based on extracted features from thermogram data. The framework consists of a data pre-processing workflow and a supervised deep learning classifier architecture. The data pre-processing workflow generates samples from thermogram feature data by including feature information from multiple subsequent layers. Thereby, the prediction of the occurrence of complex process phenomena such as keyhole pores is enabled. A custom convolutional neural network model is used for classification. Themodel is trained and tested on a dataset from thermographic in-situ monitoring of the manufacturing of an AISI 316L stainless steel test component. The impact of the pre-processing parameters and the local void distribution on the classification performance is studied in detail. The presented model achieves an accuracy of 0.96 and an f1-Score of 0.86 for predicting keyhole porosity in small sub-volumes with a dimension of (700 × 700 × 50) μm3. Furthermore, we show that pre-processing parameters such as the porosity threshold for sample labeling and the number of included subsequent layers are influential for the model performance. Moreover, the model prediction is shown to be sensitive to local porosity changes although it is trained on binary labeled data that disregards the actual sample porosity. KW - Laser Powder Bed Fusion (PBF-LB/M, L-PBF) KW - Selective Laser Melting (SLM) KW - SWIR thermography KW - Online monitoring KW - Flaw detection KW - Machine learning KW - Convolutional neural networks (CNN) PY - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-575148 SN - 0956-5515 SP - 1 EP - 20 PB - Springer AN - OPUS4-57514 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Oster, Simon A1 - Scheuschner, Nils A1 - Chand, Keerthana A1 - Breese, Philipp Peter A1 - Becker, Tina A1 - Heinrichsdorff, F. A1 - Altenburg, Simon T1 - From Thermographic In-situ Monitoring to Porosity Detection – A Deep Learning Framework for Quality Control in Laser Powder Bed Fusion N2 - In this study, we present an enhanced deep learning framework for the prediction of porosity based on thermographic in-situ monitoring data of laser powder bed fusion processes. The manufacturing of two cuboid specimens from Haynes 282 (Ni-based alloy) powder was monitored by a short-wave infrared camera. We use thermogram feature data and x-ray computed tomography data to train a convolutional neural network classifier. The classifier is used to perform a multi-class prediction of the spatially resolved porosity level in small sub-volumes of the specimen bulk. T2 - Sensor and Measurement Science International CY - Nurnberg, Germany DA - 08.05.2023 KW - Laser powder bed fusion KW - In-situ monitoring KW - Thermography KW - Machine Learning KW - Porosity PY - 2023 AN - OPUS4-57614 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Oster, Simon A1 - Scheuschner, Nils A1 - Chand, Keerthana A1 - Breese, Philipp Peter A1 - Becker, Tina A1 - Heinrichsdorff, F. A1 - Altenburg, Simon T1 - From Thermographic In-situ Monitoring to Porosity Detection – A Deep Learning Framework for Quality Control in Laser Powder Bed Fusion N2 - In this study, we present an enhanced deep learning framework for the prediction of porosity based on thermographic in-situ monitoring data of laser powder bed fusion processes. The manufacturing of two cuboid specimens from Haynes 282 (Ni-based alloy) powder was monitored by a short-wave infrared camera. We use thermogram feature data and x-ray computed tomography data to train a convolutional neural network classifier. The classifier is used to perform a multi-class prediction of the spatially resolved porosity level in small sub-volumes of the specimen bulk. T2 - SMSI - Sensor and Measurement Science International 2023 CY - Nürnberg, Germany DA - 08.05.2023 KW - Porosity KW - Laser powder bed fusion KW - In-situ monitoring KW - Thermography KW - Machine Learning PY - 2023 UR - https://www.ama-science.org/proceedings/details/4404 U6 - https://doi.org/10.5162/SMSI2023/C5.4 SP - 179 EP - 180 AN - OPUS4-57616 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Engelking, Lorenz A1 - Eissel, A. A1 - Schröpfer, Dirk A1 - Treutler, K. A1 - Kannengießer, Thomas A1 - Wesling, V. T1 - Optimisation of surface residual stresses using ultrasonic‑assisted milling for wire‑arc additive manufactured Ni alloy components N2 - Nickel alloys are cost intensive materials and generally classified as difficult-to-cut material. However, machining of these materials is needed especially in case of alloy 36 (1.3912), which is commonly used in mould construction for the production of fibre-reinforced composites. With regard to repair, modification and manufacturing of such components, additive manufacturing offers significant economic advantages. Nevertheless, subsequent machining steps are needed to achieve the final component contour and defined surface conditions. Dependent on the material and machining process conditions, detrimental tensile residual stresses may be the result on the machined surface, having negative impact on the component performance and safety. In this investigation, machining experiments were carried out on wire arc additive manufactured components made of alloy 36, varying the cutting speed and the feed rate. In addition, the conventional milling process (CM) was compared with a modern, hybrid machining process, the ultrasonic-assisted milling (US). The cutting forces and the surface-near residual stresses were analysed using X-ray diffraction. A significant improvement of the machinability as well as the surface integrity by using the ultrasonic assistance was observed, especially at low cutting speeds. The CM induced mainly tensile residual stresses, the US mainly compressive residual stresses. KW - Surface integrity KW - Ultrasonic-assisted milling KW - Additive manufacturing KW - Ni alloy KW - Alloy 36 PY - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-575246 SN - 1433-3015 VL - 126 IS - 9 SP - 4191 EP - 4198 PB - Springer Nature AN - OPUS4-57524 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Scheuschner, Nils A1 - Heinrichsdorff, F. A1 - Oster, Simon A1 - Uhlmann, E. A1 - Polte, J. A1 - Gordei, A. A1 - Hilgenberg, Kai T1 - In-situ monitoring of the laser powder bed fusion process by thermography, optical tomography and melt pool monitoring for defect detection N2 - For the wide acceptance of the use of additive manufacturing (AM), it is required to provide reliable testing methods to ensure the safety of the additively manufactured parts. A possible solution could be the deployment of in-situ monitoring during the build process. However, for laser powder bed fusion using metal powders (PBF-LB/M) only a few in-situ monitoring techniques are commercially available (optical tomography, melt pool monitoring), which have not been researched to an extent that allows to guarantee the adherence to strict quality and safety standards. In this contribution, we present results of a study of PBF-LB/M printed parts made of the nickel-based superalloy Haynes 282. The formation of defects was provoked by local variations of the process parameters and monitored by thermography, optical tomography and melt pool monitoring. Afterwards, the defects were characterized by computed tomography (CT) to identify the detection limits of the used in-situ techniques. T2 - Lasers in Manufacturing Conference 2023 CY - Munich, Germany DA - 26.06.2023 KW - Thermography KW - Optical tomography KW - Melt-pool-monitoring KW - Laser powder bed fusion KW - Haynes 282 KW - Additive Manufacturing PY - 2023 UR - https://www.wlt.de/lim2023-proceedings/system-engineering-and-process-control SP - 1 EP - 10 AN - OPUS4-58466 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zocca, Andrea A1 - Günster, Jens T1 - A comparison of layerwise slurry deposition and (LSD-print) laser induced slip casting (LIS) for the additive manufacturing of advanced ceramics N2 - The presentation gives an overview of two slurry-based additive manufacturing (AM) technologies specifically developed for advanced ceramic materials. The “Layerwise Slurry Deposition” (LSD-print) is a modification of Binder Jetting making use of a ceramic slurry instead of a dry powder as a feedstock. In this process, a slurry is deposited layer-by-layer by means of a doctor blade and dried to achieve a highly packed powder layer, which is then printed by jetting a binder. The LSD-print technology combines the high-speed printing of binder jetting with the possibility of producing a variety of high-quality ceramics with properties comparable to those achieved by traditional processing. The Laser Induced Slip casting (LIS) technology follows a novel working principle by locally drying and selectively consolidating layer-by-layer a ceramic green body in a vat of slurry, using a laser as energy source. LIS combines elements of Vat Photopolymerization with the use of water-based feedstocks containing a minimal amount of organic additives. The resulting technology can be directly integrated into a traditional ceramic process chain by manufacturing green bodies that are sintered without the need of a dedicated debinding. Both technologies offer high flexibility in the ceramic feedstock used, especially concerning material and particle size. Advantages and disadvantages are briefly described to outline the specific features of LSD-print and LIS depending on the targeted application. T2 - AM Ceramics CY - Vienna, Austria DA - 27.09.2023 KW - Additive Manufacturing KW - Dental KW - Ceramics KW - Feldspar PY - 2023 AN - OPUS4-58468 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zocca, Andrea A1 - Schubert, Hendrik A1 - Günster, Jens A1 - Hoffman, Moritz A1 - Bogna Stawarczyk, Bogna T1 - Additive Manufacturing for dental restorations by layerwise slurry deposition (LSD-print) technology N2 - The growing market of custom-made dental restorations offers a major potential for an application of ceramic additive manufacturing (AM). The possibility to individualize patient specific design and to establish new efficient workflows, from model generation to manufacturing, can be fully exploited by AM technologies. However, for mass customization to be truly envisioned, ceramic AM needs to achieve a level of maturity, aesthetic quality, and productivity comparable to established manufacturing processes. In this presentation, the potential of the “layerwise slurry deposition” LSD-print technology for dental applications will be explored. It has been shown in the past years that the LSD-print can be applied to advanced ceramic materials such as alumina and silicon-infiltrated silicon carbide. For these materials, the LSD-print technology combines the high-speed printing of binder jetting with the possibility of producing a variety of high-quality ceramics. The current development deals with the challenges of applying this technology to a feldspar dental material, comparing the quality of AM restorations with the equivalent material for an established CAD/CAM workflow. Preliminary results not only indicate that the AM material produced by LSD-print can be competitive in terms of mechanical properties, but also that aesthetically satisfactory restorations can be manufactured for veneers, inlays and onlays as well as single unit fixed dental prostheses (FDPs). The presentation focuses on the material and technological challenges alongside the process chain, from the printing process, to debinding, firing and finishing the restorations. T2 - XVIIIth Conference of the European Ceramic Society CY - Lyon, France DA - 02.07.2023 KW - Additive Manufacturing KW - Layerwise slurry deposition KW - dental KW - ceramic PY - 2023 AN - OPUS4-58469 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mishurova, Tatiana T1 - In-situ hot isostatic pressing combined with x-ray imaging and diffraction of laser powder bed fusion ti-6al-4v N2 - Hot Isostatic Pressing (HIP) is often introduced to tackle the porosity issue in additively manufactured (AM) materials. For instance, HIP post-processing is recommended to improve fatigue resistance of Laser powder bed fusion (PBF-LB) manufactured parts [1, 2]. Even though HIP cannot completely remove porosity, it significantly decreases the defect population and its average size below the critical threshold value leading to early crack initiation. In the present study, in-situ investigation of HIP procedure of PBF-LB Ti-6Al-4V parts was carried out to gain further insights into the densification mechanism occurring during HIP. The in-situ observations at high pressure and high temperature are uniquely possible at the PSICHE beamline of the Soleil synchrotron (France), thanks to the Ultrafast Tomography on a Paris-Edinburgh Cell (UToPEC) and the combination of the fast phase-contrast tomography and energy-dispersive diffraction [3, 4]. A detailed methodology was developed to ensure that the correct pressure and temperature were maintained during the experiments. The results allowed an estimation of the global dentification rate during HIP of PBF-LB Ti-Al-4V material, as well as a detailed quantitative characterization of the influence of pore size and shape on the densification process, thereby understanding the effectiveness of HIP process on different pore categories. After 20 mins, 75% of porosity can be considered as closed or has size below the resolution of the XCT reconstruction. We also observed that the smallest defects showed higher densification rate, while the defect shape did not have significant effect on such rate. The current development of in-situ HIP experiment allows experimental quantification and validation of the simulation work. Ultimately it paves the road to tailoring the HIP procedure for different materials depending on the porosity and microstructure. T2 - AAMS 2023 CY - Madrid, Spain DA - 26.09.23 KW - Additive manufacturing KW - HIP KW - X-ray computed tomography PY - 2023 AN - OPUS4-58482 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Breese, Philipp Peter A1 - Becker, Tina A1 - Oster, Simon A1 - Metz, C. A1 - Altenburg, Simon T1 - In-situ defect detection via active laser thermographic testing for PBF-LB/M N2 - Great complexity characterizes Additive Manufacturing (AM) of metallic components via laser powder bed fusion (PBF-LB/M). Due to this, defects in the printed components (like cracks and pores) are still common. Monitoring methods are commercially used, but the relationship between process data and defect formation is not well understood yet. Furthermore, defects and deformations might develop with a temporal delay to the laser energy input. The component’s actual quality is consequently only determinable after the finished process. To overcome this drawback, thermographic in-situ testing is introduced. The defocused process laser is utilized for nondestructive testing performed layer by layer throughout the build process. The results of the defect detection via infrared cameras are shown for a research PBF-LB/M machine. This creates the basis for a shift from in-situ monitoring towards in-situ testing during the AM process. Defects are detected immediately inside the process chamber, and the actual component quality is determined. T2 - Lasers in Manufacturing (LiM) CY - Munich, Germany DA - 26.06.2023 KW - Additive manufacturing KW - Laser powder bed fusion KW - Nondestructive testing KW - Laser thermography KW - Defect detection PY - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-585060 SP - 1 EP - 10 PB - Wissenschaftliche Gesellschaft Lasertechnik und Photonik (WLT) CY - Hannover AN - OPUS4-58506 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Serrano, Itziar A1 - Müller, Bernd A1 - Kupsch, Andreas A1 - Bruno, Giovanni A1 - Laquai, Rene' T1 - X-ray refractio techniques non-destructively quantify and classify defects in am materials N2 - X-ray refraction is analogous to visible light deflection by matter; it occurs at boundaries between different media. The main difference between visible light and X-rays is that in the latter case deflection angles are very small, from a few seconds to a few minutes of arc (i.e., the refraction index n is near to 1). Importantly, deflection of X-rays is also sensitive to the orientation of the object boundaries. These features make X-ray refraction techniques extremely suitable to a) detect defects such as pores and microcracks and quantify their densities in bulk (not too heavy) materials, and b) evaluate porosity and particle properties such as orientation, size, and spatial distribution (by mapping). While X-ray refraction techniques cannot in general image single defects, they can detect objects with size above a few wavelengths of the radiation. Such techniques, especially at the Synchrotron BESSY II, Berlin, Germany, can be used in-situ, i.e. when the specimen is subjected to temperatures or external loads. The use of X-ray refraction analysis yields quantitative information, which can be directly input in kinetics, mechanical and damage models. We hereby show the application of non-destructive X-ray refraction radiography (SXRR, 2D mapping also called topography) to problems in additive manufacturing: 1) Porosity analysis in PBF-LM-Ti64. Through the use of SXRR, we could not only map the (very sparse) porosity distribution between the layers and quantify it, but also classify, and thereby separate, the filled porosity (unmolten powder) from the keyhole and gas pores (Figure 1). 2) In-situ heat treatment of laser powder bed fusion PBF-LM-AlSi10Mg to monitor microstructure and porosity evolution as a function of temperature (Figure 2). By means of SXRR we indirectly observed the initial eutectic Si network break down into larger particles as a function of increasing temperature. We also could detect the thermally induced porosity (TIP). Such changes in the Si-phase morphology upon heating is currently only possible using scanning electron microscopy, but with a much smaller field-of-view. SXRR also allows observing the growth of some individual pores, usually studied via X-ray computed tomography, but again on much smaller fields-of-view. Our results show the great potential of in-situ SXRR as a tool to gain in-depth knowledge of the defect distribution and the susceptibility of any material to thermally induced damage and/or microstructure evolution over statistically relevant volumes. T2 - AAMS 2023 CY - Madrid, Spain DA - 27.09.2023 KW - X-ray Refaction radiography KW - Defects KW - Large Scale Facilities KW - Computed tomography PY - 2023 AN - OPUS4-58508 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bruno, Giovanni T1 - BAM Akademie 2023- Modul 2 Computertomographie N2 - Hier werden die Grundprinzipien der Computertomographie dargestellt, die Artefakte, die bei den Messungen auftreten und die Datenanalysemethoden erklärt. T2 - BAM Akademie - Webinar Reihe CY - Berlin, Germany DA - 05.10.2023 KW - Artefakte KW - Auflösung KW - Radon Transformation KW - Rekonstruktion KW - Metrologie PY - 2023 AN - OPUS4-58509 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Knabe, C. A1 - Stiller, M. A1 - Kampschulte, M. A1 - Wilbig, Janka A1 - Peleska, B. A1 - Günster, Jens A1 - Gildenhaar, R. A1 - Berger, G. A1 - Rack, A. A1 - Linow, U. A1 - Heiland, M. A1 - Rendenbach, C. A1 - Koerdt, S. A1 - Steffen, C. A1 - Houshmand, A. A1 - Xiang-Tischhauser, L. A1 - Adel-Khattab, D. T1 - A tissue engineered 3D printed calcium alkali phosphate bioceramic bone graft enables vascularization and regeneration of critical-size discontinuity bony defects in vivo N2 - Recently, efforts towards the development of patient-specific 3D printed scaffolds for bone tissue engineering from bioactive ceramics have continuously intensified. For reconstruction of segmental defects after subtotal mandibulectomy a suitable tissue engineered bioceramic bone graft needs to be endowed with homogenously distributed osteoblasts in order to mimic the advantageous features of vascularized autologous fibula grafts, which represent the standard of care, contain osteogenic cells and are transplanted with the respective blood vessel. Consequently, inducing vascularization early on is pivotal for bone tissue engineering. The current study explored an advanced bone tissue engineering approach combining an advanced 3D printing technique for bioactive resorbable ceramic scaffolds with a perfusion cell culture technique for pre-colonization with mesenchymal stem cells, and with an intrinsic angiogenesis technique for regenerating critical size, segmental discontinuity defects in vivo applying a rat model. To this end, the effect of differing Si-CAOP (silica containing calcium alkali orthophosphate) scaffold microarchitecture arising from 3D powder bed printing (RP) or the Schwarzwalder Somers (SSM) replica fabrication technique on vascularization and bone regeneration was analyzed in vivo. In 80 rats 6-mm segmental discontinuity defects were created in the left femur. KW - Additive Manufacturing KW - Bio active ceramic KW - In-vivo KW - Alcium alkali phosphate PY - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-584555 SN - 2296-4185 VL - 11 SP - 1 EP - 20 PB - Frontiers SA CY - Lausanne AN - OPUS4-58455 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Poka, Konstantin A1 - Merz, Benjamin A1 - Epperlein, Martin A1 - Hilgenberg, Kai T1 - Integration of the whole digital chain in a unique file for PBF-LB/M: practical implementation within a digital thread and its advantages N2 - The industrialization of AM is only possible by creating synergy with the tools of Industry 4.0. The system technology of Powder Bed Fusion with Laser beam of Metals (PBF-LB/M) reached a level of high performance in terms of process stability and material spectrum in the past years. However, the digital process chain, starting from CAD via CAM and plant-specific compila-tion of the manufacturing file exhibits media disruptions. The consequence is a loss of metadata. A uniform data scheme of simulation for Design for Additive Manufacturing (DfAM), the PBF-LB/M process itself and quality assurance is currently not realized within industry. There is no entity in the common data flows of the process chains, that enables the integration of these functionalities. As part of the creation of a digital quality infrastructure in the QI-Digital pro-ject, an integration of the CAD/CAM chain is being established. The outcome is a file in an advanced commercially available format which includes all simula-tions and manufacturing instructions. The information depth of this file extends to the level of the scan vectors and allows the automatic optimization and holis-tic documentation. In addition, the KPI for the economic analysis are generated by compressing information into a unique file combined with the application of a digital twin. The implementation and advantages of this solution are demon-strated in a case study on a multi-laser PBF-LB/M system. A build job contain-ing a challenging geometry is thermally simulated, optimized, and manufac-tured. To verify its suitability for an Additive Manufacturing Service Platform (AMSP), the identical production file is transferred to a PBF-LB/M system of another manufacturer. Finally, the achieved quality level of the build job is evaluated via 3D scanning. This evaluation is carried out in the identical entity of the production file to highlight the versatility of this format and to integrate quality assurance data. T2 - Additive Manufacturing for Products and Applications 2023 CY - Lucerne, Switzerland DA - 11.09.2023 KW - Laser Powder Bed Fusion KW - Digital Twin KW - Data Integrity KW - Process Chain Integration KW - Computer Aided Manufacturing PY - 2023 SN - 978-3-031-42982-8 U6 - https://doi.org/10.1007/978-3-031-42983-5_7 SN - 2730-9576 VL - 3 SP - 91 EP - 114 PB - Springer CY - Cham AN - OPUS4-58363 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Oster, Simon A1 - Scheuschner, Nils A1 - Chand, Keerthana A1 - Altenburg, Simon A1 - Gerlach, G. T1 - Potentials and challenges of deep-learning-assisted porosity prediction based on thermographic in-situ monitoring in laser powder bed fusion N2 - Laser powder bed fusion is one of the most promising additive manufacturing techniques for printing complex-shaped metal components. However, the formation of subsurface porosity poses a significant risk to the service lifetime of the printed parts. In-situ monitoring offers the possibility to detect porosity already during manufacturing. Thereby, process feedback control or a manual process interruption to cut financial losses is enabled. Short-wave infrared thermography can monitor the thermal history of manufactured parts which is closely connected to the probability of porosity formation. Artificial intelligence methods are increasingly used for porosity prediction from the obtained large amounts of complex monitoring data. In this study, we aim to identify the potential and the challenges of deep-learning-assisted porosity prediction based on thermographic in-situ monitoring. Therefore, the porosity prediction task is studied in detail using an exemplary dataset from the manufacturing of two Haynes282 cuboid components. Our trained 1D convolutional neural network model shows high performance (R² score of 0.90) for the prediction of local porosity in discrete sub-volumes with dimensions of (700 x 700 x 40) μm³. It could be demonstrated that the regressor correctly predicts layer-wise porosity changes but presumably has limited capability to predict differences in local porosity. Furthermore, there is a need to study the significance of the used thermogram feature inputs to streamline the model and to adjust the monitoring hardware. Moreover, we identified multiple sources of data uncertainty resulting from the in-situ monitoring setup, the registration with the ground truth X-ray-computed tomography data and the used pre-processing workflow that might influence the model’s performance detrimentally. T2 - XXXVII. Messtechnisches Symposium 2023 CY - Freiburg, Germany DA - 27.09.2023 KW - Porosity prediction KW - Defect detection KW - Laser powder bed fusion (PBF-LB/M, L-PBF) KW - Selective laser melting KW - Thermography KW - Machine learning PY - 2023 U6 - https://doi.org/10.1515/teme-2023-0062 SN - 0171-8096 SN - 2196-7113 VL - 90 SP - 85 EP - 96 PB - De Gruyter CY - Berlin AN - OPUS4-58366 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hilgenberg, Kai T1 - Additive Fertigungsverfahren und Defekte N2 - Überblick über die derzeitig wichtigsten additiven Fertigungsverfahren für metallische Werkstoffe in der Industrie (PBF, DED, BJT) und Berücksichtigung der wesentlichen Prozessmerkmale und Nachbearbeitungsschritte. Vorstellung der wichtigsten Defektphänomene und Nennung von Ursachen und Abhilfemaßnahmen. T2 - BAM Akademie: Qualitätssicherung in der additiven Fertigung CY - Online meeting DA - 14.09.023 KW - Additive Fertigung KW - Defekte KW - Überblick PY - 2023 AN - OPUS4-58302 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Simón Muzás, Juan A1 - Brunner-Schwer, Christian A1 - Hilgenberg, Kai A1 - Rethmeier, Michael T1 - Mechanical properties of laser welded joints of wrought and heat treated PBF LB/M Inconel 718 parts depending on build direction N2 - Laser-based Powder Bed Fusion of Metal (PBF-LB/M) is a broadly used metal additive manufacturing (AM) method for fabricating complex metallic parts, whose sizes are however limited by the build envelope of PBF-LB/M machines. Laser welding arises as a valid joining method for effectively integrating these AM parts into larger assemblies. PBF-LB/M components must usually be stress-relieved before they can be separated from the build plate. An additional heat treatment can be beneficial for obtaining homogeneous mechanical properties across the seam or for the formation of desired precipitations in nickel-based-alloys. Therefore, the tensile performance of laser welded hybrid (AM/wrought) and AM-AM tensile samples of Inconel 718 is examined after undergoing three different heat treatments and considering three relevant build directions. It can be shown that the build orientation is an influencing factor on weld properties even after two applied heat treatments. T2 - Lasers in Manufacturing LiM 2023 CY - Munich, Germany DA - 26.09.2023 KW - Inconel 718 KW - Laser welding KW - PBF/LB-M KW - Hybrid components KW - Heat treatments KW - Build direction KW - Tensile performance PY - 2023 SP - 1 EP - 10 PB - Proceedings Lasers in Manufacturing 2023 CY - München AN - OPUS4-58394 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Epperlein, Martin T1 - Digitalisierung in der Additiven Fertigung N2 - Die Entwicklung einer digitalen QI ermöglicht die objektive Qualitätssicherung in der Additiven Fertigung und macht die Technologie gerade auch für kleine und mittelständische Unternehmen besser nutzbar. Sie wird vollwertig im Rahmen des Qualitätsanspruchs „Made in Germany“ einsetzbar – gerade auch beim Umbruch in Industriezweigen. Der Vortrag gibt Einblicke in aktuelle Arbeiten und die Ziele des Use Case Additive Fertigung. T2 - LEF-Themenwoche, Bayerisches Laserzentrum CY - Online meeting DA - 21.03.2023 KW - Digitalisierung KW - Qualitätsinfrastruktur KW - Additive Fertigung KW - Qualitätssicherung PY - 2023 AN - OPUS4-57186 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wandtke, Karsten A1 - Schröpfer, Dirk A1 - Kannengießer, Thomas A1 - Kromm, Arne A1 - Scharf-Wildenhain, R. A1 - Hälsig, A. A1 - Hensel, J. T1 - Einfluss trennender Fertigungsschritte auf die Eigenspannungen in additiv gefertigten Bauteilen aus hochfestem Stahl N2 - Additive Fertigungsverfahren wie das Wire Arc Additive Manufacturing (WAAM) ermöglichen die effiziente Fertigung von gewichtsoptimierten endkonturnahen Strukturen in modernen Stahlkonstruktionen. Ihre Effizienz kann weiter durch die Verwendung von hochfesten Stählen gesteigert werden. Dies erlaubt eine signifikante Einsparung von Kosten, Zeit und Ressourcen. Entsprechende Schweißzusatzwerkstoffe für Lichtbogenschweißverfahren sind kommerziell verfügbar. Fehlende Richtlinien und fehlende quantitative Kenntnisse über die schweißtechnische Beanspruchung während der Fertigung und im Betrieb limitieren den industriellen Einsatz stark. Daher werden in einem aktuellen Vorhaben (IGF-Nr. 21162 BG) der BAM und TU Chemnitz die wesentlichen Einflüsse und komplexen Interaktionen durch Werkstoff, Fertigungsprozess, Konstruktion und trennende Fertigungsschritte auf den Beanspruchungszustand untersucht. Der vorliegende Beitrag fokussiert hierfür die Auswirkungen trennender Fertigungsschritte auf Verzug und Eigenspannungen definierter WAAM-Prüfkörper. Die Eigenspannungsanalyse erfolgt mittels Röntgenbeugung. Die große Anzahl an Ergebnissen von zuvor untersuchten Referenzproben, die mit einem speziellen WAAM-Massivdraht (Streckgrenze >820 MPa) bei unterschiedlicher Wärmeführung und Geometrie vollautomatisiert geschweißt wurden, lässt eine Korrelation der Messdaten zu. Hierzu erfolgt die Analyse des Ausgangszustandes und abschließend des Zustandes nach trennender Bearbeitung, welche begleitend mittels digitaler Bildkorrelation hinsichtlich des Verzuges untersucht wurden. So ist zu beobachten, dass die Geometrie deutlichen Einfluss auf Relaxation und Umlagerung der Eigenspannungen hat und damit die Risssicherheit positiv beeinflussen kann. T2 - Werkstofftechnisches Kolloquium 2023 Chemnitz CY - Chemnitz, Germany DA - 29.03.2023 KW - Additive Fertigung KW - Hochfester Stahl KW - Eigenspannungen PY - 2023 AN - OPUS4-57690 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wandtke, Karsten A1 - Schröpfer, Dirk A1 - Kromm, Arne A1 - Kannengießer, Thomas A1 - Scharf-Wildenhain, R. A1 - Hälsig, A. A1 - Hensel, J. T1 - Consideration of manufacturing-related stresses and cold crack avoidance in high-strength steels WAAM components N2 - High-strength steels offer great potential in weight-optimised modern steel structures. Additive manufacturing processes, such as Wire Arc Additive Manufacturing (WAAM), enable near-net-shape manufacturing of complex structures and more efficient manufacturing, offering significant savings in costs, time, and resources. Suitable filler materials for WAAM are already commercially available. However, the lack of knowledge or technical guidelines regarding welding residual stresses during manufacturing and operation in connection with cold cracking risk limit their industrial application significantly. In a project of BAM and TU Chemnitz, the influences and complex interactions of material, manufacturing process, design and processing steps on residual stress evolution are investigated. By developing process recommendations and a special cold cracking test, economic manufacturing, and stress-appropriate design of high-strength steel WAAM components are main objectives. The present study focuses on determining the influence of heat control (interpass temperature, heat input, cooling time) and the design aspects of the components on the hardness and residual stresses, which are analysed by X-ray diffraction. Defined reference specimens, i.e., hollow cuboids, are automatically welded with a special WAAM solid wire. The influences of wall length, wall thickness and wall height on the residual stresses are analysed. Geometric properties can be selectively adjusted by wire feed and welding speed but cannot be varied arbitrarily. This was addressed by adapted build-up strategies. The results indicate a significant influence of the heat control and the wall height on the residual stresses. The interpass temperature, wall thickness and wall length are not significant. These analyses allow recommendations for standards and manufacturing guidelines, enabling a safe and economic manufacturing of high-strength steel components. T2 - European Steel Technology and Application Days CY - Düsseldorf, Germany DA - 14.06.2023 KW - DED-arc KW - Additive manufacturing KW - Heat control KW - High-strength filler metals KW - Residual stress PY - 2023 AN - OPUS4-57691 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Obaton, A.-F. A1 - Fain, J. A1 - Meinel, Dietmar A1 - Tsamos, Athanasios A1 - Léonard, F. A1 - Lécuelle, B. A1 - Djemaï, M. T1 - In Vivo Bone Progression in and around Lattice Implants Additively Manufactured with a New Titanium Alloy N2 - The osseointegration in/around additively manufactured (AM) lattice structures of a new titanium alloy, Ti–19Nb–14Zr, was evaluated. Different lattices with increasingly high sidewalls gradually closing them were manufactured and implanted in sheep. After removal, the bone–interface implant (BII) and bone–implant contact (BIC) were studied from 3D X-ray computed tomography images. Measured BII of less than 10 µm and BIC of 95% are evidence of excellent osseointegration. Since AMnaturally leads to a high-roughness surface finish, the wettability of the implant is increased. The new alloy possesses an increased affinity to the bone. The lattice provides crevices in which the biological tissue can jump in and cling. The combination of these factors is pushing ossification beyond its natural limits. Therefore, the quality and speed of the ossification and osseointegration in/around these Ti–19Nb–14Zr laterally closed lattice implants open the possibility of bone spline key of prostheses. This enables the stabilization of the implant into the bone while keeping the possibility of punctual hooks allowing the implant to be removed more easily if required. Thus, this new titanium alloy and such laterally closed lattice structures are appropriate candidates to be implemented in a new generation of implants. KW - Osseointegration KW - X-ray computed tomography KW - Additive manufacturing KW - Machine learning segmentation PY - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-577066 VL - 13 IS - 12 SP - 1 EP - 18 PB - MDPI CY - Basel, Switzerland AN - OPUS4-57706 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wandtke, Karsten A1 - Schröpfer, Dirk A1 - Scharf-Wildenhain, R. A1 - Hälsig, A. A1 - Kannengießer, Thomas A1 - Kromm, Arne A1 - Hensel, J. T1 - Influence of the WAAM process and design aspects on residual stresses in high-strength structural steels N2 - Wire arc additive manufacturing (WAAM) enables the efficient production of weight-optimized modern engineering structures. Further increases in efficiency can be achieved by using high-strength structural steels. Commercial welding consumables for WAAM are already available on the market. Lack of knowledge and guidelines regarding welding residual stress and component safety during production and operation leads to severely limited use for industry applications. The sensitive microstructure of high-strength steels carries a high risk of cold cracking; therefore, residual stresses play a crucial role. For this reason, the influences of the material, the WAAM process, and the design on the formation of residual stresses and the risk of cold cracking are being investigated. The material used has a yield strength of over 800 MPa. This strength is adjusted via solid solution strengthening and a martensitic phase transformation. The volume expansion associated with martensite formation has a significant influence on the residual stresses. The focus of the present investigation is on the additive welding parameters and component design on their influence on hardness and residual stresses, which are analyzed by means of X-ray diffraction (XRD). Reference specimens (hollow cuboids) are welded fully automated with a systematic variation of heat control and design. Welding parameters and AM geometry are correlated with the resulting microstructure, hardness, and residual stress state. Increased heat input leads to lower tensile residual stresses which causes unfavorable microstructure and mechanical properties. The component design affects heat dissipation conditions and the intensity of restraint during welding and has a significant influence on the residual stress. KW - DED-arc KW - Additive manufacturing KW - High-strength steel filler metal KW - Residual stress PY - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-572698 SN - 1878-6669 VL - 67 IS - 4 SP - 987 EP - 996 PB - Springer CY - Berlin AN - OPUS4-57269 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Rehmer, Birgit A1 - Bayram, Faruk A1 - Ávila Calderon, Luis Alexander A1 - Mohr, Gunther A1 - Skrotzki, Birgit T1 - BAM reference data: Temperature-dependent Young's and shear modulus data for additively and conventionally manufactured variants of Ti-6Al-4V N2 - The elastic properties (Young's modulus, shear modulus) of titanium alloy Ti-6Al-4V were investigated between room temperature and 400 °C in an additively manufactured variant (laser-based directed energy deposition with powder as feedstock, DED-LB/M) and from a conventional process route (hot rolled bar). The moduli were determined using the dynamic resonance method. The data set includes information on processing parameters, heat treatments, microstructure, grain size, specimen dimensions and weight, Young’s and shear modulus as well as their measurement uncertainty. The dataset was generated in an accredited testing lab using calibrated measuring equipment. The calibrations meet the requirements of the test procedure and are metrologically traceable. The dataset was audited as BAM reference data. KW - Elastic modulus KW - Young's modulus KW - Shear modulus KW - Additive manufacturing KW - Ti-6Al-4V PY - 2023 U6 - https://doi.org/10.5281/zenodo.7813732 PB - Zenodo CY - Geneva AN - OPUS4-57286 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Rehmer, Birgit A1 - Bayram, Faruk A1 - Ávila Calderon, Luis Alexander A1 - Mohr, Gunther A1 - Skrotzki, Birgit T1 - BAM reference data: Temperature-dependent Young's and shear modulus data for additively and conventionally manufactured variants of Ni-based alloy Inconel IN718 N2 - The elastic properties (Young's modulus, shear modulus) of Ni-based alloy Inconel IN718 were investigated between room temperature and 800 °C in an additively manufactured variant (laser powder bed fusion, PBF‑LB/M) and from a conventional process route (hot rolled bar). The moduli were determined using the dynamic resonance method. The data set includes information on processing parameters, heat treatments, grain size, specimen dimensions and weight, Young’s and shear modulus as well as their measurement uncertainty. The dataset was generated in an accredited testing lab using calibrated measuring equipment. The calibrations meet the requirements of the test procedure and are metrologically traceable. The dataset was audited as BAM reference data. KW - Elastic modulus KW - Young's modulus KW - Shear modulus KW - Additive manufacturing KW - IN718 PY - 2023 U6 - https://doi.org/10.5281/zenodo.7813824 PB - Zenodo CY - Geneva AN - OPUS4-57287 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Rehmer, Birgit A1 - Bayram, Faruk A1 - Ávila Calderon, Luis Alexander A1 - Mohr, Gunther A1 - Skrotzki, Birgit T1 - BAM reference data: Temperature-dependent Young's and shear modulus data for additively and conventionally manufactured variants of austenitic stainless steel AISI 316L N2 - The elastic properties (Young's modulus, shear modulus) of austenitic stainless steel AISI 316L were investigated between room temperature and 900 °C in an additively manufactured variant (laser powder bed fusion, PBF‑LB/M) and from a conventional process route (hot rolled sheet). The moduli were determined using the dynamic resonance method. The data set includes information on processing parameters, heat treatments, grain size, specimen dimensions and weight, Young’s and shear modulus as well as their measurement uncertainty. The dataset was generated in an accredited testing lab using calibrated measuring equipment. The calibrations meet the requirements of the test procedure and are metrologically traceable. The dataset was audited as BAM reference data. KW - Elastic modulus KW - Young's modulus KW - Shear modulus KW - Additive manufacturing KW - AISI 316L PY - 2023 U6 - https://doi.org/10.5281/zenodo.7813835 PB - Zenodo CY - Geneva AN - OPUS4-57288 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Markötter, Henning A1 - Müller, Bernd R. A1 - Kupsch, Andreas A1 - Evsevleev, Sergei A1 - Arlt, T. A1 - Ulbricht, Alexander A1 - Dayani, Shahabeddin A1 - Bruno, Giovanni T1 - A Review of X-Ray Imaging at the BAMline (BESSY II) N2 - The hard X-ray beamline BAMline at BESSY II (Berlin, Germany) has now been in service for 20 years. Several improvements have been implemented in this time, and this review provides an overview of the imaging methods available at the BAMline. Besides classic full-field synchrotron X-ray computed tomography (SXCT), also absorption edge CT, synchrotron X-ray refraction radiography (SXRR), and synchrotron X-ray refraction tomography (SXRCT) are used for imaging. Moreover, virtually any of those techniques are currently coupled in situ or operando with ancillary equipment such as load rigs, furnaces, or potentiostats. Each of the available techniques is explained and both the current and the potential usage are described with corresponding examples. The potential use is manifold, the examples cover organic materials, composite materials, energy-related materials, biological samples, and materials related to additive manufacturing. The article includes published examples as well as some unpublished applications. KW - Material science KW - Radiography KW - Refraction KW - Tomography KW - X-ray imaging PY - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-572417 SN - 1438-1656 SP - 1 EP - 22 PB - Wiley VHC-Verlag AN - OPUS4-57241 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Eddah, Mustapha A1 - Markötter, Henning A1 - Mieller, Björn A1 - Beckmann, Jörg A1 - Bruno, Giovanni T1 - Synchrotron Multi-energy HDR tomography for LTCC systems N2 - LTCCs (Low-temperature co-fired ceramics) consist of three-dimensionally distributed, hermetically bonded ceramic and metallic components with structure sizes within [10; 100] µm. A non-destructive imaging technique is needed that provides 3D, sharp, high-contrast resolution of these structures, as well as porosity and defect analysis, which is made difficult by the very different X-ray absorption coefficients of the individual components of the microstructure. A HDR method is being developed that allows a combination of different tomograms, each with X-ray energies adapted to individual materials. T2 - Bessy II User Meeting CY - Berlin, Germany DA - 22.06.2023 KW - LTCC KW - Synchrotron tomography KW - Data fusion KW - In-situ tomography PY - 2023 AN - OPUS4-57795 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Simón Muzás, Juan A1 - Brunner-Schwer, C. A1 - Hilgenberg, Kai A1 - Rethmeier, Michael T1 - Mechanical properties of laser welded joints of wrought and heat treated PBF LB/M Inconel 718 parts depending on build direction N2 - Laser-based Powder Bed Fusion of Metal (PBF-LB/M) is a broadly used metal additive manufacturing (AM) method for fabricating complex metallic parts, whose sizes are however limited by the build envelope of PBF-LB/M machines. Laser welding arises as a valid joining method for effectively integrating these AM parts into larger assemblies. PBF-LB/M components must usually be stress-relieved before they can be separated from the build plate. An additional heat treatment can be beneficial for obtaining homogeneous mechanical properties across the seam or for the formation of desired precipitations in nickel-based-alloys. Therefore, the tensile performance of laser welded hybrid (AM/wrought) and AM-AM tensile samples of Inconel 718 is examined after undergoing three different heat treatments and considering three relevant build directions. It can be shown that the build orientation is an influencing factor on weld properties even after two applied heat treatments. T2 - Lasers in Manufacturing LiM 2023 CY - Munich, Germany DA - 26.06.2023 KW - Laser welding KW - PBF/LB-M KW - Hybrid components KW - Heat treatments KW - Build direction KW - Tensile performance KW - Inconel 718 PY - 2023 AN - OPUS4-58016 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Simón Muzás, Juan A1 - Brunner-Schwer, C. A1 - Hilgenberg, Kai A1 - Rethmeier, Michael T1 - Weldability of PBF-LB/M Inconel 718 lattice structures by laser beam N2 - The present research focuses on the weldability of PBF-LB/M lattice structure parts of Inconel 718 by means of laser beam welding. The integration of complex and lightweight AM structures into assemblies employing conventional joining methods is challenging. During the welding process, dissipation of the laser heat input through thin-walled structures of these lightweight structures is strongly limited, resulting in heat accumulation, atypical cooling rates, and affecting weld geometry, quality of the joint and microstructure. PBF-LB/M parts have been manufactured in three characteristic build directions. They were all stress relieved, then a group of them were submitted to an additional solution annealing and the second group to a two-step aging treatment. Afterwards, these parts were welded to identical PBF-LB/M parts and to wrought ones in butt position. To gain insight into the welding temperature field and to explain segregation mechanisms, grain growth and asymmetries, thermocouples have been attached on the surface’s regions and struts nearby. Joining a lattice structure with a full material wrought sample results in clear asymmetric welds due to dissimilar heat dissipation on both sides of the seam. Selected pre-weld heat treatments have a crucial influence on the quality of the seam on the AM part. T2 - International Institute of Welding IIW 2023 Conference CY - Singapore DA - 16.07.2023 KW - Additive manufacturing (AM) KW - Laser-based powder bed fusion of metal (PBF-LB/M) KW - Laser beam welding KW - Lattice structure KW - Hybrid part KW - Heat treatment KW - Inconel 718 PY - 2023 AN - OPUS4-58017 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mohr, Gunther A1 - Altenburg, Simon A1 - Hilgenberg, Kai T1 - On critical shifts of the process window due to heat accumulation in laser powder bed fusion N2 - Safety-critical applications of products manufactured by laser powder bed fusion (PBF-LB/M) are still limited to date. This is mainly due to a lack of knowledge regarding the complex relationship between process, structure, and resulting properties. The assurance of homogeneity of the microstructure and homogeneity of the occurrence and distribution of defects within complexly shaped geometries is still challenging. Unexpected and unpredicted local inhomogeneities may cause catastrophic failures. The identification of material specific and machine specific process parameter windows for production of fully dense simple laboratory specimens is state of the art. However, the incorporation of changing thermal conditions that a complexly shaped component can be faced with during the manufacturing process is often neglected at the stage of a process window determination. This study demonstrates the tremendous effect of changing part temperatures on the defect occurrence for the broadly used stainless steel alloy AISI 316L. Process intrinsic variations of the surface temperature are caused by heat accumulation which was measured by use of a temperature adjusted mid-wavelength infrared (MWIR) camera. Heat accumulation was triggered by simple yet effective temporal and geometrical restrictions of heat dissipation. This was realized by a variation of inter layer times and reduced cross section areas of the specimens. Differences in surface temperature of up to 800 K were measured. A severe development of keyhole porosity resulted from these distinct intrinsic preheating temperatures, revealing a shift of the process window towards unstable melting conditions. The presented results may serve as a warning to not solely rely on process parameter optimization without considering the actual process conditions a real component is faced with during the manufacturing process. Additionally, it motivates the development of representative test specimens. T2 - The 76th IIW annual assembly and international conference on welding and joining CY - Singapore DA - 16.07.2023 KW - Additive manufacturing KW - Laser powder bed fusion KW - Laboratory specimens KW - Process parameter optimization KW - Heat accumulation KW - Keyhole porosity KW - Infrared thermography PY - 2023 AN - OPUS4-58023 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Strobl, Dominic A1 - Unger, Jörg F. A1 - Chady, G. A1 - Klawoon, Alexander A1 - Pittner, Andreas A1 - Rethmeier, Michael A1 - Robens-Radermacher, Annika T1 - Efficient bead-on-plate weld model for parameter estimation towards effective wire arc additive manufacturing simulation N2 - Despite the advances in hardware and software techniques, standard numerical methods fail in providing real-time simulations, especially for complex processes such as additive manufacturing applications. A real-time simulation enables process control through the combination of process monitoring and automated feedback, which increases the flexibil- ity and quality of a process. Typically, before producing a whole additive manufacturing structure, a simplified experiment in form of a bead-on- plate experiment is performed to get a first insight into the process and to set parameters suitably. In this work, a reduced order model for the transient thermal problem of the bead-on-plate weld simulation is devel- oped, allowing an efficient model calibration and control of the process. The proposed approach applies the proper generalized decomposition (PGD) method, a popular model order reduction technique, to decrease the computational effort of each model evaluation required multiple times in parameter estimation, control and optimization. The welding torch is modeled by a moving heat source, which leads to difficulties separating space and time, a key ingredient in PGD simulations. A novel approach for separating space and time is applied and extended to 3D problems allowing the derivation of an efficient separated representation of the tem- perature. The results are verified against a standard finite element model showing excellent agreement. The reduced order model is also leveraged in a Bayesian model parameter estimation setup, speeding up calibrations and ultimately leading to an optimized real-time simulation approach for welding experiment using synthetic as well as real measurement data. KW - Ermüdung PY - 2023 U6 - https://doi.org/10.5281/zenodo.7456813 PB - Zenodo CY - Geneva AN - OPUS4-59651 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Heinekamp, Christian A1 - Guiherme Buzanich, Ana A1 - Ahrens, Mike A1 - Emmerling, Franziska A1 - Braun, Thomas T1 - Zirconium chloro fluoride as catalyst for C-F bond activation and HF transfer of fluoroalkanes N2 - In this work1, we have successfully synthesised amorphous zirconium chloro fluoride (ZCF), which exhibits medium lewis acidity. In addition to investigating the local coordination sphere around the Zr atoms and the material properties, we were able to establish a catalytic behavior of ZCF in C-F bond activation reactions. We present the first heterogeneous catalyst that performs dehydrofluorination of a fluoroalkane and consecutive hydrofluorination of an alkyne at room temperature. T2 - RSC Poster 2024 CY - Online meeting DA - 05.03.2024 KW - ZCF PY - 2024 AN - OPUS4-59619 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mohr, Gunther A1 - Altenburg, Simon A1 - Hilgenberg, Kai ED - Wei, Z. ED - Pang, J. T1 - On critical shifts of the process window due to heat accumulation in laser powder bed fusion N2 - Safety-critical applications of products manufactured by laser powder bed fusion (PBF-LB/M) are still limited to date. This is mainly due to a lack of knowledge regarding the complex relationship between process, structure, and resulting properties. The assurance of homogeneity of the microstructure and homogeneity of the occurrence and distribution of defects within complexly shaped geometries is still challenging. Unexpected and unpredicted local inhomogeneities may cause catastrophic failures. The identification of material specific and machine specific process parameter windows for production of fully dense simple laboratory specimens is state of the art. However, the incorporation of changing thermal conditions that a complexly shaped component can be faced with during the manufacturing process is often neglected at the stage of a process window determination. This study demonstrates the tremendous effect of changing part temperatures on the defect occurrence for the broadly used stainless steel alloy AISI 316L. Process intrinsic variations of the surface temperature are caused by heat accumulation which was measured by use of a temperature adjusted mid-wavelength infrared (MWIR) camera. Heat accumulation was triggered by simple yet effective temporal and geometrical restrictions of heat dissipation. This was realized by a variation of inter layer times and reduced cross section areas of the specimens. Differences in surface temperature of up to 800 K were measured. A severe development of keyhole porosity resulted from these distinct intrinsic preheating temperatures, revealing a shift of the process window towards unstable melting conditions. The presented results may serve as a warning to not solely rely on process parameter optimization without considering the actual process conditions a real component is faced with during the manufacturing process. Additionally, it motivates the development of representative test specimens. T2 - The 76th IIW Annual Assembly and International Conference On Welding And Joining (IIW 2023) CY - Singapore, Singapore DA - 16.07.2023 KW - Additive manufacturing KW - Laser powder bed fusion KW - Laboratory specimens KW - Process parameter optimization KW - Heat accumulation KW - Keyhole porosity KW - Infrared thermography PY - 2023 SP - 1 EP - 8 AN - OPUS4-58024 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - RPRT A1 - El-Sari, B. A1 - Biegler, M. A1 - Rethmeier, Michael T1 - Einfluss von Oberflächenbeschichtungen auf die flüssigmetallinduzierte Rissbildung beim Widerstandspunktschweißen von hochfesten Stahlfeinblechen BT - Schlussbericht vom 15.09.2022 zu IGF-Vorhaben Nr. 20812 N : Berichtszeit: 01.10.2019 bis 31.03.2022 N2 - Die Beschichtung hochfester Stahlfeinbleche beeinflusst das Auftreten von flüssigmetallinduzierter Rissbildung (LME). Daher wurden in dieser Arbeit industrieübliche Beschichtungen bei gleichem Grundwerkstoff hinsichtlich ihres Aufbaus und chemischer Zusammensetzung charakterisiert und bezüglich ihrer LME Anfälligkeit untersucht. Aus dieser vergleichenden Untersuchung heraus wurden Potentiale für die Widerstandsfähigkeit gegen LME identifiziert. Diese Potentiale werden experimentell durch den Einsatz einer von der Forschungsstelle entwickelten Methode überprüft. Gegenstand der Untersuchungen waren neben unbeschichteten Proben industrieübliche Zinküberzüge wie Elektrolytisch verzinkt, Feuerverzinkt, Galvannealed und Zink-Magnesium Beschichtungen. Die LME Anfälligkeit dieser unterschiedlichen Überzüge wird mit einem Schweißen unter Zugbelastung Versuchsaufbau untersucht. Dabei ergibt sich die resultierende Anfälligkeit aus den auftretenden Risslängen und der Auftrittswahrscheinlichkeit von LME bei den einzelnen Versuchen. Es konnte eine LME Anfälligkeits-Rangfolge für die Zinküberzüge festgestellt werden. Zink-Magnesium Beschichtungen galten als besonders LME Anfällig, gefolgt von Feuerverzinkt und Galvannealed. Die größte LME Resistenz wurde bei elektrolytisch verzinkten Proben festgestellt. Aus den Ergebnissen werden Handlungsempfehlungen zur Erhöhung der Verarbeitungssicherheit bzw. Schweißpunktqualität abgeleitet. KW - Widerstandspunktschweißen KW - Hochfester Stahl KW - Liquid Metal Embrittlement KW - Flüssigmetallinduzierte Rissbildung KW - Zink PY - 2022 SN - 978-3-96780-030-2 SP - 1 EP - 39 PB - Forschungsvereinigung Stahlanwendung e. V. CY - Düsseldorf AN - OPUS4-58060 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rehmer, Birgit A1 - Bayram, Faruk A1 - Ávila Calderon, Luis Alexander A1 - Mohr, Gunther A1 - Skrotzki, Birgit T1 - Elastic modulus data for additively and conventionally manufactured variants of Ti-6Al-4V, IN718 and AISI 316 L N2 - This article reports temperature-dependent elastic properties (Young’s modulus, shear modulus) of three alloys measured by the dynamic resonance method. The alloys Ti-6Al-4V, Inconel IN718, and AISI 316 L were each investigated in a variant produced by an additive manufacturing processing route and by a conventional manufacturing processing route. The datasets include information on processing routes and parameters, heat treatments, grain size, specimen dimensions, and weight, as well as Young’s and shear modulus along with their measurement uncertainty. The process routes and methods are described in detail. The datasets were generated in an accredited testing lab, audited as BAM reference data, and are hosted in the open data repository Zenodo. Possible data usages include the verification of the correctness of the test setup via Young’s modulus comparison in low-cycle fatigue (LCF) or thermo-mechanical fatigue (TMF) testing campaigns, the design auf VHCF specimens and the use as input data for simulation purposes. KW - Elastic modulus KW - Young's modulus KW - Shear modulus KW - Additive manufacturing KW - AISI 316L KW - IN 718 KW - Ti-6Al-4V KW - Reference data KW - Temperature dependence PY - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-579716 VL - 10 IS - 1 SP - 1 EP - 9 PB - Springer Nature AN - OPUS4-57971 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bergant, M. A1 - Larrosa, N. A1 - Yawny, A. A1 - Madia, Mauro T1 - Short crack growth model for the evaluation of the fatigue strength of WAAM Ti-6Al-4V alloy containing pore-type defects N2 - The role of defects in the fatigue strength of Wire Arc Additively Manufactured (WAAMed) Ti-6Al-4V is analysed by means of the IBESS model, a fracture mechanics short crack growth approach based on the cyclic R-curve. Pores and crack-like defects are analysed. Estimations of the role of pore shape and size agree well with published fatigue data of WAAM Ti-6Al-4V with pores. The model is also used to explain the effect of fabrication defects on the scatter of experimental data. This demonstrates that short crack growth models represent a suitable engineering tool for the fatigue assessment of defective AM materials. KW - WAAM Ti-6Al-4V KW - Cyclic R-curve KW - IBESS model for short cracks KW - Kitagawa-Takahashi (K-T) diagram PY - 2023 U6 - https://doi.org/10.1016/j.engfracmech.2023.109467 SN - 0013-7944 VL - 289 SP - 1 EP - 21 PB - Elsevier Ltd. AN - OPUS4-57963 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - El-Sari, B. A1 - Biegler, M. A1 - Rethmeier, Michael T1 - Investigation of the LME Susceptibility of Dual Phase Steel with Different Zinc Coatings N2 - The application of anti-corrosion coated, high-strength steels in the automotive industry has increased in recent years. In combination with various zinc-based surface coatings, liquid metal embrittlement cracking can be observed in some of these materials. A high-quality, crack-free spot-welded joint is essential to realize the lightweight potential of the materials. In this work, the LME susceptibility of different coatings, which will be determined by the crack length and the occurrence rate, will be investigated using a welding under external load setup. The uncoated specimens did not show any LME. EG, GI and GA showed significantly less LME than ZM coatings. The latter coatings showed much larger crack lengths than the EG, GI and GA coatings. Furthermore, two mechanisms regarding the LME occurrence rate were observed: the occurrence of LME in zinc–magnesium coatings was theorized to be driven by the material properties of the coatings, whereas the occurrence of LME at EG, GI and GA samples was forced mainly by the application of the external tensile load. In the experimental setup of this work, the materials were exposed to unusually high mechanical loads (up to 80% of their yield strength) to evoke LME cracks. KW - Widerstandspunktschweißen KW - Hochfester Stahl KW - Liquid Metal Embrittlement KW - Flüssigmetallinduzierte Rissbildung KW - Zink KW - AHSS PY - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-580428 VL - 13 IS - 5 SP - 1 EP - 11 PB - MDPI AN - OPUS4-58042 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fritzsche, Sven A1 - Pauw, Brian Richard A1 - Weimann, Christiane A1 - Sturm, Heinz T1 - First of its kind: a test artifact for direct laser writing N2 - With femtosecond-laser direct writing (fs-LDW) maturing in all aspects as a manufacturing technology, a toolset for quality assurance must be developed. In this work we introduce a first of its kind test artifact. Test artifacts are standardized 3D models with specific geometric features to evaluate the performance of writing parameters. Test artifacts are already common in other 3D additive manufacturing technologies e.g. selective laser melting. The test artifact introduced in this work was developed in particular to accommodate the high geometrical resolution of fs-LDW structures and the limited possibilities to examine the resulting structure. Geometric accuracy, surface adhesion as well as confocal Raman spectroscopy results were considered when evaluating the design of the test artifact. We will explain the individual features and design considerations of our fs-LDW test artifact. The difference between two slicers, Cura and 3DPoli, and the implications on measured feature sizes and the general shape is quantified. The measured geometries are used to derive a general design guide for a specific combination of photoresists, laser power and scanning speed and to analyze the geometric accuracy of a structure produced using these guidelines. The shown test artifact is publicly available as STL file on GitHub (https://github.com/BAMresearch/2PP-TestArtifact) and in the supplement. KW - Laser direct writing KW - Multi photon lithography KW - Reference material KW - Raman spectroscopy KW - Confocal raman imaging KW - Slicers KW - Open data on zenodo PY - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-580951 VL - 34 IS - 7 SP - 1 EP - 14 PB - IOP Science AN - OPUS4-58095 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Fritzsche, Sven A1 - Pauw, Brian Richard A1 - Weimann, Christiane A1 - Sturm, Heinz T1 - Test artifact for fs-LDW N2 - Data to generate the given graphs in the publication as well as raw images of the shown images. KW - stl code KW - Images KW - Graphs KW - Data PY - 2023 U6 - https://doi.org/10.5281/zenodo.7671945 PB - Zenodo CY - Geneva AN - OPUS4-58096 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Breese, Philipp Peter A1 - Becker, Tina A1 - Oster, Simon A1 - Metz, C. A1 - Altenburg, Simon T1 - In-situ defect detection for laser powder bed fusion with active laser thermography N2 - Defects are still common in metal components built with Additive Manufacturing (AM). Process monitoring methods for laser powder bed fusion (PBF-LB/M) are used in industry, but relationships between monitoring data and defect formation are not fully understood yet. Additionally, defects and deformations may develop with a time delay to the laser energy input. Thus, currently, the component quality is only determinable after the finished process. Here, active laser thermography, a non-destructive testing method, is adapted to PBF-LB/M, using the defocused process laser as heat source. The testing can be performed layer by layer throughout the manufacturing process. The results of the defect detection using infrared cameras are presented for a custom research PBF-LB/M machine. Our work enables a shift from post-process testing of components towards in-situ testing during the AM process. The actual component quality is evaluated in the process chamber and defects can be detected between layers. T2 - 2023 Annual International Solid Freeform Fabrication Symposium CY - Austin, TX, USA DA - 14.08.2023 KW - Additive Manufacturing KW - Additive Fertigung KW - Laser Powder Bed Fusion KW - Nondestructive Testing KW - Flying Spot Laser Thermography PY - 2023 AN - OPUS4-58137 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schneider, M. A1 - Bettge, Dirk A1 - Hilgenberg, Kai A1 - Binder, M. A1 - Dollmeier, K. A1 - Dreyer, M. A1 - Klöden, B. A1 - Schlingmann, T. A1 - Schmidt, J. T1 - Reproducibility and Scattering in Additive Manufacturing: Results from a Round Robin on PBF-LB/M AlSi10Mg Alloy T1 - Reproduzierbarkeit und Streuung bei der additiven Fertigung: Ergebnisse eines Ringversuchs mit einer PBF-LB/M AlSi10Mg-Legierung N2 - The round robin test investigated the reliability users can expect for AlSi10Mg additive manufactured specimens by laser powder bed fusion through examining powder quality, process parameter, microstructure defects, strength and fatigue. Besides for one outlier, expected static material properties could be found. Optical microstructure inspection was beneficial to determine true porosity and porosity types to explain the occurring scatter in properties. Fractographic analyses reveal that the fatigue crack propagation starts at the rough as-built surface for all specimens. Statistical analysis of the scatter in fatigue using statistical derived safety factors concludes that at a stress of 36.87 MPa the fatigue limit of 107 cycles could be reached for all specimen with a survival probability of 99.999 %. N2 - Im Rahmen eines Ringversuchs wurde durch die Untersuchung der Pulverqualität, der Prozessparameter, der Gefügefehler, der Festigkeit und der Ermüdung die Zuverlässigkeit bestimmt, die Nutzer von AlSi10Mg-Proben erwarten können, die mit pulverbettbasiertes Schmelzen mittels Laser (engl. Laser Powder Bed Fusion) gefertigt worden sind. Abgesehen von einem Ausreißer wurden die erwarteten statischen Materialeigenschaften erreicht. Eine optische Gefügeprüfung diente dazu, die tatsächliche Porosität und Arten von Porosität zu ermitteln, um die bei den Eigenschaften auftretende Streuung zu erklären. Fraktographische Unterschungen zeigen eine bei allen Proben von der rauen Oberfläche im As-built-Zustand ausgehende Ermüdungsrissausbreitung. Aus der statistischen Analyse der Streuung bezüglich der Ermüdung unter Anwendung von statistischen abgeleiteten Sicherheitsfaktoren geht hervor, dass alle Proben die Dauerfestigkeit von 107 Zyklen bei einer Spannung von 36,87 MPa mit einer Überlebenswahrscheinlichkeit von 99,999 % erreichten. KW - Additive manufacturing KW - Reproducibility KW - Reliability PY - 2022 U6 - https://doi.org/10.1515/pm-2022-1018 SN - 2195-8599 VL - 59 IS - 10 SP - 580 EP - 614 PB - De Gruyter AN - OPUS4-55935 LA - mul AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mohr, Gunther A1 - Sommer, Konstantin A1 - Knobloch, Tim A1 - Altenburg, Simon A1 - Recknagel, Sebastian A1 - Bettge, Dirk A1 - Hilgenberg, Kai T1 - Process Induced Preheating in Laser Powder Bed Fusion Monitored by Thermography and Its Influence on the Microstructure of 316L Stainless Steel Parts N2 - Undetected and undesired microstructural variations in components produced by laser powder bed fusion are a major challenge, especially for safety-critical components. In this study, an in-depth analysis of the microstructural features of 316L specimens produced by laser powder bed fusion at different levels of volumetric energy density and different levels of inter layer time is reported. The study has been conducted on specimens with an application relevant build height (>100 mm). Furthermore, the evolution of the intrinsic preheating temperature during the build-up of specimens was monitored using a thermographic in-situ monitoring set-up. By applying recently determined emissivity values of 316L powder layers, real temperatures could be quantified. Heat accumulation led to preheating temperatures of up to about 600 °C. Significant differences in the preheating temperatures were discussed with respect to the individual process parameter combinations, including the build height. A strong effect of the inter layer time on the heat accumulation was observed. A shorter inter layer time resulted in an increase of the preheating temperature by more than a factor of 2 in the upper part of the specimens compared to longer inter layer times. This, in turn, resulted in heterogeneity of the microstructure and differences in material properties within individual specimens. The resulting differences in the microstructure were analyzed using electron back scatter diffraction and scanning electron microscopy. Results from chemical analysis as well as electron back scatter diffraction measurements indicated stable conditions in terms of chemical alloy composition and austenite phase content for the used set of parameter combinations. However, an increase of the average grain size by more than a factor of 2.5 could be revealed within individual specimens. Additionally, differences in feature size of the solidification cellular substructure were examined and a trend of increasing cell sizes was observed. This trend was attributed to differences in solidification rate and thermal gradients induced by differences in scanning velocity and preheating temperature. A change of the thermal history due to intrinsic preheating could be identified as the main cause of this heterogeneity. It was induced by critical combinations of the energy input and differences in heat transfer conditions by variations of the inter layer time. The microstructural variations were directly correlated to differences in hardness. KW - Additive manufacturing KW - Laser powder bed fusion KW - In-situ process monitoring KW - Thermography KW - Heat accumulation KW - Inter layer time KW - Cellular substructure PY - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-529240 VL - 11 IS - 7 SP - 1063 PB - MDPI CY - Basel, Schweiz AN - OPUS4-52924 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sommer, Konstantin A1 - Agudo Jácome, Leonardo A1 - Hesse, René A1 - Bettge, Dirk T1 - Revealing the nature of melt pool boundaries in additively manufactured stainless steel by nano-sized modulation N2 - In the current study, the 3D nature of the melt pool boundaries (MPBs) in a 316 L austenitic steel additively manufactured by laser-based powder bed fusion (L-PBF) is investigated. The change of the cell growth direction and its relationship to the MPBs is investigated by transmission electron microscopy. A hitherto unreported modulated substructure with a periodicity of 21 nm is further discovered within the cell cores of the cellular substructure, which results from a partial transformation of the austenite, which is induced by a Ga+ focused ion beam. While the cell cores show the modulated substructure, cell boundaries do not. The diffraction pattern of the modulated substructure is exploited to show a thickness ≥200 nm for the MPB. At MPBs, the cell walls are suppressed, leading to continuously connecting cell cores across the MPB. This continuous MPB is described either as overlapping regions of cells of different growing directions when a new melt pool solidifies or as a narrow planar growth preceding the new melt pool. KW - Additive manufacturing KW - Austenitic steel 316L KW - Melt pool boundary KW - Microstructural characterization KW - Transmission electron microscopy PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-547295 SN - 1527-2648 VL - 24 IS - 6 SP - 1 EP - 11 PB - Wiley-VCH CY - Weinheim AN - OPUS4-54729 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ávila Calderón, Luis Alexander A1 - Rehmer, Birgit A1 - Schriever, Sina A1 - Ulbricht, Alexander A1 - Agudo Jácome, Leonardo A1 - Sommer, Konstantin A1 - Mohr, Gunther A1 - Skrotzki, Birgit A1 - Evans, Alexander T1 - Creep and creep damage behavior of stainless steel 316L manufactured by laser powder bed fusion N2 - This study presents a thorough characterization of the creep properties of austenitic stainless steel 316L produced by laser powder bed fusion (LPBF 316L) contributing to the sparse available data to date. Experimental results (mechanical tests, microscopy, X-ray computed tomography) concerning the creep deformation and damage mechanisms are presented and discussed. The tested LPBF material exhibits a low defect population, which allows for the isolation and improved understanding of the effect of other typical aspects of an LPBF microstructure on the creep behavior. As a benchmark to assess the material properties of the LPBF 316L, a conventionally manufactured variant of 316L was also tested. To characterize the creep properties, hot tensile tests and constant force creep tests at 600 °C and 650 °C are performed. The creep stress exponents of the LPBF material are smaller than that of the conventional variant. The primary and secondary creep stages and the times to rupture of the LPBF material are shorter than the hot rolled 316L. Overall the creep damage is more extensive in the LPBF material. The creep damage of the LPBF material is overall mainly intergranular. It is presumably caused and accelerated by both the appearance of precipitates at the grain boundaries and the unfavorable orientation of the grain boundaries. Neither the melt pool boundaries nor entrapped gas pores show a significant influence on the creep damage mechanism. KW - 316L KW - Laser Powder Bed Fusion (LPBF) KW - Creep behavior KW - Additive Manufacturing KW - AGIL PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-539373 SN - 0921-5093 VL - 830 SP - 142223 PB - Elsevier B.V. AN - OPUS4-53937 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schröder, Jakob A1 - Evans, Alexander A1 - Polatidis, E. A1 - Čapek, J. A1 - Mohr, Gunther A1 - Serrano Munoz, Itziar A1 - Bruno, Giovanni T1 - Understanding the impact of texture on the micromechanical anisotropy of laser powder bed fused Inconel 718 N2 - The manufacturability of metallic alloys using laser-based additive manufacturing methods such as laser powder bed fusion has substantially improved within the last decade. However, local melting and solidification cause hierarchically structured and crystallographically textured microstructures possessing large residual stress. Such microstructures are not only the origin of mechanical anisotropy but also pose metrological challenges for the diffraction-based residual stress determination. Here we demonstrate the influence of the build orientation and the texture on the microstructure and consequently the mechanical anisotropy of as-built Inconel 718. For this purpose, we manufactured specimens with [001]/[011]-, [001]- and [011]/[111]-type textures along their loading direction. In addition to changes in the Young’s moduli, the differences in the crystallographic textures result in variations of the yield and ultimate tensile strengths. With this in mind, we studied the anisotropy on the micromechanical scale by subjecting the specimens to tensile loads along the different texture directions during in situ neutron diffraction experiments. In this context, the response of multiple lattice planes up to a tensile strain of 10% displayed differences in the load partitioning and the residual strain accumulation for the specimen with [011]/[111]-type texture. However, the relative behavior of the specimens possessing an [001]/[011]- and [001]-type texture remained qualitatively similar. The consequences on the metrology of residual stress determination methods are discussed. KW - Laser powder bed fusion KW - Additive manufacturing KW - Electron backscatter diffraction KW - Tensile testing KW - Diffraction PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-555840 SN - 1573-4803 VL - 2022 IS - 57 SP - 15036 EP - 15058 PB - Springer Science + Business Media B.V. CY - Dordrecht AN - OPUS4-55584 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Dal Molin, E. S. A1 - Henning, L. M. A1 - Müller, J. T. A1 - Smales, Glen Jacob A1 - Pauw, Brian Richard A1 - Bekheet, M. F. A1 - Gurlo, A. A1 - Simon, U. T1 - Robocasting of ordered mesoporous silica‐based monoliths: Rheological, textural, and mechanical characterization N2 - Hierarchically porous, high‐surface‐area silica materials are excellent candidates for multiple applications like catalysis and environmental remediation. Shaping these materials with additive manufacturing (AM) techniques, like robocasting, could enable their use with the benefit of on‐demand, customized shaping and maximizing performance. Herein, ordered mesoporous silica COK‐12 slurries were robocasted into monoliths, containing different ratios of uncalcined COK‐12 and sodium bentonite (0–25 wt.%). The rheology of the mixed slurries is characterized by lower flow indexes (0.69 vs. 0.32) and higher yield stresses (96 vs. 259 Pa) compared to pure COK‐12 ones. Monoliths were printed in woodpile structures and calcined at 600°C. Micro‐CT measurements showed a linear shrinkage of 25% after calcination. Mechanical characterization showed increased uniaxial strength (0.20 ± 0.07 to 1.0 ± 0.3 MPa) with increasing binder/solids ratio from 13 to 25%. The amorphous, mesoporous structure of COK‐12 was retained. The structures exhibited open porosities of 52 ± 4% and showed higher specific mesopore volumes, and increased average mesopore size (6 vs. 8 nm) compared to COK‐12. Small‐angle x‐ray scattering analysis revealed an increased lattice parameter (10.3 vs. 11.0 nm) and reduced wall thickness (3.1 nm vs. 4.1 nm) of the COK‐12 in the monoliths. These properties indicate suitability for their application as porous supports and adsorbents. KW - Industrial and Manufacturing Engineering KW - Additive manufacturing KW - OMS KW - Porous materials KW - Robocasting KW - X-ray scattering KW - MOUSE PY - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-582503 VL - 4 IS - 11-12 SP - 615 EP - 631 PB - Wiley-VCH GmbH AN - OPUS4-58250 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fardan, Ahmed A1 - Fazi, Andrea A1 - Peng, Ru Lin A1 - Mishurova, Tatiana A1 - Thuvander, Mattias A1 - Bruno, Giovanni A1 - Brodin, Håkan A1 - Hryha, Eduard T1 - Fine-Tuning Melt Pools and Microstructures: Taming Cracks in Powder Bed Fusion—Laser Beam of a non-weldable Ni-base Superalloy N2 - Powder Bed Fusion – Laser Beam (PBF-LB) of high γ’ strengthened Ni-base superalloys, such as CM247LC, is of great interest for high temperature applications in gas turbines. However, PBF-LB of CM247LC is challenging due to the high cracking susceptibility during PBF-LB processing (solidification cracking) and heat treatment (strain age cracking, mostly caused by residual stresses). This study focuses on understanding the impact of process parameters on microstructure, residual stresses and solidification cracking. Laser power (P), speed (v) and hatch spacing (h) were varied while the layer thickness (t) was fixed. The melt pool size and shape were found to be key factors in minimizing solidification cracking. Narrower and shallower melt pools, achieved using a low line energy density (LED = P/v ≤ 0.1 J/mm), gave low crack densities (0.7 mm/mm2). A tight hatch spacing (h = 0.03 mm) resulted in reduced lack of fusion porosity. Electron backscatter diffraction investigations revealed that parameters giving finer microstructure with 〈100〉crystallographic texture had low crack densities provided they were processed with a low LED. Atom probe tomography elucidated early stages of spinodal decomposition in the as-built condition, where Cr and Al cluster separately. The extent of spinodal decomposition was found to be affected by the LED and the hatch spacing. Samples with low LED and small hatch spacing showed higher degrees of spinodal decomposition. X-ray diffraction residual stress investigations revealed that the residual stress is proportional to the volumetric energy density (VED = P/(v. h. t)). Although low residual stresses can be achieved by using low VED, there is a high risk of lack of fusion. Hence, other parameters such as modified scan strategy, build plate pre-heating and pulsed laser mode, must be further explored to minimize the residual stresses to reduce the strain age cracking susceptibility. KW - Additive manufacturing KW - X-ray CT KW - Non-weldable superalloy KW - Solidification cracking PY - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-597340 VL - 34 IS - 102059 SP - 1 EP - 16 PB - Elsevier B.V. AN - OPUS4-59734 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Bruno, Giovanni ED - Makul, Matt T1 - Investigation of a New Ti Alloy for a New Generation of Additively Manufactured Implants with Lattice N2 - A new titanium alloy improving the operation of implants additively manufactured and including laterally closed lattice structures is proposed. The new alloy possesses an increased affinity to the bone. The measured bone–interface implant (BII) of less than 10 mm and bone–implant contact (BIC) of 95% demonstrated an excellent osseointegration. Furthermore, since additive manufacturing naturally leads to a high-roughness surface finish, the wettability of the implant is increased. The combination of these factors is pushing ossification beyond its natural limits. In addition, the quality and speed of the ossification and osseointegration in/around laterally closed lattice implants open the possibility of bone spline key of prostheses. This enables the stabilization of the implant into the bone while keeping the possibility of punctual hooks allowing the implant to be removed more easily if required. KW - X-ray Computed tomography KW - Defects KW - Machine Learning KW - Implants KW - Lattices PY - 2024 U6 - https://doi.org/10.9734/bpi/cpstr/v7/7198E VL - 7 SP - 12 EP - 37 AN - OPUS4-59754 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Roveda, Ilaria A1 - Mishurova, Tatiana A1 - Evans, Alexander A1 - Fitch, Andrew N. A1 - Haubrich, Jan A1 - Requena, Guillermo A1 - Bruno, Giovanni A1 - Serrano‐Munoz, Itziar T1 - Evolution of interphase stress over a crack propagation plane as a function of stress relief heat treatments in a PBF‐LB/M AlSi10Mg alloy N2 - AbstractIn this study, we compare the residual stress state in a laser powder bed fusion (PBF‐LB/M) AlSi10Mg alloy in the as‐built (AB) condition with that after two different heat treatments (265 °C for 1 h, HT1; and 300 °C for 2 h, HT2). The bulk residual stress (RS) is determined using synchrotron X‐ray diffraction (SXRD), and near‐surface profiles are determined using laboratory energy‐dispersive X‐ray diffraction (EDXRD). The EDXRD results do not reveal any notable difference between the conditions at a depth of 350 μm, suggesting that the machining process yields a comparable residual stress state in the near‐surface regions. On the other hand, the SXRD results show that HT1 is more effective in relieving the bulk RS. It is observed that HT1 reduces the RS state in both the aluminium matrix and the silicon network. In addtion, HT2 does not have a significant impact on relaxing the RS as‐built state of the matrix, although it does induce a reduction in the RS magnitudes of the Si phase. It is concluded that the heat treatment stress relieving is effective as long as the Si‐network is not disaggregated. KW - Interphase residual stress KW - Laboratory energy-dispersive X-ray diffraction (EDXRD) KW - PBFLB/M AlSi10Mg alloy KW - Stress-relief heat-treatments KW - Synchrotron X-ray diffraction (SXRD) PY - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-597591 SP - 1 EP - 13 PB - John Wiley & Sons Ltd. AN - OPUS4-59759 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Cabo Rios, Alberto A1 - Mishurova, Tatiana A1 - Cordova, Laura A1 - Persson, Mats A1 - Bruno, Giovanni A1 - Olevsky, Eugene A1 - Hryha, Eduard T1 - Ex-situ characterization and simulation of density fluctuations evolution during sintering of binder jetted 316L N2 - Efficient density evolution during sintering of the as-printed component is vital to reach full densification and required properties of binder jet (BJT) components. However, due to the high porosity and brittle nature of the green compact, analysis of the microstructure development during sintering is very difficult, resulting in lack of understanding of the densification process. Density development from green state (57 ± 1.6 %) up to full density (99 ± 0.3 %) was characterized by high-resolution synchrotron X-Ray computed tomography (SXCT) on BJT 316L samples from ex-situ interrupted sintering tests. Periodicity of density fluctuations along the building direction was revealed for the first time and was related to the layer thickness of ~ 42 μm during printing that decreased down to ~ 33 μm during sintering. Sintering simulations, utilizing a continuum sintering model developed for BJT, allowed to replicate the density evolution during sintering with a mean error of 2 % and its fluctuation evolution from green (1.66 %) to sintered (0.56 %) state. Additionally, simulation of extreme particle size segregation (1 μm to 130 μm) suggested that non-optimized printing could lead to undesirable density fluctuation amplitude rapid increase (~10 %) during sintering. This might trigger the nucleation of defects (e.g., layer delamination, cracking, or excessive residual porosity) during the sintering process. KW - Additive manufacturing KW - Synchrotron X-ray CT KW - Binder Jetting KW - Sintering KW - FEM Simulation PY - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-594389 SN - 0264-1275 VL - 238 SP - 1 EP - 18 PB - Elsevier AN - OPUS4-59438 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - THES A1 - Ávila Calderón, Luis Alexander T1 - Mechanisches Verhalten von additiv gefertigtem nichtrostendem Stahl X2CrNiMo17-12-2 (AISI 316L) und Vergleich zur konventionell gefertigten Variante T1 - Mechanical behavior of additively manufactured stainless steel X2CrNiMo17-12-2 (AISI 316L) and comparison with a conventionally manufactured variant N2 - Die additive Fertigung (AM) metallischer Werkstoffe ist eine Technologie, die zunehmend Gegenstand von Forschungsaktivitäten und industrieller Anwendung ist. Dennoch steht sie noch vor Herausforderungen, um eine breite Nutzung in sicherheitsrelevanten Anwendungen zu erreichen. Die Hauptgründe für die Verzögerung des technologischen Durchbruchs zugunsten von AM-Metallen gegenüber konventionell hergestellten Varianten sind das Fehlen eines tieferen Verständnisses der Prozess-Struktur-Eigenschafts-Beziehungen und die begrenzte Verfügbarkeit von Daten zu den Materialeigenschaften. In diesem Kontext stellt diese Arbeit einen Beitrag sowohl zum Verständnis der Prozess-Struktur-Eigenschafts-Beziehungen als auch zur Verbesserung der Datenlage von 316L dar, einem häufig als Konstruktionswerkstoff in verschiedenen Hochtemperaturbauteilen verwendeten Werkstoff. Die Arbeit legt den Fokus auf die mittels Laser-Pulverbettschmelzen hergestellte Werkstoffvariante, PBF-LB/M/316L. Eine konventionell hergestellte Variante, HR/316L, wurde auch untersucht. Bei PBF-LB/M/316L wurde zusätzlich der Effekt ausgewählter Wärmebehandlungen ausgewertet. Die Untersuchung umfasste die Charakterisierung der mechanischen Eigenschaften und der Verformungs- und Schädigungsmechanismen bei erhöhten Prüftemperaturen bei LCF und Kriechen, wo die Daten und Wissenslage am spärlichsten ist. Außerdem hat die untersuchte PBF-LB/M/316L-Wersktoffvariante einen geringen Porositätsgrad. Somit hat diese Arbeit die Mikrostruktur stärker in den Fokus genommen als die meisten bisher in der Literatur verfügbaren Studien. Die mechanische Prüfkampagne umfasste Zugversuche zwischen Raumtemperatur und 650 °C, LCF-Versuche zwischen Raumtemperatur und 600 °C sowie Kriechversuche bei 600 °C und 650 °C. In Ermangelung konkreter Richtlinien und Normen wurde die Charakterisierung zumeist anhand der bestehenden internationalen Prüfnormen und Probengeometrien durchgeführt. Aus jedem dieser Prüfverfahren wurden die entsprechenden Festigkeits- und Verformungskennwerte ermittelt. Darüber hinaus wurde mit Hilfe gezielter mikrostruktureller Untersuchungen ein Beitrag zum Verständnis des Zusammenhangs zwischen der Mikrostruktur und den mechanischen Eigenschaften in Bezug auf die Verformungs- und Schädigungsmechanismen geleistet. Die Dehngrenze von PBF-LB/M/316L ist etwa doppelt so hoch wie die von HR/316L und dieser Trend setzt sich mit ansteigender Prüftemperatur fort. Die Bruchdehnung ist bei allen Prüftemperaturen geringer. PBF-LB/M/316L weist über den größten Teil der Ermüdungslebensdauer vor allem bei Raumtemperatur höhere zyklische Spannungen als HR/316L auf. Ausschließlich bei den kleinsten Dehnungs-schwingbreiten sind die Ermüdungslebensdauer ausgeprägt kürzer. Das Wechselverformungsverhalten von PBF-LB/M/316L ist durch eine Anfangsverfestigung gefolgt von einer kontinuierlichen Entfestigung charakterisiert, welche bis zum Auftreten der zum Versagen führenden Entfestigung stattfindet. Die Kriechbruchzeiten und die Dauer jeder Kriechphase sind bei allen Kombinationen von Prüfparametern bei PBF-LB/M/316 kürzer als bei HR/316L. Die Spannungsabhängigkeit von PBF-LB/M/316L ist im Vergleich zu HR/316L geringer und die Duktilität beim Kriechen kleiner. Die minimale Kriechrate wird bei allen geprüften Parameterkombinationen bei deutlich geringeren Kriechdehnungen erreicht. Eine Wärmebehandlung bei 450 °C / 4 h bewirkt keine wesentliche Änderungen der Mikrostruktur und Zugversuchseigenschaften. Eine zusätzliche Wärmebehandlung bei 900 °C / 1 h verursacht eine Abnahme der Dehngrenze des PBF-LB/M/316L. Diese blieb aber immer noch um den Faktor 1,5x höher als bei HR/316L. Die Verformungsmerkmale wurden kaum davon beeinflusst. Bezüglich des Kriechverhaltens hat die Wärmebehandlung bei 900 °C / 1 h längere sekundäre und tertiäre Kriechstadien bewirkt und die Kriechdehnung hat sich signifikant erhöht. Die Bruchbilder unterscheiden sich generell nicht nur aber vor allem mit ansteigender Prüftemperatur, bei der bei PBF-LB/M/316L oft interkristalline Rissbildung beobachtet wurde. Die Zellstruktur trägt als der Hauptfaktor zu den unterschiedlichen mechanischen Eigenschaften im Vergleich zur HR/316L-Variante bei. Darüber hinaus spielen mutmaßlich die Kornmorphologie, die Stapelfehlerenergie und der Stickstoffgehalt eine Rolle. N2 - Metal additive manufacturing (AM) is a technology that is increasingly the subject of research activities and industrial applications. However, it still faces challenges to achieve widespread use in safety-relevant applications. The main reasons for the delay of this technological breakthrough in favor of AM metals over conventionally manufactured variants are the lack of a deeper understanding of process-structure-property relationships and the limited availability of data on material properties. In this context, this work contributes to both achieving a better understanding of process-structure-property relationships and the improvement of data for 316L, an alloy frequently used as a structural material in various high-temperature components. The work focuses on a material variant produced by laser pow-der bed fusion, PBF-LB/M/316L. A conventionally produced variant, HR/316L, was also investigated. For PBF-LB/M/316L, the effect of selected heat treatments was also evaluated. The investigation included the characterization of the mechanical properties and the related deformation and damage mechanisms at elevated test temperatures in LCF and creep, where data and knowledge are scarce. The PBF-LB/M/316L variant studied has a low degree of porosity. Thus, this work is more focused on the microstructure than most studies available in the literature. The mechanical test campaign included tensile tests between room temperature and 650 °C, LCF tests between room temperature and 600 °C, and creep tests at 600 °C and 650 °C. In the absence of concrete guidelines and standards for testing of AM metals, the characterization mostly took place using existing international test standards and specimen geometries. From each of the test methods, corresponding strength, and deformation characteristic values were determined. In addition, targeted microstructural investigations contributed to understanding the relationship between the microstructure and the mechanical properties in terms of deformation and damage mechanisms. The proof stress of PBF-LB/M/316L is about twice that of HR/316L. This trend remains with increasing test temperature. The elongation after fracture is lower at all test temperatures. Regarding LCF, PBF-LB/M/316L exhibits higher cyclic stresses than HR/316L for most of the fatigue life, especially at room temperature. Exclusively at the smallest strain amplitudes, the fatigue lives of PBF-LB/M/316L are markedly shorter than in HR/316L. The cyclic stress-strain deformation behavior of PBF-LB/M/316L features an initial strain hardening followed by a continuous softening, which occurs until the softening leading to failure takes place. The creep rupture times and the duration of each creep stage are shorter for PBF-LB/M/316 than for HR/316L for all combinations of test parameters. The stress dependence of PBF-LB/M/316L is lower, and the creep ductility is smaller compared to HR/316L. The minimum creep rate is reached at significantly lower creep extensions for all parameter combinations tested. A heat treatment at 450 °C / 4 h did not cause significant changes in the microstructure and tensile behavior. An additional heat treatment at 900 °C / 1 h caused a decrease in the proof stress of PBF-LB/M/316L. However, it still remained higher than the one of HR/316L by a factor of 1.5x. The deformation characteristics were hardly affected. Regarding the creep behavior, this latter heat treatment at 900 °C / 1 h caused longer secondary and tertiary creep stages, and the creep strain increased significantly. The fracture characteristics generally differed, which happened not only but especially with increasing test temperature, where intergranular cracking often took place in PBF-LB/M/316L. The cellular structure is considered the main factor contributing to the different mechanical properties compared to the HR/316L variant. In addition, grain morphology, stacking fault energy, and nitrogen content might play a role. KW - AGIL KW - Additive Fertigung KW - Laser-Pulverbettschmelzen KW - Mikrostrukturentwicklung KW - 316L KW - LCF KW - Kriechen KW - Additive Manufacturing KW - Microstructure KW - Mechanical Properties KW - Mechanische Eigenschaften PY - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-597143 SP - 1 EP - 190 CY - Berlin AN - OPUS4-59714 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Avila Calderon, Luis Alexander A1 - Rehmer, Birgit A1 - Ulbricht, Alexander A1 - Mohr, Gunther A1 - Evans, Alexander A1 - Skrotzki, Birgit T1 - Low-cycle-fatigue behavior of stainless steel 316L manufactured by laser powder bed fusion N2 - This contribution presents the results of an experimental study on the LCF behavior of an austenitic 316L stainless steel produced by laser powder bed fusion featuring a low defect population, which allows for an improved understanding of the role of other typical aspects of a PBF‑LB microstructure. The LCF tests were performed between room temperature and 600 °C. A hot‑rolled 316L variant was tested as a reference. The mechanical response is characterized by strain-life curves, a Coffin‑Manson‑Basquin fitting, and cyclic deformation curves. The damage and deformation mechanisms are studied with X-ray computed tomography, optical and electron microscopy. The PBF‑LB/M/316L exhibits lower fatigue lives at lower strain amplitudes. The crack propagation is mainly transgranular. The solidification cellular structure seems to be the most relevant underlying microstructural feature determining the cyclic deformation behavior. T2 - TMS 2024 Annual Meeting & Exhibition CY - Orlando, Florida, US DA - 03.03.2024 KW - AGIL KW - Additive Fertigung KW - Mikrostruktur KW - LCF KW - 316L PY - 2024 AN - OPUS4-59782 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Werner, Tiago A1 - Kiyak, Yusuf A1 - Madia, Mauro A1 - Evans, Alexander T1 - Experimentelle und numerische Untersuchung des Druckanschwingens von bruchmechanischen Proben aus konventionell und additiv gefertigtem 316L Stahl N2 - Die Erzeugung rissschließfreier Anrisse in gekerbten bruchmechanischen Proben für anschließende Ermüdungsversuche kann durch eine zyklische Druckbelastung an der Kerbe erfolgen: Bei der Erstbelastung wird eine plastische Verformung an der Kerbspitze erzeugt, welche Zugeigenspannungen und damit eine risstreibende Kraft bei der folgenden zyklischen Druckbelastung hervorruft. Durch das Risswachstum kommt es zu einer Entspannung, bis der Riss schließlich arretiert, weil die effektive risstreibende Kraft auf den Schwellenwert abgesunken ist. Um Kurzrisswachstum in additiv, mittels pulverbettbasiertem Laserstrahlschmelzen (Laser Powder Bed Fusion - LPBF) gefertigtem AISI 316L Stahl und seinem konventionell erzeugten, warmgewalzten Pendant zu untersuchen, wurde dieses Verfahren im Rahmen der vorliegenden Arbeit genutzt. Im Falle des additiv gefertigten Materials kam es zu unerwartet langem Ermüdungsrisswachstum, bevor der Riss arretierte. Zur Ermittlung der Ursache erfolgte eine Messung der Eigenspannungsverteilungen mittels Neutronendiffraktion in der Kerbebene der additiv gefertigten Proben. Anschließend wurde ein Finite-Elemente-Modell zur Simulation des Ermüdungsrisswachstums in konventionellem und additiv gefertigtem Material implementiert. Im Rahmen dieses Vortrages wird insbesondere auf das Vorgehen bei der Simulation und auf die getroffenen Annahmen und Vereinfachungen eingegangen. Die Resultate werden mit den experimentellen Ergebnissen verglichen und das für die Simulation von Risswachstum genutzte Knoten-Freigabe-Verfahren (Node-Release), das Einbringen von Eigenspannungen als initiale Spannungen in der Simulation, und die Rechengrößen zur Quantifizierung der risstreibenden Kraft kritisch diskutiert. T2 - 56. DVM Tagung "Bruchmechanik und Bauteilsicherheit" CY - Kassel, Germany DA - 20.02.2024 KW - PBF/LB KW - Additive Fertigung KW - Ermüdungsrisswachstum KW - Druckanschwingen KW - FEM KW - Node-release KW - Eigenspannungsmessung KW - Neutronendiffraktion PY - 2024 AN - OPUS4-59559 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schröpfer, Dirk A1 - Wandtke, Karsten A1 - Kromm, Arne A1 - Kannengießer, Thomas A1 - Scharf-Wildenhain, Ronny A1 - Hälsig, André A1 - Hensel, Jonas T1 - Residual stress formation in DED-arc manufactured high strength steel components N2 - Additive manufacturing (AM) processes enable the efficient production of advanced constructions. New developments in topology optimization are leading to weight-optimized designs of increasing complexity. Direct energy deposition processes (DED) such as wire and arc-based additive manufacturing are an important method of additive manufacturing. The wire filler metals enable a wide range of materials, while the arc process provides a high deposition rate compared to laser and powder-based processes. Combined with the use of high-strength steels, the thickness of walls or components can be significantly reduced in the context of lightweight construction, which results in significant savings in energy, costs, time and resources. Suitable high-strength steel filler metals are commercially available for DED-arc AM processes. However, guidelines and quantitative knowledge about welding stresses and cold cracking issues during component production and service are lacking. This limits the industrial application considerably. In a joint project of BAM and Chemnitz University of Technology, the main influences and complex interactions of material, production process, design and processing steps on the residual stress level are investigated. The aim is to develop processing recommendations and a cold cracking test for economical processing and stress-related design of high-strength steels with DED-arc. This study focuses on residual stress analysis by neutron diffraction (ND) and X-ray diffraction (XRD) on defined test specimens. The ND analysis were performed at the Paul Scherrer Institute- Villigen, Switzerland (PSI) and the XRD analysis at BAM. The study shows a quantitative and qualitative comparison of the residual stress magnitudes and distribution between the component bulk (ND) and surface (XRD) analyses. The ND analysis reveals that in DED-arc AM walls the residual stresses dominate in the direction of welding and are negligibly small in each case transverse to the direction of welding. The topology of the analyzed residual stresses shows almost identical residual stress maps compared to XRD. In addition, the residual stresses are significantly influenced by the solid phase transformation of the material due to low cooling times and less post heat treatment cycles of following AM layers in the area of the top layer. T2 - IIW Intermediate Meeting 2023 CII and CIX CY - Munich, Germany DA - 06.03.2023 KW - WAAM KW - Residual Stresses KW - High-strength Steels KW - Microstructure KW - Cold cracking safety KW - Wind energy PY - 2023 AN - OPUS4-59261 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - THES A1 - Charmi, Amir T1 - A multiscale numerical framework for the simulation of anistropic material response of additively manufactured stainless steel 316L undergoing large plastic deformation N2 - Additive manufacturing (AM) offers significantly greater freedom of design compared to conventional manufacturing processes since the final parts are built layer by layer. This enables metal AM, also known as metal 3D printing, to be utilized for improving efficiency and functionality, for the production of parts with very complex geometries, and rapid prototyping. However, despite many technological advancements made in recent years, several challenges hinder the mass adoption of metal AM. One of these challenges is mechanical anisotropy which describes the dependency of material properties on the material orientation. Therefore, in this work, stainless steel 316L parts produced by laser-based powder bed fusion are used to isolate and understand the root cause of anisotropy in AM parts. Furthermore, an efficient and accurate multiscale numerical framework is presented for predicting the deformation behavior of actual AM parts on the macroscale undergoing large plastic deformations. Finally, a novel constitutive model for the plastic spin is formulated to capture the influence of the microstructure evolution on the material behavior on the macroscale. KW - Additive Fertigung KW - Austenitischer Stahl KW - Finite-Elemente-Methode KW - Mehrskalenmodell KW - Simulation PY - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20240207-173356-002 SP - 1 EP - 163 PB - Bauhaus-Universität Weimar CY - Weimar AN - OPUS4-59511 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - O'Connor, Daniel A1 - Evans, Alexander A1 - Balsamo, Alessandro A1 - Favres, Georges A1 - Przyklenk, Anita A1 - Bosse, Harald A1 - Phillips, Dishi T1 - European Metrology Network (EMN) for Advanced Manufacturing Development of the Strategic Research Agenda (SRA) N2 - The European Commission has identified Advanced Manufacturing and Advanced Materials as two of six Key Enabling Technologies (KETs). It is considered that Metrology is a key enabler for the advancement of these KETs. Consequently, EURAMET, the association of metrology institutes in Europe, has strengthened the role of Metrology for these KETs by enabling the creation of a European Metrology Network (EMN) for Advanced Manufacturing. The EMN is comprised of National Metrology Institutes (NMIs) and Designated Institutes (DIs) from across Europe and was formally established in October 2021. The aim of the EMN is to provide a high-level coordination of European metrology activities for the Advanced Manufacturing community. The EMN itself is organized in three sections representing the major stages of the manufacturing chain: 1) Advanced Materials, 2) Smart Manufacturing Systems, and 3) Manufactured Components & Products. The EMN for Advanced Manufacturing is engaging with stakeholders in the field of Advanced Manufacturing (large companies & SMEs, industry organisations, existing networks, and academia), as well as the wider Metrology community, including Technical Committees, to provide input for the Strategic Research Agenda (SRA) on Metrology for Advanced Manufacturing. This contribution will give an overview about the first version of the SRA prepared by the EMN for Advanced Manufacturing. T2 - Euspen, 23rd International Conference & Exhibitio CY - Copenhagen, Danmark DA - 13.06.2023 KW - European Metrology Network (EMN) KW - Advanced Manufacturing KW - Metrology KW - Strategic Research Agenda (SRA) PY - 2023 AN - OPUS4-59176 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Evans, Alexander A1 - Sprengel, Maximilian A1 - Ulbricht, Alexander A1 - Kromm, Arne A1 - Mishurova, Tatiana A1 - Serrano-Munoz, Itziar A1 - Fritsch, Tobias A1 - Schröder, Jakob A1 - Kannengießer, Thomas A1 - Bruno, Giovanni T1 - Residual stresses Analysis in Additively Manufactured alloys using neutron diffraction (L-PBF) N2 - An overview of recent progress at BAM of residual stress analysis in additively manufactured, in particular Laser Powder Bed Fusion of metallics materials, using neutron diffraction will be presented. This will cover important topics of the stress-free reference, the diffraction elastic moduli and principal stress determination. T2 - AWT-Fachausschuss 13 "Eigenspannungen" CY - Berlin, Germany DA - 28.03.2023 KW - AGIL KW - Residual stress KW - Additive manufacturing KW - Laser Powder Bed Fusion KW - Diffraction PY - 2023 AN - OPUS4-59177 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Prabitz, Konstantin Manuel A1 - Antretter, Thomas A1 - Rethmeier, Michael A1 - El-Sari, Bassel A1 - Schubert, Holger A1 - Hilpert, Benjamin A1 - Gruber, Martin A1 - Sierlinger, Robert A1 - Ecker, Werner T1 - Numerical and experimental assessment of liquid metal embrittlement in externally loaded spot welds N2 - Zinc-based surface coatings are widely applied with high-strength steels in automotive industry. Some of these base materials show an increased brittle cracking risk during loading. It is necessary to examine electrogalvanized and uncoated samples of a high strength steel susceptible to liquid metal embrittlement during spot welding with applied external load. Therefore, a newly developed tensile test method with a simultaneously applied spot weld is conducted. A fully coupled 3D electrical, thermal, metallurgical and mechanical finite element model depicting the resistant spot welding process combined with the tensile test conducted is mandatory to correct geometric influences of the sample geometry and provides insights into the sample’s time dependent local loading. With increasing external loads, the morphology of the brittle cracks formed is affected more than the crack depth. The validated finite element model applies newly developed damage indicators to predict and explain the liquid metal embrittlement cracking onset and development as well as even ductile failure. KW - Resistance spot welding KW - Finite element simulation KW - Advanced high-strength steel KW - Liquid metal embrittlement KW - Damage prediction KW - Tensile resistance spot welding experiment PY - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-594848 SN - 0043-2288 SP - 1 EP - 10 PB - Springer Science and Business Media LLC AN - OPUS4-59484 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pittner, Andreas A1 - Winterkorn, René A1 - Fabry, Cagtay A1 - Rethmeier, Michael T1 - Life cycle assessment of fusion welding processes considering upstream and downstream process steps N2 - In manufacturing, fusion welding processes consume significant resources, presenting a significant opportunity for reducing environmental impact. Although there is a qualitative understanding of the environmental implications of these processes, a quantitative assessment of key parameters remains complex. This study introduces a welding-specific methodology that employs life cycle assessment (LCA) to quantitatively evaluate the environmental footprint of fusion welding technologies. Our approach identifies and analyses the principal parameters affecting the environmental performance of various welding techniques, including traditional joint welding and additive manufacturing via the Direct Energy Deposition-Arc (DED-Arc) process. Real-time resource usage data is integrated to offer an innovative framework for directly deriving environmental impacts. This research contributes to optimising welding processes by providing a precise and quantifiable measure of their ecological impact. This facilitates the advancement of sustainable manufacturing practices. T2 - Joining Smart Technologies - International Automotive Conference CY - Wels, Austria DA - 10.05.2023 KW - Life Cycle Assessment KW - Arc welding KW - Additive manufacturing KW - DED-Arc PY - 2023 AN - OPUS4-59494 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pittner, Andreas A1 - Winterkorn, René A1 - Fabry, Cagtay A1 - Rethmeier, Michael T1 - Life cycle assessment of fusion welding processes strategies and implementation N2 - In manufacturing, fusion welding processes use a lot of resources, which presents an opportunity to reduce environmental impact. While there is a general understanding of the environmental impact of these processes, it is difficult to quantitatively assess key parameters. This study introduces a welding-specific methodology that uses life cycle assessment (LCA) to evaluate the environmental impact of fusion welding technologies. Our approach analyses the main parameters that affect the environmental performance of different welding techniques, including traditional methods and additive manufacturing through the Direct Energy Deposition-Arc (DED-Arc) process. We integrate real-time resource usage data to offer an innovative framework for directly deriving environmental impacts. This research contributes to optimising welding processes by providing a precise and quantifiable measure of their ecological impact, facilitating the advancement of sustainable manufacturing practices. T2 - CEMIVET - Circular Economy in Metal Industries CY - Berlin, Germany DA - 06.06.2023 KW - Life Cycle Assessment KW - Fusion welding KW - Additive manufacturing KW - DED-Arc PY - 2023 AN - OPUS4-59499 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pittner, Andreas A1 - Winterkorn, René A1 - Fabry, Cagtay A1 - Rethmeier, Michael T1 - Wire arc additive manufacturing of high strength al-mg-si alloys N2 - Direct energy deposition additive manufacturing technologies utilizing an electric arc offer a great potential in generating large volume metal components. However, the selection of process parameters that yield the desired near net shape design as well as the requested mechanical component behavior is not a trivial task due to the complex relationship. Exemplarily for additive manufacturing of high-strength precipitation hardening AlMgSi-aluminum alloy this paper shows the application of a newly developed matching solid welding wire doped with TiB as grain refiner. The correlation between process parameters and component quality is examined analyzing the size and distribution of pores as well as the grain morphology. Furthermore, the influences of different post-weld heat treatments are evaluated to meet the reference mechanical properties of the corresponding wrought material. Finally, the digital integration of the entire additive manufacturing chain enables an overall traceability of the relevant process steps which is the basis for a reliable subsequent quality assessment. T2 - THERMEC'2023 International Conference on PROCESSING & MANUFACTURING OF ADVANCED MATERIALS: Processing, Fabrication, Properties, Applications CY - Vienna, Austria DA - 02.07.2023 KW - Additive Manufacturing KW - DED-Arc KW - Grain refinement KW - High strength AlMgSi aluminium alloys KW - Mechanical properties PY - 2023 AN - OPUS4-59500 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Meinel, Dietmar A1 - Ulbricht, Alexander A1 - Gardei, André T1 - Classic Materials Testing in the Light of CT N2 - Currently, mandatory requirements and recommendations for the detection of irregularities in laser beam welded joints are based on classic micrographs as set out in the standard ISO 13919-1:2019. Compared to classic micrographs, computed tomography enables a non-destructive, three-dimensional and material-independent mode of operation, which delivers much more profound results. Even in building material testing, methods with limited informative value can be checked and supplemented by CT examinations. T2 - 13th International Conference on Industrial Computed Tomography (iCT2024) CY - Wels, Austria DA - 06.02.2024 KW - Computed Tomography KW - Additive Manufacturing KW - Machine-Learning Segmentation KW - Air Void System PY - 2024 AN - OPUS4-59568 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Müller, Vinzenz A1 - Fasselt, Janek Maria A1 - Kruse, Tobias A1 - Klötzer, Christian A1 - Kleba-Ehrhardt, Rafael A1 - Choma, Tomasz A1 - Biegler, Max A1 - Rethmeier, Michael T1 - Using ultrasonic atomization to recycle aluminium bronze chips for additive laser directed energy deposition N2 - Abstract In the post-processing of large maritime components, a considerable amount of waste in the form of milling and grinding chips is produced. At the same time, additive manufacturing technologies have shown great potential in producing high-volume parts for maritime applications, allowing novel design approaches and short lead times. In this context, this study presents a sustainable approach to recycle and use aluminium bronze waste material, generated during post-processing of large cast ship propellers, as feedstock for laser-powder directed energy deposition. The recycling technology used to produce powder batches is inductive re-melting in combination with ultrasonic atomization. The derived metal powders are characterized using digital image analysis, powder flowability tests, scanning electron microscopy as well as energy dispersive X-ray spectroscopy. Compared to conventional metal powders produced by gas atomization, the recycled material shows excellent sphericity and a powder size distribution with a higher content of finer and coarser particles. Metallographic sections of deposited additively produced specimens show an increased hardness and reduced ductility, but also competitive densities and higher yield and ultimate tensile strength compared to cast material. The process chain shows high potential for the maritime sector to enable circular and sustainable manufacturing. KW - Industrial and Manufacturing Engineering PY - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-594444 VL - 1296 IS - 1 SP - 1 EP - 11 PB - IOP Publishing AN - OPUS4-59444 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Andrés Arcones, Daniel A1 - Diercks, Philipp A1 - Robens-Radermacher, Annika A1 - Rosenbusch, Sjard Mathis A1 - Tamsen, Erik A1 - Tyagi, Divyansh A1 - Unger, Jörg F. T1 - FenicsXConcrete N2 - FenicsXConcrete is a Python package for the simulation of mechanical problems. The general PDE solving software FEniCSx is extended with classes describing experimental setups, mechanical problems, thermo-mechanical problems, additive manufacturing and sensors. KW - FEM KW - Fenics KW - Concrete modelling PY - 2023 UR - https://github.com/BAMresearch/FenicsXConcrete U6 - https://doi.org/10.5281/zenodo.7780757 PB - Zenodo CY - Geneva AN - OPUS4-59121 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Madia, Mauro A1 - Mohr, G. A1 - Blasón, S. A1 - Hilgenberg, K. T1 - Design of representative specimens for the characterization of the fatigue properties of metallic components fabricated by PBF-LB/M N2 - The process-structure-property-performance relationship is a fundamental paradigm in metal additive manufacturing (AM). The knowledge of how process parameters and post-process treatments influence the material properties and therefore the structural integrity of additively manufactured metallic components is of paramount importance. With respect to this, one of the unsolved problems related to the unique AM process is the reliability of witness samples for part qualification. Focusing on the Laser Powder Bed Fusion (PBF-LB/M) process, the microstructure and therefore the mechanical performance of test coupons are not representative of parts of the same material in every case. This work summarizes part of the results of an ongoing cooperation between BAM and BASF, which aims at addressing this issue by designing dedicated specimens, representative of the fatigue properties of the real component. The considered case study consisted in the fabrication and characterization of the fatigue properties of a pressure vessel made of AISI 316L. The first phase of the project was devoted to the process monitoring to understand the relationship between process parameters and temperature distribution during the fabrication of the component. Finite element models were tuned on the experimental data from the process monitoring and simulations of the temperature field in the component were conducted. The numerical results were in good agreement with the temperature profiles measured during the fabrication of the component. The second phase dealt with the evaluation of the fatigue and fatigue crack propagation properties on specimens extracted from different regions of the pressure vessel. The experimental investigations showed significant differences in hoop and longitudinal direction. A clear dependence of the fatigue properties on heat accumulation (temperature distribution) and defect size was pointed out. The third phase encompassed the fabrication and testing of the representative specimens. Numerical simulations were used to design specimens displaying the same temperature profile as in the most critical region of the component. The fatigue testing of the representative specimens is subject of ongoing work. T2 - 8. DVM-Tagung Additiv gefertigte Bauteile und Strukturen CY - Berlin, Germany DA - 28.11.2023 KW - PBF-LB/M KW - Process Monitoring KW - Process Simulation KW - Fatigue KW - Representative Specimens PY - 2023 AN - OPUS4-58973 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mishurova, Tatiana T1 - Applications of x-ray computed tomography in material science N2 - The overview of the activity of Federal Institute for Material Research and Testing (BAM, Belin, Germany) in the field material characterization by X-ray imaging is presented. The principle of X-ray Computed Tomography (XCT) is explained. The multiple examples of application of quantitative analysis by XCT are reported, such as additive manufacturing, Li-ion battery, concrete research. T2 - Lecture for PhD students at Politecnico di Torino CY - Turin, Italy DA - 14.03.2024 KW - X-ray computed tomography KW - Additive manufacturing PY - 2024 AN - OPUS4-59689 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kindrachuk, Vitaliy A1 - Darvishi Kamachali, Reza T1 - Mean-field modeling and Phase-field simulation of Grain Growth under Directional driving forces N2 - Directional grain growth is a common phenomenon in the synthetic and natural evolution of various polycrystals. It occurs in the presence of an external driving force, such as a temperature gradient, along which grains show a preferred, yet competitive, growth. Novel additive manufacturing processes, with intense, localized energy deposition, are prominent examples of when directional grain growth can occur, beneath the melting pool. In this work, we derive a phenomenological mean-field model and perform 3D phase-field simulations to investigate the directional grain growth and its underlying physical mechanisms. The effect of the intensity of driving force is simulated and systematically analyzed at the evolving growth front as well as various cross-sections perpendicular to the direction of the driving force. We found that although the directional growth significantly deviates from normal grain growth, it is still governed by a power law relation \propto t^n with an exponent n ~ 0.6–0.7. The exponent exhibits a nontrivial dependence on the magnitude of the directional driving force, such that the lowest growth exponent is observed for intermediate driving forces. We elaborate that this can originate from the fact that the forces at grain boundary junctions evolve out of balance under the influence of the directional driving force. With increasing the driving forces, the growth exponent asymptotically approaches a value of n~0.63, imposed by the largest possible grain aspect ratio for given grain boundary energies. The current combined mean-field and phase-field framework pave the way for future exploration in broader contexts such as the evolution of complex additively manufactured microstructures. KW - Additive Manufacturing KW - Phase-field simulation KW - Grain growth KW - Mean-field modelling KW - Directional grain growth PY - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-593210 UR - https://www.sciencedirect.com/science/article/pii/S2589152923003162 SN - 2589-1529 VL - 33 SP - 1 EP - 10 PB - Elsevier AN - OPUS4-59321 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Silbernagl, Dorothee A1 - Szymoniak, Paulina A1 - Tavasolyzadeh, Zeynab A1 - Sturm, Heinz A1 - Topolniak, Ievgeniia T1 - Interpenetrating Polymer Networks with Tuned Thermal and Mechanical Properties by Multiphoton Lithography N2 - Multiphoton lithography (MPL) has recently attracted significant research interest as a versatile tool capable of fabricating 2D and 3D micro- and nanoscopic features with high spatial resolution. The integrity of MPL microstructures, or their ability to respond to external stimuli, is of critical importance. Often, the mechanically flexible micro-objects are expected to be capable of shape morphing, bending, or other motion to ensure their functionality. However, achieving the desired properties of MPL-manufactured micro components for a specific application still remains challenging. In this work, we present new MPL materials based on epoxy-acrylate interpenetrating networks (IPNs). We aim at fabrication 3D microstructures, whose properties can be easily tuned by varying the ratio of the IPN components and fabrication parameters. The studied mixtures consist of polyethylene glycol diacrylate (PEGDA) and cycloaliphatic epoxide functional groups. Consequently, tryarylsylfonium salt and cyclopentanone photoinitiator tailored for MPL were used to ensure cationic and radical polymerization, respectively. The resulting library of 3D microstructures was investigated for their thermal and mechanical properties using highly sensitive space-resolved methods. For the first time, we were able to evaluate the glass transition behavior of 3D MPL microstructures using fast scanning calorimetry. The influence of both IPN composition and fabrication parameters on glass transition temperature and material fragility was demonstrated. AFM force-distance curve and intermodulation methods were used to characterize the micromechanical properties with lateral resolution of the techniques in the range of 1 micron and 4 nm, respectively. The elastic-plastic behavior of the microarchitectures was evaluated and explained in terms of IPN morphology and thermal properties. The fabricated 3D IPN microstructures exhibit higher structural strength and integrity compared to PEGDA. In addition, IPNs exhibit high to full elastic recovery (up to 100%) with bulk modulus in the range of 4 to 6 MPa. This makes IPNs a good base material for modeling microstructures with intricate 3D designs for biomimetics and scaffold engineering. The effects of composition and MPL microfabrication parameters on the resulting IPN properties give us a better understanding of the underlying mechanisms and microfabrication-structure-property relationships. Moreover, our funding supports the further development of IPN systems as versatile and easily tunable MPL materials. T2 - Material Research Society Meeting CY - Boston, Massachusetts, USA DA - 26.11.2023 KW - Multiphoton Lithography KW - Two-photon polymerisatio KW - Interpenetrating polymer network PY - 2023 SP - 1 AN - OPUS4-59382 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - El-Sari, B. A1 - Biegler, M. A1 - Gook, S. A1 - Rethmeier, Michael T1 - KI zur Prozessüberwachung im Unterpulverschweißen N2 - Beim Unterpulverschweißen sind die Prozessgeräusche ein Indikator für eine gute Fügequalität. Diese Beurteilung kann i.d.R. nur von einer erfahrenen Fachkraft durchgeführt werden. Eine kürzlich entwickelte künstliche Intelligenz kann automatisch das akustische Prozesssignal anhand vortrainierter Merkmale klassifizieren und die Fügequalität anhand des Geräuschs beurteilen. Der Algorithmus, einmal richtig trainiert, kann den Prüfaufwand beim Unterpulverschweißen deutlich reduzieren. KW - Unterpulverschweißen KW - Künstliche Intelligenz KW - Prozessüberwachung KW - Körperschall PY - 2024 SP - 1 EP - 2 AN - OPUS4-59483 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wandtke, Karsten A1 - Schröpfer, Dirk A1 - Kannengießer, Thomas A1 - Scharf-Wildenhain, R. A1 - Hälsig, A. A1 - Hensel, J. T1 - Einfluss trennender Fertigungsschritte auf die Eigenspannungen in Bauteilen aus hochfestem Stahl N2 - Der Vortrag gibt einen Überblick über den Einfluss trennender Fertigungsschritte auf die Eigenspannungen in Bauteilen aus hochfestem Stahl. T2 - Bachelor-, Master-, Doktoranden-Kolloquium OvGU Magdeburg CY - Magdeburg, Germany DA - 17.01.2024 KW - Hochfester Stahl KW - Additive Fertigung KW - Reparaturschweißen KW - Eigenspannungen PY - 2024 AN - OPUS4-59413 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Oster, Simon A1 - Scheuschner, Nils A1 - Chand, Keerthana A1 - Altenburg, Simon A1 - Gerlach, Gerald T1 - Potentials and challenges of deep-learning-assisted porosity prediction based on thermographic in-situ monitoring in PBF-LB/M N2 - Laser powder bed fusion is one of the most promising additive manufacturing techniques for printing complex-shaped metal components. However, the formation of subsurface porosity poses a significant risk to the service lifetime of the printed parts. In-situ monitoring offers the possibility to detect porosity already during manufacturing. Thereby, process feedback control or a manual process interruption to cut financial losses is enabled. Short-wave infrared thermography can monitor the thermal history of manufactured parts which is closely connected to the probability of porosity formation. Artificial intelligence methods are increasingly used for porosity prediction from the obtained large amounts of complex monitoring data. In this study, we aim to identify the potential and the challenges of deep-learning-assisted porosity prediction based on thermographic in-situ monitoring. Therefore, the porosity prediction task is studied in detail using an exemplary dataset from the manufacturing of two Haynes282 cuboid components. Our trained 1D convolutional neural network model shows high performance (R2 score of 0.90) for the prediction of local porosity in discrete sub-volumes with dimensions of (700 x 700 x 40) μm³. It could be demonstrated that the regressor correctly predicts layer-wise porosity changes but presumably has limited capability to predict differences in local porosity. Furthermore, there is a need to study the significance of the used thermogram feature inputs to streamline the model and to adjust the monitoring hardware. Moreover, we identified multiple sources of data uncertainty resulting from the in-situ monitoring setup, the registration with the ground truth X-ray-computed tomography data and the used pre-processing workflow that might influence the model’s performance detrimentally. T2 - XXXVII. Messtechnisches Symposium 2023 CY - Freiburg im Breisgau, Germany DA - 27.09.2023 KW - Porosity prediction KW - Defect detection KW - Laser Powder Bed Fusion (PBF-LB/M, L-PBF) KW - Selective Laser Melting KW - Thermography KW - Machine Learning PY - 2023 AN - OPUS4-59192 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Merz, Benjamin A1 - Poka, Konstantin A1 - Mohr, Gunther A1 - Hilgenberg, Kai T1 - Precise Position Detection for Repair of Gas Turbine Blades using PBF-LB/M N2 - Additive manufacturing (AM) technologies are becoming increasingly important, not only for the manufacture of parts, but also as repair technology that complement existing production technologies. Powder bed fusion of metals by laser beam (PBF-LB/M) combines the freedom in design with high achievable accuracy, making it ideal as a repair approach. However, there are still challenges in adapting process for repair applications. When mounting parts inside PBF-LB/M machines, their real position within the build volume is unknown. One goal of a repair process is to minimize the offset between the base component and the additively manufactured structure to reduce additional rework. For a minimum offset between component and additively manufactured structure, the actual position of the component has to be identified with high precision within the machine coordinate system (MCS). In this work a process setup is presented that allows the actual position of a gas turbine blade to be detected inside a PBF-LB/M machine. A high resolution camera with 65 megapixel is used for this purpose. The presented setup is implemented on a SLM 280 HL PBF-LB/M machine. In addition to the setup, a novel repair workflow using PBF-LB/M is presented. The developed setup and workflow consider inaccuracies in the component and camera mounting, as well as process inaccuracies. This includes keystone distortion correction by homography. The machine setup and workflow are used to repair a real gas turbine blade. Subsequently the offset between the turbine blade and the additivley manufactured structure is validated by 3D scanning the repaired part. The maximum offset is 160 µm. The presented approach can be extended to other geometries and PBF-LB/M machine manufacturers. The high-resolution camera approach is platform independent, which facilates the market penetration of PBF-LB/M repair processes. T2 - International Symposium Additive Manufacturing 2023 (ISAM 2023) CY - Dresden, Germany DA - 30.11.2023 KW - additive manufacturing KW - powder bed fusion of metals utilizing a laser beam KW - PBF-LB/M KW - hybrid repair KW - position detection KW - high-resolution camera PY - 2023 AN - OPUS4-59193 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - O'Connor, Daniel A1 - Evans, Alexander A1 - Balsamo, Alessandro A1 - Favres, Georges A1 - Przyklenk, Anita A1 - Bosse, Harald A1 - Phillips, Dishi T1 - European Metrology Network (EMN) for Advanced Manufacturing ─ Development of the Strategic Research Agenda (SRA) N2 - The European Commission has identified Advanced Manufacturing and Advanced Materials as two of six Key Enabling Technologies (KETs). It is considered that Metrology is a key enabler for the advancement of these KETs. Consequently, EURAMET, the association of metrology institutes in Europe, has strengthened the role of Metrology for these KETs by enabling the creation of a European Metrology Network (EMN) for Advanced Manufacturing. The EMN is comprised of National Metrology Institutes (NMIs) and Designated Institutes (DIs) from across Europe and was formally established in October 2021. The aim of the EMN is to provide a high-level coordination of European metrology activities for the Advanced Manufacturing community. The EMN itself is organized in three sections representing the major stages of the manufacturing chain: 1) Advanced Materials, 2) Smart Manufacturing Systems, and 3) Manufactured Components & Products. The EMN for Advanced Manufacturing is engaging with stakeholders in the field of Advanced Manufacturing (large companies & SMEs, industry organisations, existing networks, and academia), as well as the wider Metrology community, including Technical Committees, to provide input for the Strategic Research Agenda (SRA) on Metrology for Advanced Manufacturing. This contribution will give an overview about the first version of the SRA prepared by the EMN for Advanced Manufacturing T2 - Euspen, 23rd International Conference & Exhibitio CY - Copenhagen, Danmark DA - 12.06.2023 KW - European Metrology Network (EMN) KW - Advanced Manufacturing KW - Metrology KW - Strategic Research Agenda (SRA) PY - 2023 SP - 363 EP - 364 AN - OPUS4-59196 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wandtke, Karsten ED - Becker, Amadeus ED - Schröpfer, Dirk ED - Kromm, Arne ED - Kannengießer, Thomas ED - Scharf-Wildenhain, R. ED - Hälsig, A. ED - Hensel, J. T1 - Residual Stress Evolution during Slot Milling for Repair Welding and Wire Arc Additive Manufacturing of High-Strength Steel Components N2 - High-strength steels offer potential for weight optimization due to reduced wall thicknesses in modern constructions. Additive manufacturing processes such as Wire Arc Additive Manufacturing (WAAM) enable the resource-efficient production of structures. In the case of defects occurring in weld seams orWAAM components due to unstable process conditions, the economical solution is local gouging or machining and repair welding. It is important to understand the effects of machining steps on the multiaxial stress state in conjunction with the design-related shrinkage restraints. Research into how welding and slot milling of welds andWAAM structures affects residual stresses is still lacking. For this reason, component-related investigations with high-strength steels with yield strengths ≥790 MPa are carried out in our research. In-situ digital image correlation (DIC) and ex-situ X-ray diffraction (XRD) were used to analyze the stresses and strains induced on specimens during and after milling. The systematic analyses revealed a significant interaction of the stiffness and microstructure of the specimens with the initial residual stresses induced by welding. Subsequent repair welds can result in significantly higher residual stresses. KW - High strength steels KW - Additive manufacturing KW - Residual stress KW - Repair welding KW - Ditigtal image correlation PY - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-593515 VL - 14 IS - 1 SP - 1 EP - 11 PB - MDPI CY - Basel AN - OPUS4-59351 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Becker, Tina A1 - Breese, Philipp P A1 - Metz, Christian A1 - Altenburg, Simon T1 - In-situ monitoring for PBF-LB/M processes: Does multispectral optical tomography add value in recognizing process deviations? N2 - Laser powder bed fusion of metallic components (PBF-LB/M) is gaining acceptance in industry. However, the high costs and lengthy qualification processes required for printed components create the need for more effective in-situ monitoring and testing methods. This article proposes multispectral Optical Tomography (OT) as a new approach for monitoring the PBF-LB/M process. Compared to other methods, OT is a low-cost process monitoring method that uses long-time exposure imaging to observe the build process. However, it lacks time resolution compared to expensive thermographic sensor systems. Monochromatic OT (1C-OT) is already commercially available and observes the building process layer-wise using a single wavelength window in the NIR range. Multispectral OT (nC-OT) utilizes a similar setup but can measure multiple wavelength ranges per location simultaneously. By comparing the classical 1C-OT and nC-OT approaches, this article examines the advantages of nC-OT (two channel OT and RGB-OT) in reducing the false positive rate for process deviations and approximating maximum temperatures for a better comparison between different build processes and materials. This could ultimately reduce costs and time for part qualification. The main goal of this contribution is to assess the advantages of nC-OT compared to 1C-OT for in-situ process monitoring of PBF-LB/M. T2 - Nolamp 2023 CY - Turku, Finland DA - 22.08.2023 KW - Thermography KW - Process Monitoring KW - Additive manufacturing KW - BPF-LB/M KW - In-situ PY - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-592498 VL - 1296 SP - 1 EP - 11 PB - IOP Publishing CY - Bristol, UK AN - OPUS4-59249 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schröpfer, Dirk A1 - Wandtke, Karsten A1 - Kromm, Arne A1 - Kannengießer, Thomas A1 - Scharf-Wildenhain, R. A1 - Hälsig, A. A1 - Hensel, J. T1 - Residual stress formation in DED-arc manufactured high strength steel components N2 - Additive manufacturing (AM) processes enable the efficient production of advanced constructions. New developments in topology optimization are leading to weight-optimized designs of increasing complexity. Direct energy deposition processes (DED) such as wire and arc-based additive manufacturing are an important method of additive manufacturing. The wire filler metals enable a wide range of materials, while the arc process provides a high deposition rate compared to laser and powder-based processes. Combined with the use of high-strength steels, the thickness of walls or components can be significantly reduced in the context of lightweight construction, which results in significant savings in energy, costs, time and resources. Suitable high-strength steel filler metals are commercially available for DED-arc AM processes. However, guidelines and quantitative knowledge about welding stresses and cold cracking issues during component production and service are lacking. This limits the industrial application considerably. In a joint project of BAM and Chemnitz University of Technology, the main influences and complex interactions of material, production process, design and processing steps on the residual stress level are investigated. The aim is to develop processing recommendations and a cold cracking test for economical processing and stress-related design of high-strength steels with DED-arc. This study focuses on residual stress analysis by neutron diffraction (ND) and X-ray diffraction (XRD) on defined test specimens. The ND analysis were performed at the Paul Scherrer Institute- Villigen, Switzerland (PSI) and the XRD analysis at BAM. The study shows a quantitative and qualitative comparison of the residual stress magnitudes and distribution between the component bulk (ND) and surface (XRD) analyses. The ND analysis reveals that in DED-arc AM walls the residual stresses dominate in the direction of welding and are negligibly small in each case transverse to the direction of welding. The topology of the analyzed residual stresses shows almost identical residual stress maps compared to XRD. In addition, the residual stresses are significantly influenced by the solid phase transformation of the material due to low cooling times and less post heat treatment cycles of following AM layers in the area of the top layer. T2 - IIW Intermediate Meeting C-II/CIX CY - Munich, Germany DA - 06.03.2023 KW - Additive manufacturing KW - High strength steel KW - Residual stress PY - 2023 AN - OPUS4-59307 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wandtke, Karsten A1 - Schröpfer, Dirk A1 - Kromm, Arne A1 - Kannengießer, Thomas A1 - Scharf- Wildenhain, R. A1 - Hälsig, A. A1 - Hensel, J. T1 - Residual stress formation in DED-arc manufactured high strength steel components N2 - Additive manufacturing (AM) processes enable the efficient production of advanced constructions. New developments in topology optimization are leading to weight-optimized designs of increasing complexity. Direct energy deposition processes (DED) such as wire and arc-based additive manufacturing are an important method of additive manufacturing. The wire filler metals enable a wide range of materials, while the arc process provides a high deposition rate compared to laser and powder-based processes. Combined with the use of high-strength steels, the thickness of walls or components can be significantly reduced in the context of lightweight construction, which results in significant savings in energy, costs, time and resources. Suitable high-strength steel filler metals are commercially available for DED-arc AM processes. However, guidelines and quantitative knowledge about welding stresses and cold cracking issues during component production and service are lacking. This limits the industrial application considerably. In a joint project of BAM and Chemnitz University of Technology, the main influences and complex interactions of material, production process, design and processing steps on the residual stress level are investigated. The aim is to develop processing recommendations and a cold cracking test for economical processing and stress-related design of high-strength steels with DED-arc. This study focuses on residual stress analysis by neutron diffraction (ND) and X-ray diffraction (XRD) on defined test specimens. The ND analysis were performed at the Paul Scherrer Institute- Villigen, Switzerland (PSI) and the XRD analysis at BAM. The study shows a quantitative and qualitative comparison of the residual stress magnitudes and distribution between the component bulk (ND) and surface (XRD) analyses. The ND analysis reveals that in DED-arc AM walls the residual stresses dominate in the direction of welding and are negligibly small in each case transverse to the direction of welding. The topology of the analyzed residual stresses shows almost identical residual stress maps compared to XRD. In addition, the residual stresses are significantly influenced by the solid phase transformation of the material due to low cooling times and less post heat treatment cycles of following AM layers in the area of the top layer. T2 - IIW Intermediate Meeting C-XIII CY - Online meeting DA - 20.04.2023 KW - Additive Manufacturing KW - High strength steel KW - Residual Stress PY - 2023 AN - OPUS4-59308 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tang, Lei A1 - Magdysyuk, Oxana V. A1 - Jiang, Fuqing A1 - Wang, Yiqiang A1 - Evans, Alexander A1 - Kabra, Saurabh A1 - Cai, Biao T1 - Mechanical performance and deformation mechanisms at cryogenic temperatures of 316L stainless steel processed by laser powder bed fusion: In situ neutron diffraction N2 - Manufacturing austenitic stainless steels (ASSs) using additive manufacturing is of great interest for cryogenic applications. Here, the mechanical and microstructural responses of a 316L ASS built by laser powder bed fusion were revealed by performing in situ neutron diffraction tensile tests at the low-temperature range (from 373 to 10 K). The stacking fault energy almost linearly decreased from 29.2 ± 3.1 mJm⁻² at 373 K to 7.5 ± 1.7 mJm⁻² at 10 K, with a slope of 0.06 mJm⁻²K⁻¹, leading to the transition of the dominant deformation mechanism from strain-induced twinning to martensite formation. As a result, excellent combinations of strength and ductility were achieved at the low-temperature range. KW - Condensed Matter Physics KW - General Materials Science KW - Mechanics of Materials KW - Metals and Alloys KW - Mechanical Engineering PY - 2022 U6 - https://doi.org/10.1016/j.scriptamat.2022.114806 SN - 1359-6462 VL - 218 SP - 1 EP - 7 PB - Elsevier BV CY - Amsterdam AN - OPUS4-59317 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ginés-Palomares, J.-C. A1 - Fateri, M. A1 - Schubert, T. A1 - de Peindray d’Ambelle, L. A1 - Simon, Sebastian A1 - Gluth, Gregor A1 - Günster, Jens A1 - Zocca, Andrea T1 - Material aspects of sintering of EAC-1A lunar regolith simulant N2 - Future lunar exploration will be based on in-situ resource utilization (ISRU) techniques. The most abundant raw material on the Moon is lunar regolith, which, however, is very scarce on Earth, making the study of simulants a necessity. The objective of this study is to characterize and investigate the sintering behavior of EAC-1A lunar regolith simulant. The characterization of the simulant included the determination of the phase assemblage, characteristic temperatures determination and water content analysis. The results are discussed in the context of sintering experiments of EAC-1A simulant, which showed that the material can be sintered to a relative density close to 90%, but only within a very narrow range of temperatures (20–30 °C). Sintering experiments were performed for sieved and unsieved, as well as for dried and non-dried specimens of EAC-1A. In addition, an analysis of the densification and mechanical properties of the sintered specimens was done. The sintering experiments at different temperatures showed that the finest fraction of sieved simulant can reach a higher maximum sintering temperature, and consequently a higher densification and biaxial strength. The non-dried powder exhibited higher densification and biaxial strength after sintering compared to the dried specimen. This difference was explained with a higher green density of the non-dried powder during pressing, rather than due to an actual influence on the sintering mechanism. Nevertheless, drying the powder prior to sintering is important to avoid the overestimation of the strength of specimens to be fabricated on the Moon. KW - Lunar regolith KW - Ceramics KW - Microstructure KW - Sintering KW - Softening temperature PY - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-592668 SN - 2045-2322 VL - 13 SP - 1 EP - 14 PB - Springer Nature AN - OPUS4-59266 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zocca, Andrea A1 - Lüchtenborg, Jörg A1 - Mühler, T. A1 - Wilbig, Janka A1 - Mohr, Gunther A1 - Villatte, T. A1 - Léonard, Fabien A1 - Nolze, Gert A1 - Sparenberg, M. A1 - Melcher, J. A1 - Hilgenberg, Kai A1 - Günster, Jens T1 - Enabling the 3D Printing of Metal Components in μ-Gravity N2 - As humanity contemplates manned missions to Mars, strategies need to be developed for the design and operation of hospitable environments to safely work in space for years. The supply of spare parts for repair and replacement of lost equipment will be one key need, but in-space manufacturing remains the only option for a timely supply. With high flexibility in design and the ability to manufacture ready-to-use components directly from a computeraided model, additive manufacturing (AM) technologies appear extremely attractive. For the manufacturing of metal parts, laser-beam melting is the most widely used AM process. However, the handling of metal powders in the absence of gravity is one prerequisite for its successful application in space. A gas flow throughout the powder bed is successfully applied to compensate for missing gravitational forces in microgravity experiments. This so-called gas-flow-assisted powder deposition is based on a porous Building platform acting as a filter for the fixation of metal particles in a gas flow driven by a pressure difference maintained by a vacuum pump. KW - Additive manufacturing KW - µ-gravity KW - Laser beam melting KW - Parabolic flight KW - 3D printing PY - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-492190 SP - 1900506 PB - WILEY-VCH Verlag GmbH AN - OPUS4-49219 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fritsch, Tobias A1 - Sprengel, Maximilian A1 - Evans, Alexander A1 - Farahbod-Sternahl, L. A1 - Saliwan Neumann, Romeo A1 - Hofmann, M. A1 - Bruno, Giovanni T1 - On the determination of residual stresses in additively manufactured lattice structures N2 - The determination of residual stresses becomes more complicated with increasing complexity of the structures investigated. Additive manufacturing techniques generally allow the production of ‘lattice structures’ without any additional manufacturing step. These lattice structures consist of thin struts and are thus susceptible to internal stress-induced distortion and even cracks. In most cases, internal stresses remain locked in the structures as residual stress. The determination of the residual stress in lattice structures through nondestructive neutron diffraction is described in this work. It is shown how two difficulties can be overcome: (a) the correct alignment of the lattice structures within the neutron beam and (b) the correct determination of the residual stress field in a representative part of the structure. The magnitude and the direction of residual stress are discussed. The residual stress in the strut was found to be uniaxial and to follow the orientation of the strut, while the residual stress in the knots was more hydrostatic. Additionally, it is shown that strain measurements in at least seven independent directions are necessary for the estimation of the principal stress directions. The measurement directions should be chosen according to the sample geometry and an informed choice on the possible strain field. If the most prominent direction is not measured, the error in the calculated stress magnitude increases considerably. KW - Additive manufacturing KW - Laser powder bed fusion KW - Residual stress KW - Principal stress components KW - Neutron diffraction KW - Lattice structures PY - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-520663 SN - 1600-5767 VL - 54 SP - 228 EP - 236 AN - OPUS4-52066 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schröder, Jakob A1 - Heldmann, A. A1 - Hofmann, M. A1 - Evans, Alexander A1 - Petry, W. A1 - Bruno, Giovanni T1 - Determination of diffraction and single-crystal elastic constants of laser powder bed fused Inconel 718 N2 - High energy X-ray synchrotron diffraction is used to investigate the elastic anisotropy of the nickel-based superalloy IN718 produced by laser powder bed fusion (PBF-LB). This material is characterized by a columnar grain morphology with some crystallographic texture. The material is subjected to elastic loading to determine the diffraction elastic constants (DECs). Furthermore, the single-crystal elastic constants (SCEC) are refined from these experiments using different micromechanical models. The results show that each micromechanical model predicts a specific set of SCEC that well describes the elastic anisotropy of PBF-LB/IN718. KW - Mechanical Engineering KW - Mechanics of Materials KW - Condensed Matter Physics KW - General Materials Science PY - 2023 U6 - https://doi.org/10.1016/j.matlet.2023.135305 SN - 0167-577X VL - 353 SP - 1 EP - 5 PB - Elsevier B.V. AN - OPUS4-58477 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Marquardt, R. A1 - Biegler, M. A1 - Rethmeier, Michael T1 - Laser-Pulver-Auftragschweißen von funktional gradierten Materialien auf Cobalt-Chrom Basis N2 - Um Bauteile vor Verschleiß und Korrosion zu schützen werden Beschichtungen aus resistenteren Materialien aufgetragen. Hierzu zählen unter anderen die Legierungen auf Cobalt-Chrom Basis. Der diskrete Materialsprung ist jedoch unter thermischen und mechanischen Belastungen häufig Ursache für das Versagen der Beschichtung. In dieser Arbeit werden daher Materialgradierungen von verschiedenen Stahllegierungen zu einer Cobalt-Chrom Basislegierung untersucht. Die Ergebnissen werden dafür auch mit Resultaten zu vorangegangenen Untersuchungen verglichen. Kern der Arbeit bilden geätzte Schliffbilder der Materialpaarungen und Auswertungen mittels Farbeindringprüfung sowie die metallografische Bestimmung der Porosität. Ziel der Arbeit ist ein defektfreier Aufbau der funktional gradierten Materialpaarungen. T2 - 43. Assistentenseminar Fügetechnik CY - Päwesin, Germany DA - 20.09.2023 KW - Directed Enery Deposition KW - Funktionally Graded Material KW - Additive Manufacturing KW - DED KW - FGM KW - AM PY - 2023 SN - 978-3-96144-212-6 SP - 1 EP - 6 PB - DVS Media GmbH AN - OPUS4-59116 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Raute, J. A1 - Seitz, G. A1 - Biegler, M. A1 - Rethmeier, Michael T1 - Wire Electron Beam Additive Manufacturing von niedriglegierten Zinnbronzen – Erreichbare Bauteileigenschaften und Prozessmerkmale N2 - Die Additive Fertigung gewinnt zunehmend an Bedeutung für die Verarbeitung von Kupferwerkstoffen im industriellen Umfeld. Hierbei wird verstärkt auf drahtförmige Ausgangswerkstoffe gesetzt, da diese Vorteile im Handling bieten, bereits aus der Schweißtechnik bekannt sind und sich zumeist durch geringere Beschaffungskosten auszeichnen. In den letzten Jahren entwickelte sich unter den drahtbasierten Verfahren der Directed-Energy-Deposition (DED) eine Prozessvariante unter Nutzung des Elektronenstrahls zur industriellen Marktreife. Dabei zeigt die Technologie Wire Electron Beam Additive Manufacturing (DED-EB) besondere Vorteile gegenüber anderen DED-Prozessen für die Anwendung an Kupfer. Um das Verfahren einem breiten Anwenderkreis in der Industrie zugänglich zu machen, fehlen jedoch Daten zu Leistungsfähigkeit, Prozessgrenzen und Anwendungsmöglichkeit- en. Die vorliegende Untersuchung beschäftigt sich mit dieser Problemstellung am Beispiel der Legierung CuSn1MnSi. Über mehrstufige Testschweißungen werden die physikalisch möglichen Prozessgrenzen ermittelt und Rückschlüsse über die Eignung der Parameter zum additiven Aufbau gezogen. An verschiedenen additiv gefertigten Probekörpern werden anschließend Kennwerte für Aufbaurate, Härte, Mikrostruktur, Oberflächenqualität sowie mechanische Festigkeitswerte ermittelt. Es zeigt sich, dass das die durch DED-EB hergestellten Proben, trotz des groben Gefüges sowie der thermischen Belastung im Aufbauprozess, in ihren Eigenschaften gut mit den Spezifikationen des Ausgangsmaterials übereinstimmen. T2 - Kupfersymposium 2023 CY - Jena, Germany DA - 29.11.2023 KW - Wire Electron Beam Additive Manufacturing KW - DED-EB KW - CuSn1 KW - Additive Fertigung PY - 2023 SN - 978-3-910411-03-6 SP - 28 EP - 33 PB - Kupferverband e. V. AN - OPUS4-59118 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Favres, Georges A1 - O'Connor, Daniel A1 - Balsamo, Alessandro A1 - Evans, Alexander A1 - Castro, Fernando A1 - Przyklenk, Anita A1 - Bosse, Harald T1 - European Metrology Network (EMN) for Advanced Manufacturing N2 - The European Commission has identified Advanced Manufacturing and Advanced Materials as two of six Key Enabling Technologies (KETs). By fully utilizing these KETs, advanced and sustainable economies will be created. It is considered that Metrology is a key enabler for the advancement of these KETs. EURAMET, the association of metrology institutes in Europe, has strengthened the role of Metrology for these KETs by enabling the creation of a European Metrology Network for Advanced Manufacturing. The EMN is made up of National Metrology Institutes (NMIs) and Designated Institutes (DIs) from across Europe and was formally established in October 2021. The EMN aims to provide a high-level coordination of European metrology activities for the Advanced Materials and Advanced Manufacturing community. The EMN itself is organized in three sections representing the major stages of the manufacturing chain: 1) Advanced Materials, 2) Smart Manufacturing Systems, and 3) Manufactured Components & Products. The EMN for Advanced Manufacturing is engaging with stakeholders in the field of Advanced Manufacturing and Advanced Materials (Large companies & SMEs, industry organisations, existing networks, and academia), as well as the wider metrology community (including TCs) to provide input for the preparation of a Strategic Research Agenda (SRA) for Metrology for Advanced Manufacturing. This presentation will describe the progress in the development of the SRA by the EMN for Advanced Manufacturing. The metrology challenges identified across the various key industrial sectors, which utilise Advanced Materials and Advanced Manufacturing will be presented. The EMN for Advanced Manufacturing is supported by the project JNP 19NET01 AdvManuNet. T2 - 21st International Metrology Congress, CIM 2023 CY - Lyon (Chassieu), France DA - 07.03.2023 KW - Advanced Materials KW - EMN KW - European Metrology Network for Advanced Manufacturing, Strategic Research Agenda KW - SRA PY - 2023 AN - OPUS4-59208 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wandtke, Karsten A1 - Schröpfer, Dirk A1 - Kromm, Arne A1 - Kannengießer, Thomas A1 - Scharf-Wildenhain, R. A1 - Hälsig, A. A1 - Hensel, J. T1 - Einfluss trennender Fertigungsschritte auf die Eigenspannungen in additiv gefertigten Bauteilen aus hochfestem Stahl N2 - Additive Fertigungsverfahren wie das Wire Arc Additive Manufacturing (WAAM) ermöglichen die effiziente Fertigung von gewichtsoptimierten endkonturnahen Strukturen in modernen Stahlkonstruktionen. Ihre Effizienz kann weiter durch die Verwendung von hochfesten Stählen gesteigert werden. Dies erlaubt eine signifikante Einsparung von Kosten, Zeit und Ressourcen. Entsprechende Schweißzusatzwerkstoffe für Lichtbogenschweißverfahren sind kommerziell verfügbar. Fehlende Richtlinien und fehlende quantitative Kenntnisse über die schweißtechnische Beanspruchung während der Fertigung und im Betrieb limitieren den industriellen Einsatz stark. Daher werden in einem aktuellen Vorhaben (IGF-Nr. 21162 BG) der BAM und TU Chemnitz die wesentlichen Einflüsse und komplexen Interaktionen durch Werkstoff, Fertigungsprozess, Konstruktion und trennende Fertigungsschritte auf den Beanspruchungszustand untersucht. Der vorliegende Beitrag fokussiert hierfür die Auswirkungen trennender Fertigungsschritte auf Verzug und Eigenspannungen definierter WAAM-Prüfkörper. Die Eigenspannungsanalyse erfolgt mittels Röntgenbeugung. Die große Anzahl an Ergebnissen von zuvor untersuchten Referenzproben, die mit einem speziellen WAAM-Massivdraht (Streckgrenze >820 MPa) bei unterschiedlicher Wärmeführung und Geometrie vollautomatisiert geschweißt wurden, lässt eine Korrelation der Messdaten zu. Hierzu erfolgt die Analyse des Ausgangszustandes und abschließend des Zustandes nach trennender Bearbeitung, welche begleitend mittels digitaler Bildkorrelation hinsichtlich des Verzuges untersucht wurden. So ist zu beobachten, dass die Geometrie deutlichen Einfluss auf Relaxation und Umlagerung der Eigenspannungen hat und damit die Risssicherheit positiv beeinflussen kann. T2 - 23. Werkstofftechnisches Kolloquium CY - Chemnitz, Germany DA - 29.03.2023 KW - Additive Fertigung KW - Hochfester Stahl KW - Eigenspannungen KW - Residual stress PY - 2023 AN - OPUS4-59231 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Scharf-Wildenhain, R. A1 - Hälsig, A. A1 - Hensel, J. A1 - Wandtke, Karsten A1 - Schröpfer, Dirk A1 - Kannengießer, Thomas T1 - Korrelation von Wärmeführung, Nahtgeometrie, Bauteildesign und Eigenspannungen bei DED-Arc mit hochfesten Zusatzwerkstoffen N2 - Hochfeste Feinkornbaustähle verfügen über großes Potenzial für gewichtsoptimierte, effiziente Strukturen in vielen modernen Stahlkonstruktion. Weitere Effizienzsteigerungen können durch additives Fertigen sowie bionische Bauweisen erreicht werden. Hochfeste Zusatzwerkstoffe für formgebendes MSG-Schweißen (engl.: Wire Arc Additive Manufacturing, WAAM) sind bereits von den Schweißzusatzherstellern lieferbar. Eine breite industrielle Anwendung insbesondere für KMU ist aufgrund fehlender quantitativer Erkenntnisse und Richtlinien bezüglich schweißbedingter Beanspruchungen und Bauteilsicherheit während der Herstellung und des Betriebs derzeit stark limitiert. In einem gemeinsamen Forschungsprojekt (FOSTA-P1380/IGF21162BG) der BAM und der TU Chemnitz werden daher die mit Eigenspannungsausbildung und der Gefahr einer Kaltrissbildung verbundenen prozess- und werkstoffbedingten sowie konstruktiven Einflüsse beim WAAM hochfester Stähle untersucht. Der vorliegende Beitrag fokussiert die Analyse der Auswirkungen von Schweißwärmeführung und Design der WAAM-Bauteile auf Nahtgeometrie, Materialausnutzung und Eigenspannungen. Hierfür werden geometrisch definierte Probenkörper (Hohlquader) vollautomatisiert mit einem speziellen, hochfesten WAAM-Massivdraht (Streckgrenze >790 MPa) geschweißt. Die Wärmeführung wird innerhalb eines statistischen Versuchsplans so variiert, dass die Dt8/5-Abkühlzeiten im empfohlenen Verarbeitungsbereich (ca. 5 s bis 20 s) liegen. Das WAAM-Schweißen komplexer Geometrien mit variierenden Schweißwärmeführungen und geometrischen Verhältnissen bzw. Wanddicken bedingt neben den Auswirkungen auf die Abkühlbedingungen, Abkühlzeiten und Gefüge deutliche Einflüsse auf die konstruktiven Steifigkeitsverhältnisse beim Schweißen. Es zeigen sich anhand der Schweißexperimente signifikante Auswirkungen durch Probenskalierung und Wärmeeinbringung auf die resultierenden lokalen Eigenspannungen. Die Folge können ungünstige Bauteileigenschaften und risskritische Zugeigenspannungen sein. T2 - 43. Assistentenseminar Füge- und Schweißtechnik 2022 CY - Chemnitz, Germany DA - 27.09.2022 KW - Additive Fertigung KW - Hochfester Stahl KW - Eigenspannungen PY - 2023 VL - 386 SP - 1 EP - 7 PB - DVS Media CY - Düsseldorf AN - OPUS4-59232 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wandtke, Karsten A1 - Schröpfer, Dirk A1 - Kromm, Arne A1 - Kannengießer, Thomas A1 - Hälsig, A. A1 - Scharf-Wildenhain, R. A1 - Hensel, J. T1 - Residual stress formation in DED-arc manufactured high strength steel components N2 - Additive manufacturing (AM) processes enable the efficient production of advanced constructions. New developments in topology optimization are leading to weight-optimized designs of increasing complexity. Direct energy deposition processes (DED) such as wire and arc-based additive manufacturing are an important method of additive manufacturing. The wire filler metals enable a wide range of materials, while the arc process provides a high deposition rate compared to laser and powder-based processes. Combined with the use of high-strength steels, the thickness of walls or components can be significantly reduced in the context of lightweight construction, which results in significant savings in energy, costs, time and resources. Suitable high-strength steel filler metals are commercially available for DED-arc AM processes. However, guidelines and quantitative knowledge about welding stresses and cold cracking issues during component production and service are lacking. This limits the industrial application considerably. In a joint project of BAM and Chemnitz University of Technology, the main influences and complex interactions of material, production process, design and processing steps on the residual stress level are investigated. The aim is to develop processing recommendations and a cold cracking test for economical processing and stress-related design of high-strength steels with DED-arc. This study focuses on residual stress analysis by neutron diffraction (ND) and X-ray diffraction (XRD) on defined test specimens. The ND analysis were performed at the Paul Scherrer Institute- Villigen, Switzerland (PSI) and the XRD analysis at BAM. The study shows a quantitative and qualitative comparison of the residual stress magnitudes and distribution between the component bulk (ND) and surface (XRD) analyses. The ND analysis reveals that in DED-arc AM walls the residual stresses dominate in the direction of welding and are negligibly small in each case transverse to the direction of welding. The topology of the analyzed residual stresses shows almost identical residual stress maps compared to XRD. In addition, the residual stresses are significantly influenced by the solid phase transformation of the material due to low cooling times and less post heat treatment cycles of following AM layers in the area of the top layer. T2 - 76th IIW Annual Assembly and International Conference on Welding and Joining CY - Singapore DA - 16.07.2023 KW - Additive Fertigung KW - Hochfester Stahl KW - Eigenspannungen PY - 2023 AN - OPUS4-59233 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Scharf-Wildenhain, R. A1 - Hälsig, A. A1 - Hensel, J. A1 - Wandtke, Karsten A1 - Schröpfer, Dirk A1 - Kannengießer, Thomas T1 - Fertigungsbedingte Beanspruchungen und Kaltrisssicherheit in generativ gefertigten Bauteilen aus hochfesten Feinkornbaustählen N2 - Der Vortrag gibt einen Überblick über den Einfluss der Prozessparameter auf die Eigenspannungen sowie die Härte in additiv gefertigten Bauteilen aus hochfestem stahl. Des Weiteren wird dargestellt, wie sich das Bauteildesign und trennende Fertigungsschritte auf die Eigenspannungen der Bauteile auswirken. T2 - DVS Arbeitsgruppe (AG) V 12 CY - Online meeting DA - 15.11.2023 KW - Additive Fertigung KW - Hochfester Stahl KW - Eigenspannungen PY - 2023 AN - OPUS4-59235 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wandtke, Karsten A1 - Schröpfer, Dirk A1 - Kromm, Arne A1 - Kannengießer, Thomas A1 - Scharf- Wildenhain, R. A1 - Hälsig, A. A1 - Hensel, J. T1 - Neutronen- und Röntgendiffraktion Zur Einflussanalyse des Bauteil-Designs auf die Eigenspannungen bei der additiven Fertigung mit hochfestem Stahl N2 - Der Vortrag gibt einen Überblick über die mittels XRD und Neutronenbeugung ermittelten Eigenspannungen in additiv gefertigten Bauteilen. Zusätzliche wird der Einfluss von Geometrieparameters auf de Eigenspannungen betrachtet T2 - Sitzung DIN NA 092-00-05 GA CY - Berlin, Germany DA - 15.03.2023 KW - Additive Fertigung KW - Hochfester Stahl KW - Eigenspannungen PY - 2023 AN - OPUS4-59236 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Raute, J. A1 - Biegler, M. A1 - Rethmeier, Michael T1 - Process Setup and Boundaries of Wire Electron Beam Additive Manufacturing of High-Strength Aluminum Bronze N2 - In recent years, in addition to the commonly known wire-based processes of Directed Energy Deposition using lasers, a process variant using the electron beam has also developed to industrial market maturity. The process variant offers particular potential for processing highly conductive, reflective or oxidation-prone materials. However, for industrial usage, there is a lack of comprehensive data on performance, limitations and possible applications. The present study bridges the gap using the example of the high-strength aluminum bronze CuAl8Ni6. Multi-stage test welds are used to determine the limitations of the process and to draw conclusions about the suitability of the parameters for additive manufacturing. For this purpose, optimal ranges for energy input, possible welding speeds and the scalability of the process were investigated. Finally, additive test specimens in the form of cylinders and walls are produced, and the hardness profile, microstructure and mechanical properties are investigated. It is found that the material CuAl8Ni6 can be well processed using wire electron beam additive manufacturing. The microstructure is similar to a cast structure, the hardness profile over the height of the specimens is constant, and the tensile strength and elongation at fracture values achieved the specification of the raw material. KW - Wire electron beam additive manufacturing KW - Aluminum bronze KW - Wire-based additive manufacturing KW - EBAM KW - DED-EB PY - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-580890 VL - 13 IS - 8 SP - 1 EP - 16 PB - MDPI AN - OPUS4-58089 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wang, Y. A1 - Ulbricht, Alexander A1 - Schmidt, F. A1 - Müller, Bernd R. A1 - Kupsch, Andreas A1 - Schwitalla, A.D. T1 - Micro-CT analysis and mechanical properties of low dimensional CFR-PEEK specimens additively manufactured by material extrusion N2 - Material extrusion of thermoplastic polymers enables the realization of complex specific designs with high performance composites. The present study aims at evaluating the mechanical properties of carbon fiberreinforced semi-crystalline thermoplastic polymer polyether ether ketone (CFR-PEEK) manufactured by material extrusion and correlating them with results obtained by micro-CT. Samples in the shape of small bars were provided by Kumovis (Munich, Germany). The determination of surface roughness and density was followed by three-point bending tests. To reveal the pore distribution as well as the fusion quality of CFR PEEK when applied with external forces, micro-CT scans were performed with an X-ray microscope before and after the mechanical test to localize the sites where the fracture is generated. The density of CFR-PEEK bars indicated that they had superior mechanical properties compared with our previous study on unfilled 3D printed PEEK (bending modulus: (5.4 ± 0.5) GPa vs. (1.05 ± 0.05) GPa to (1.48 ± 0.10) GPa; bending strength: (167 ± 11) MPa vs. (51 ± 15) to (193 ± 7) MPa). Micro-CT analyses revealed the local 3D-distribution of voids. Voids of 30 μm diameter are nearly spherical and make up the main part of the total porosity. The larger the voids, the more they deviate from a spherical shape. Significant lack-of-fusion voids are located between the deposited filaments. By growing and merging, they act as seeds for the forming fracture line in the region of the flexural specimens where the maximum local tensile stresses occurred under bending load. Our work provides a detailed analysis of printed PEEK with fiber additive and relates this with mechanical properties. KW - CFR-PEEK KW - Material extrusion (MEX) KW - FFF KW - Surface topography KW - Bending property KW - Micro-CT PY - 2023 U6 - https://doi.org/10.1016/j.jmbbm.2023.106085 SN - 1751-6161 VL - 146 SP - 1 EP - 9 PB - Elsevier Ltd. AN - OPUS4-58112 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mishurova, Tatiana T1 - 3D Imaging and residual stress analysis of additively manufactured materials N2 - The focus of the presentation focus will be on 3D imaging by means of X-ray Computed Tomography (XCT) at the lab and at synchrotron, and the non-destructive residual stress (RS) characterization by diffraction of additively manufactured (AM) materials in BAM (Berlin, Germany). The manufacturing defects and high RS are inherent of AM techniques and affect structural integrity of the components. Using XCT the defects size and shape distribution as well as geometrical deviations can be characterized, allowing the further optimization of the manufacturing process. Diffraction-based RS analysis methods using neutron and synchrotron X-rays at large scale facilities offer the possibility to non-destructively spatially resolve both surface and bulk RS in complex components and track their changes following applied thermal or mechanical loads. T2 - The International Symposium on Nondestructive Characterization of Materials 2023 CY - Zurich, Switzerland DA - 15.08.2023 KW - Additive manufacturing KW - Residual stress KW - X-ray computed tomography PY - 2023 AN - OPUS4-58113 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Koch, Claudia A1 - Hilgenberg, Kai T1 - Eine moderne Qualitätsinfrastruktur: digital und vernetzt N2 - Der Vortrag stellt die Arbeiten der BAM in der Initiative QI-Digital vor, in deren Rahmen Lösungen für eine moderne und digitale Qualitätsinfrastruktur entwickelt werden. Schwerpunkt liegt auf dem zentralen Werkzeug Quality-X sowie dem Pilotprojekt "Moderne Qualitätssicherung in der Additiven Fertigung". T2 - BAM Kuratoriumssitzung CY - Berlin, Germany DA - 22.06.2023 KW - Qualitätsinfrastruktur KW - Digitalisierung KW - Quality-X KW - Additive Fertigung PY - 2023 AN - OPUS4-58121 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kianinejad, kaveh A1 - Fedelich, Bernard A1 - Darvishi Kamachali, Reza A1 - Schriever, Sina A1 - Manzoni, Anna Maria A1 - Agudo Jacome, Leonardo A1 - Megahed, Sandra A1 - Kamrani, Sepideh A1 - Saliwan-Neumann, Romeo T1 - Experimentally informed multiscale creep modelling of additive manufactured Ni-based superalloys N2 - Excellent creep resistance at elevated temperatures, i.e. T / T_m> 0.5, due to γ-γ’ microstructure is one of the main properties of nickel-based superalloys. Due to its great importance for industrial applications, a remarkable amount of research has been devoted to understanding the underlying deformation mechanism in a wide spectrum of temperature and loading conditions. Additive manufactured (AM) nickel-based superalloys while being governed by similar γ-γ’ microstructure, exhibit AM-process specific microstructural characteristics, such as columnar grains, strong crystallographic texture (typically <001> fiber texture parallel to build direction) and compositional inhomogeneity, which in turn leads to anisotropic creep response in both stationary and tertiary phases. Despite the deep insights achieved recently on the correlation between process parameters and the resulting microstructure, the anisotropic creep behavior and corresponding deformation mechanism of these materials are insufficiently understood so far. One reason for this is the lack of capable material models that can link the microstructure to the mechanical behavior. To overcome this challenge, a multiscale microstructure-based approach has been applied by coupling crystal plasticity (CP) and polycrystal model which enables the inclusion of different deformation mechanisms and microstructural characteristics such as crystallographic texture and grain morphology. The method has been applied to experimental data for AM-manufactured INCONEL-738LC (IN738). The effect of different slip systems, texture, and morphology on creep anisotropy at 850°C has been investigated. Results suggest a strong correlation between superlattice extrinsic stacking fault (SESF) and microtwinning and observed creep anisotropy. T2 - EUROMAT 23 CY - Frankfurt a. M., Germany DA - 04.09.2023 KW - IN738LC KW - Creep anisotropy KW - Crystal plasticity PY - 2023 AN - OPUS4-58263 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bhadeliya, Ashok A1 - Rehmer, Birgit A1 - Fedelich, Bernard A1 - Jokisch, T. A1 - Skrotzki, Birgit A1 - Olbricht, Jürgen T1 - High temperature fatigue crack growth in nickel-based alloys joined by brazing and additive manufacturing N2 - Nickel-based alloys have been widely used for gas turbine blades owing to their excellent mechanical properties and corrosion resistance at high temperatures. The operating temperatures of modern gas turbines have been increased in pursuit of increased thermal efficiency. Turbine blades are exposed to these high temperatures combined with mechanical stresses, resulting in material damage through creep, fatigue, and other mechanisms. These turbine blades must be regularly inspected and replaced as needed, to prevent the loss of efficiency, breakdown, and catastrophic failure. Repair of the damaged turbine blades is often a more practical and cost-effective option than replacement, as replacement is associated with high costs and loss of material resources. To this end, state-of-the-art repair technologies including different additive manufacturing and brazing processes are considered to ensure efficient repair and optimum properties of repaired components. In any repaired part, materials property-mismatches and/or inner defects may facilitate the crack initiation and propagation and thus reduce the number of load cycles to failure. Therefore, a fundamental understanding of the fatigue crack growth and fracture mechanisms in joining zones is required to enable the prediction of the remaining life of repaired components and to further improve and adapt the repair technologies. Fatigue crack growth experiments have been conducted on SEN (Single Edge Notch) specimens joined via brazing, and pre-sintered Preform (PSP) and multi-materials (casted/printed) specimens layered via additive manufacturing (AM). The experiments were performed at 950 °C and various stress ratios. The crack growth was measured using DCPD (Direct Current Potential Drop) method. The stress intensity factors for joined SEN specimens were calculated using the finite element method and then used to derive the fatigue crack growth curves. Metallographic and fractographic analyses were conducted to get insight into the fracture mechanism. Results show that the experimental technique for fatigue crack growth was successfully adapted and applied for testing joined specimens. Furthermore, the initial tests indicate that the investigated braze filler material provides a lower resistance to crack growth, and bonding defects cause a crack to deviate to the interface of the base material and joining zone. In AM-sandwich specimens, the crack growth rates are significantly reduced when the crack reaches the interface of printed material and casted material. The obtained crack growth data can be used to calibrate a crack growth model, which will further be utilized to predict the remaining life of repaired components. T2 - FEMS EUROMAT 2023 CY - Frankfurt a. M., Germany DA - 03.09.2023 KW - Fatigue crack growth KW - Joined nickel-based alloys PY - 2023 AN - OPUS4-58266 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Wandtke, Karsten A1 - Schröpfer, Dirk A1 - Scharf-Wildenhain, R. A1 - Hälsig, A. A1 - Kromm, Arne A1 - Kannengießer, Thomas A1 - Hensel, J. T1 - Fertigungsbedingte Beanspruchungen und Kaltrisssicherheit in generativ gefertigten Bauteilen aus hochfesten Feinkornbaustählen - Kurzdarstellung der Projektergebnisse, FOSTA P1380 N2 - Die Verwendung hochfester Feinkornbaustähle hat für viele Anwendungen des Stahlbaus ein großes Potenzial für gewichtsoptimierte, effiziente Strukturen mit ho-her mechanischer Beanspruchbarkeit. Weitere Zugewinne an Effizienz sind durch generative Fertigungsschritte sowie bionische Bauweisen erzielbar. Hierzu stehen bereits kommerzielle hochfeste drahtförmige Zusatzwerkstoffe für formgebendes MSG-Schweißen zur Verfügung. Dem Einsatz stehen noch fehlende quantitative Aussagen zu den fertigungsbedingten Beanspruchungen und der Bauteilsicherheit während Herstellung und Betrieb im Wege. Dies betrifft insbesondere prozess- sowie materialbedingte Einflüsse und die konstruktive Schrumpfbehinderung verbunden mit der Ausbildung hoher Zugeigenspannungen und damit zusammenhängenden Kaltrissbildung. Hierfür wurden im Projekt detaillierte und anwenderbezogene Kenntnisse zu den komplexen Wechselwirkungen zwischen Schweißprozess und Wärmeführung während der Fertigung, der metallurgischen Vorgänge und insbesondere der vorliegenden konstruktiven Einflüsse auf die entstehenden Eigenspannungen erarbeitet, um ein frühzeitiges Bauteilversagen aufgrund eines hohen fertigungsbedingten Beanspruchungsniveaus bis hin zu einer Rissbildung während der Fertigung sicher zu vermeiden. Gleichzeitig wurden die Einflüsse auf die mechanisch-technologischen Gütewerte systematisch analysiert. Zudem wurden die Auswirkungen trennender Verfahren durch Entfernen der Substratplatte sowie durch die spanende Bearbeitung der Vorformlinge zu Endbauteilgeometrien geklärt, da diese unmittelbar den Eigenspannungszustand beeinflussen und deutlichen Verzug der Bauteile auslösen. Für das generative Schweißen konnten Verarbeitungsempfehlungen sowie Normenvorgaben erarbeitet werden. Dies hilft insbesondere KMU eine wirtschaftliche, beanspruchungsgerechte und risssichere generative Fertigung von Bauteilen aus hochfesten Feinkornbaustählen zu ermöglichen. KW - MAG-Schweißen KW - Additive Fertigung KW - Eigenspannungen KW - Kaltrisssicherheit KW - Hochfester Stahl PY - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-582198 N1 - Das IGF-Vorhaben IGF-Nr. 21162 BG (P 1380) "Fertigungsbedingte Beanspruchungen und Kaltrisssicherheit in generativ gefertigten Bauteilen aus hochfesten Feinkornbaustählen" der Forschungsvereinigung Stahlanwendung e. V. wurde über die AiF im Rahmen des Programms zur Förderung der Industriellen Gemeinschaftsforschung (IGF) vom Bundesministerium für Wirtschaft und Klimaschutz aufgrund eines Beschlusses des Deutschen Bundestages gefördert. SP - 1 EP - 2 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-58219 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nadammal, Naresh A1 - Kromm, Arne A1 - Saliwan Neumann, Romeo A1 - Farahbod, Lena A1 - Haberland, Christoph A1 - Portella, Pedro Dolabella T1 - Influence of support configurations on the characteristics of selective laser-melted Inconel 718 N2 - Samples fabricated using two different support configurations by following identical scan strategies during selective laser melting of superalloy Inconel 718 were characterized in this study. Characterization methods included optical microscopy, electron back-scattered diffraction and x-ray diffraction residual stress measurement. For the scan strategy considered, microstructure and residual stress development in the samples were influenced by the support structures. However, crystallographic texture intensity and the texture components formed within the core part of the samples were almost independent of the support. The formation of finer grains closer to the support as well as within the columnar grain boundaries resulted in randomization and texture intensity reduction by nearly half for the sample built on a lattice support. Heat transfer rates dictated by the support configurations in addition to the scan strategy influenced the microstructure and residual stress development in selective laser-melted Inconel 718 samples. KW - Additive manufacturing KW - Selective laser melting KW - Support configurations KW - Microstructure and texture KW - Residual stress PY - 2018 U6 - https://doi.org/10.1007/s11837-017-2703-1 SN - 1047-4838 SN - 1543-1851 VL - 70 IS - 3 SP - 343 EP - 348 PB - Springer CY - USA AN - OPUS4-44175 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Serrano Munoz, Itziar A1 - Mishurova, Tatiana A1 - Thiede, Tobias A1 - Sprengel, Maximilian A1 - Kromm, Arne A1 - Nadammal, Naresh A1 - Nolze, Gert A1 - Saliwan Neumann, Romeo A1 - Evans, Alexander A1 - Bruno, Giovanni T1 - The residual stress in as‑built Laser Powder Bed Fusion IN718 alloy as a consequence of the scanning strategy induced microstructure N2 - The effect of two types of scanning strategies on the grain structure and build-up of Residual Stress (RS) has been investigated in an as-built IN718 alloy produced by Laser Powder Bed Fusion (LPBF). The RS state has been investigated by X-ray diffraction techniques. The microstructural characterization was performed principally by Electron Backscatter Diffraction (EBSD), where the application of a post-measurement refinement technique enables small misorientations (< 2°) to be resolved. Kernel average misorientation (KAM) distributions indicate that preferably oriented columnar grains contain higher levels of misorientation, when compared to elongated grains with lower texture. The KAM distributions combined with X-ray diffraction stress maps infer that the increased misorientation is induced via plastic deformation driven by the thermal stresses, acting to self-relieve stress. The possibility of obtaining lower RS states in the build direction as a consequence of the influence of the microstructure should be considered when envisaging scanning strategies aimed at the mitigation of RS. KW - Additive manufacturing KW - LPBF KW - Residual stress KW - Inconel 718 KW - Kernel average misorientation KW - Texture PY - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-511769 VL - 10 IS - 1 SP - 14645 AN - OPUS4-51176 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ulbricht, Alexander A1 - Altenburg, Simon A1 - Sprengel, Maximilian A1 - Sommer, Konstantin A1 - Mohr, Gunther A1 - Fritsch, Tobias A1 - Mishurova, Tatiana A1 - Serrano Munoz, Itziar A1 - Evans, Alexander A1 - Hofmann, M. A1 - Bruno, Giovanni T1 - Separation of the Formation Mechanisms of Residual Stresses in LPBF 316L N2 - Rapid cooling rates and steep temperature gradients are characteristic of additively manufactured parts and important factors for the residual stress formation. This study examined the influence of heat accumulation on the distribution of residual stress in two prisms produced by Laser Powder Bed Fusion (LPBF) of austenitic stainless steel 316L. The layers of the prisms were exposed using two different border fill scan strategies: one scanned from the centre to the perimeter and the other from the perimeter to the centre. The goal was to reveal the effect of different heat inputs on samples featuring the same solidification shrinkage. Residual stress was characterised in one plane perpendicular to the building direction at the mid height using Neutron and Lab X-ray diffraction. Thermography data obtained during the build process were analysed in order to correlate the cooling rates and apparent surface temperatures with the residual stress results. Optical microscopy and micro computed tomography were used to correlate defect populations with the residual stress distribution. The two scanning strategies led to residual stress distributions that were typical for additively manufactured components: compressive stresses in the bulk and tensile stresses at the surface. However, due to the different heat accumulation, the maximum residual stress levels differed. We concluded that solidification shrinkage plays a major role in determining the shape of the residual stress distribution, while the temperature gradient mechanism appears to determine the magnitude of peak residual stresses. KW - Additive Manufacturing KW - Laser Powder Bed Fusion KW - LPBF KW - AISI 316L KW - Online Process Monitoring KW - Thermography KW - Residual Stress KW - Neutron Diffraction KW - X-ray Diffraction KW - Computed Tomography PY - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-512903 VL - 10 IS - 9 PB - MDPI CY - Basel AN - OPUS4-51290 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schröder, Jakob A1 - Evans, Alexander A1 - Luzin, V. A1 - Abreu Faria, G. A1 - Degener, Sebastian A1 - Polatidis, E. A1 - Čapek, J. A1 - Kromm, Arne A1 - Dovzhenko, G. A1 - Bruno, Giovanni T1 - Texture-based residual stress analysis of laser powder bed fused Inconel 718 parts N2 - Although layer-based additive manufacturing methods such as laser powder bed fusion (PBF-LB) offer an immense geometrical freedom in design, they are typically subject to a build-up of internal stress (i.e. thermal stress) during manufacturing. As a consequence, significant residual stress (RS) is retained in the final part as a footprint of these internal stresses. Furthermore, localized melting and solidification inherently induce columnar-type grain growth accompanied by crystallographic texture. Although diffraction-based methods are commonly used to determine the RS distribution in PBF-LB parts, such features pose metrological challenges in their application. In theory, preferred grain orientation invalidates the hypothesis of isotropic material behavior underlying the common methods to determine RS. In this work, more refined methods are employed to determine RS in PBF-LB/M/IN718 prisms, based on crystallographic texture data. In fact, the employment of direction-dependent elastic constants (i.e. stress factors) for the calculation of RS results in insignificant differences from conventional approaches based on the hypothesis of isotropic mechanical properties. It can be concluded that this result is directly linked to the fact that the {311} lattice planes typically used for RS analysis in nickel-based alloys have high multiplicity and less strong texture intensities compared with other lattice planes. It is also found that the length of the laser scan vectors determines the surface RS distribution in prisms prior to their removal from the baseplate. On removal from the baseplate the surface RS considerably relaxes and/or redistributes; a combination of the geometry and the scanning strategy dictates the sub-surface RS distribution. KW - Additive manufacturing KW - Electron backscattered diffraction KW - Principal stress KW - Residual stress PY - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-578331 SN - 1600-5767 VL - 56 IS - Pt 4 SP - 1076 EP - 1090 AN - OPUS4-57833 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ulbricht, Alexander A1 - Avila Calderon, Luis A1 - Sommer, Konstantin A1 - Mohr, Gunther A1 - Evans, Alexander A1 - Skrotzki, Birgit A1 - Bruno, Giovanni T1 - Evolution of Creep Damage of 316L Produced by Laser Powder Bed Fusion N2 - The damage mechanisms of metallic components produced by process laser powder bed fusion differ significantly from those typically observed in conventionally manufactured variants of the same alloy. This is due to the unique microstructures of additively manufactured materials. Herein, the focus is on the study of the evolution of creep damage in stainless steel 316L specimens produced by laser powder bed fusion. X-ray computed tomography is used to unravel the influence of the process-specific microstructure from the influence of the initial void distribution on creep damage mechanisms. The void distribution of two specimens tested at 600 °C and 650 °C is analyzed before a creep test, after an interruption, and after fracture. The results indicate that the formation of damage is not connected to the initial void distribution. Instead, damage accumulation at grain boundaries resulting from intergranular cracking is observed. KW - Creep KW - Computed Tomography KW - PBF-LB/M/316L KW - Laser Powder Bed Fusion KW - Microstructure KW - AISI 316L KW - Additive Manufacturing PY - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-574127 SP - 1 EP - 9 PB - Wiley-VCH GmbH CY - Weinheim AN - OPUS4-57412 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Seeger, Stefan A1 - Brödner, Doris A1 - Jacobi, T. A1 - Rasch, Fabian A1 - Rothhardt, Monika A1 - Wilke, Olaf T1 - Emissions of fine and ultrafine particles and volatile organic compounds from different filament materials operated on a low-cost 3D printer T1 - Emissionen feiner und ultrafeiner Partikel sowie flüchtiger organischer Verbindungen beim Einsatz verschiedener Filamentmaterialien in einem „low-cost“-3D-Drucker N2 - 3D-printing or additive manufacturing has many promising and unique advantages. Especially low cost molten polymer Deposition Printers are increasingly populär in the private and educational sector. Their environmental friendliness can be questioned due to recently reported ultrafine particle and suspected VOC emissions, To further investigate 3D-printing as a potential indoor air pollution source we characterized fine and ultrafine particle emissions from a molten polymer deposition printer producing a 3D object with ten marketable polymer filament materials under controlled conditions in a test chamber. VOC emissions from the filaments have also been compared. Using a straightforward emission model time dependent and averaged particle emission rates were determined. The results indicate that under comparable conditions some filament materials produce mainly ultrafine particles up to an average rate of 1013 per minute. This value is in the upper ränge of typical indoor ultrafine particle sources (e.g. Smoking, frying, candle light, laser printer). The observed material-specific rates differ by five Orders of magnitude. Filament-specific gaseous emissions of organic compounds such as bisphenol A, styrene and others were also detected. Our results suggest a detailed evaluation of related risks and considering protective measures such as housing and filtering. N2 - 3D-Druck oder additive Herstellungsverfahren haben eine Menge vielversprechender und einzigartiger Vorteile. Insbesondere günstige 3D-Drucker für Polymere werden im privaten und ausbildenden Bereich zunehmend beliebter. Ihre Umweltfreundlichkeit kann aufgrund jüngst berichteter Emissionen ultrafeiner Partikel und vermuteter VOC-Emissionen infrage gestellt werden. Um 3D-Drucker für Polymere als mögliche Quelle von Innenraumluftverunreinigungen weiter zu untersuchen, charakterisierten wir die Emissionen feiner und ultrafeiner Partikel bei der Herstellung eines 3D-Objekts unter Verwendung zehn marktgängiger Polymerfilamente unter kontrollierten Bedingungen in einer Emissionsprüfkammer. Die VOC-Emissionen der verschiedenen Filamente wurden ebenfalls verglichen. Die zeitabhängigen und gemittelten Partikelemissionsraten wurden durch Anwendung eines einfachen Emissionsmodells bestimmt. Die Ergebnisse zeigen, dass unter vergleichbaren Bedingungen einige Filamente mit einer mittleren Rate von 10 KW - Emission KW - Ultrafine particles KW - VOC KW - 3D printer PY - 2018 SN - 0949-8036 SN - 0039-0771 VL - 78 IS - 3 SP - 79 EP - 87 PB - Springer-VDI-Verl. CY - Düsseldorf AN - OPUS4-44954 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Tang, Chi-Long A1 - Seeger, Stefan A1 - Röllig, Mathias T1 - Minimizing the FFF-3D printer hardware bias on particle emission by adjustment of the set extruder temperature N2 - Fused filament fabrication (FFF) on desktop 3D printers is a material extrusion-based technique often used by educational institutions, small enterprises and private households. Polymeric filaments are melted and extruded through a heated nozzle to form a 3D object in layers. The extrusion temperature is therefore a key parameter for a successful print job, but also one of the main driving factors for the emission of harmful air pollutants, namely ultrafine particles and volatile organic gases, which are formed by thermal stress on the polymeric feedstock. The awareness of potential health risks has increased the number of emission studies in the past years. However, the multiplicity of study designs makes an objective comparison of emission data challenging because printer hardware factors such as the actual extruder temperature (TE) and also feedstockspecific emissions are not considered. We assume that across the market of commercial low- and mid-price FFF printers substantial deviations between actual and set extruder temperatures exist, which have a strong effect on the emissions and hence may bias the findings of exposure studies. In our last publication, we presented a standardized feedstock-specific emission test method and showed that for each investigated feedstock an increase in actual extruder temperature was accompanied by an increase in particle emissions (Tang and Seeger, 2022). Therefore, any systematic discrepancy between set and actual extruder temperature matters. In this study, we used a thermocouple and an infrared camera to measure the actual extruder temperatures at different heights. We found significant under- and overestimation of the actual extruder temperatures by the respective set temperatures in three commercial printers. This caused a broad variation of the measured total numbers of emitted particles (TP), even when the same feedstock was operated. For the determination of TP, we followed the DE-UZ 219 test guideline. In a second round we repeated the tests with all printers adjusted to exactly the same extruder temperatures, i.e., to TE=230°C for ABS and TE=210°C for PLA. All measurements were conducted in a 1 m³ emission test chamber. Particle emissions in the size range between 4 nm and 20 μm were detected. Printing on three different printer models without temperature adjustment resulted for each of the investigated feedstocks in a variation in TP of around two orders of magnitude. After temperature adjustment, this was substantially reduced to approx. one order of magnitude and hence minimizes the bias of printer hardware on the emissions. Our findings suggest that adjustment of the extruder temperature should be mandatory in emission testing standards. It also poses a more accurate benchmark and provides more reliable emission data for evaluation of indoor air quality or for health risk assessments. In addition, a proper temperature setting is in the interest of the user. Some commercial FFF printers may have a higher actual extruder temperature than displayed and unintended overheating may not only impair the print quality but may cause unnecessarily increased exposure to particle emissions. T2 - European Aerosol Conference 2023 CY - Málaga, Spain DA - 03.09.2023 KW - Ultrafine particles KW - Thermal imaging KW - 3D printing KW - Indoor air quality KW - Emission testing PY - 2023 AN - OPUS4-58258 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Tang, Chi-Long A1 - Seeger, Stefan T1 - Proposal of a standard test method for the quantification of particulate matter during 3D printing and the systematic ranking of filament materials N2 - The diversity of fused filament fabrication (FFF) filaments continues to grow rapidly as the popularity of FFF-3D desktop printers for the use as home fabrication devices has been greatly increased in the past decade. Potential harmful emissions and associated health risks when operating indoors have induced many emission studies. However, the lack of standardization of measurements impeded an objectifiable comparison of research findings. Therefore, we designed a chamber-based standard method, i.e., the strand printing method (SPM), which provides a standardized printing procedure and quantifies systematically the particle emission released from individual FFF-3D filaments under controlled conditions. Forty-four marketable filament products were tested. The total number of emitted particles (TP) varied by approximately four orders of magnitude (1E9 ≤ TP ≤ 1E13), indicating that origin of polymers, manufacturer-specific additives, and undeclared impurities have a strong influence. Our results suggest that TP characterizes an individual filament product and particle emissions cannot be categorized by the polymer type (e.g., PLA or ABS) alone. The user's choice of a filament product is therefore decisive for the exposure to released particles during operation. Thus, choosing a filament product awarded for low emissions seems to be an easily achievable preemptive measure to prevent health hazards. T2 - 11th International Aerosol Conference CY - Athens, Greece DA - 04.09.2022 KW - Ultrafine particles KW - FFF-3D-Printer KW - Indoor emission KW - Emission test chamber KW - Test method KW - Exposure risk PY - 2022 AN - OPUS4-55666 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tang, Chi-Long A1 - Seeger, Stefan T1 - Measurement of sub-4 nm particle emission from FFF-3D printing with the TSI Nano Enhancer and the Airmodus Particle Size Magnifier N2 - The emission of ultrafine particles from small desktop Fused Filament Fabrication (FFF) 3D printers has been frequently investigated in the past years. However, the vast majority of FFF emission and exposure studies have not considered the possible occurrence of particles below the typical detection limit of Condensation Particle Counters and could have systematically underestimated the total particle emission as well as the related exposure risks. Therefore, we comparatively measured particle number concentrations and size distributions of sub-4 nm particles with two commercially available diethylene glycol-based instruments – the TSI 3757 Nano Enhancer and the Airmodus A10 Particle Size Magnifier. Both instruments were evaluated for their suitability of measuring FFF-3D printing emissions in the sub-4 nm size range while operated as a particle counter or as a particle size spectrometer. For particle counting, both instruments match best when the Airmodus system was adjusted to a cut-off of 1.5 nm. For size spectroscopy, both instruments show limitations due to either the fast dynamics or rather low levels of particle emissions from FFF-3D printing in this range. The effects are discussed in detail in this article. The findings could be used to implement sub-4 nm particle measurement in future emission or exposure studies, but also for the development of standard test protocols for FFF-3D printing emissions. KW - Air pollution KW - Ultrafine particles KW - Sub-4nm particles KW - FFF-3D printing KW - Emission testing PY - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-595952 SN - 0278-6826 SP - 1 EP - 13 PB - Taylor & Francis CY - London AN - OPUS4-59595 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tang, Chi-Long A1 - Seeger, Stefan A1 - Röllig, Mathias T1 - Improving the comparability of FFF-3D printing emission data by adjustment of the set extruder temperature N2 - Fused filament fabrication (FFF) is a material extrusion-based technique often used in desktop 3D printers. Polymeric filaments are melted and are extruded through a heated nozzle to form a 3D object in layers. The extruder temperature is therefore a key parameter for a successful print job but also one of the main emission driving factors as harmful pollutants (e.g., ultrafine particles) are formed by thermal polymer degradation. The awareness of potential health risks has increased the number of emission studies in the past years. However, studies usually refer their calculated emission data to the printer set extruder temperature for comparison purposes. In this study, we used a thermocouple and an infrared camera to measure the actual extruder temperature and found significant temperature deviations to the displayed set temperature among printer models. Our result shows that printing the same filament feedstocks with three different printer models and with identical printer set temperature resulted in a variation in particle emission of around two orders of magnitude. A temperature adjustment has reduced the variation to approx. one order of magnitude. Thus, it is necessary to refer the measured emission data to the actual extruder temperature as it poses a more accurate comparison parameter for evaluation of the indoor air quality in user scenarios or for health risk assessments. KW - Ultrafine particles KW - Infrared thermography KW - Thermocouple KW - Indoor air quality KW - FFF-3D printer PY - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-572842 VL - 18 SP - 100217 PB - Elsevier Ltd. CY - Amsterdam, Niederlande AN - OPUS4-57284 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Werner, Tiago A1 - Madia, Mauro A1 - Sprengel, Maximilian A1 - Sommer, Konstantin A1 - Ulbricht, Alexander A1 - Evans, Alexander A1 - Zerbst, Uwe T1 - Experimentelle Ermittlung zyklischer R-Kurven in additiv gefertigtem AISI 316L Stahl N2 - Diese Untersuchung beschäftigt sich mit der Charakterisierung von Kurzrisswachstum in mittels Laser-Pulverbett-Verschmelzen (LPBF - Laser Powder Bed Fusion) hergestelltem rostfreien austenitischen Stahl. Spezifischer wird die Ermittlung zyklischer R-Kurven untersucht. Diese beschreiben den Aufbau des Widerstands gegen Ermüdungsrisswachstum - d.h. des Schwellenwertes - aufgrund von Rissschließeffekten bei physikalisch kurzen Rissen. Mit Hilfe der zyklischen R-Kurven kann die Fähigkeit eines Bauteils, physikalisch kurze Risse zu arretieren, charakterisiert werden. Wir verfügen damit über eine Schnittstelle zwischen klassischer Ermüdung und Bruchmechanik. Das ist gerade auch für additiv gefertigte (AM – Additive Manufacturing) Materialien von Interesse. Diese weisen prozessintrinsische Defekte auf, die als Initiierungsstellen kurzer Ermüdungsrisse agieren. Im Rahmen der experimentellen Untersuchungen wurden zyklische R-Kurven für konventionellen und LPBF AISI-316L-Stahl ermittelt. Insbesondere wurde der Einfluss verschiedener Wärmebehandlungen (WB1: 450°C, WB2: 800°C und WB3: 900°C) auf das Wachstumsverhalten physikalisch kurzer Risse im LPBF-Material untersucht. Aufgrund hoher Eigenspannungen war die Ermittlung des Kurzrisswachstumsverhaltens bei WB1 nicht möglich. Für WB2 und WB3 ergaben sich sehr unterschiedliche zyklische R-Kurven. Untersuchungen der Eigenspannungen, der Bruchfläche (insbesondere der Rauheit) und der Mikrostruktur sollen die Ursachen für das unterschiedliche Verhalten erklären. Die Ergebnisse werden mit den Verhältnissen in konventionellem Material verglichen. T2 - Tagung des Arbeitskreises Bruchmechanik und Bauteilsicherheit CY - Online meeting DA - 18.02.2021 KW - Additive Manufacturing KW - Zyklische R-Kurve KW - Ermüdungsriss KW - L-PBF KW - 316L PY - 2021 AN - OPUS4-52250 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Evans, Alexander A1 - Ávila, Luis A1 - Werner, Tiago A1 - Sommer, Konstantin A1 - Ulbricht, Alexander A1 - Sprengel, Maximilian A1 - Charmi, Amir A1 - Mohr, Gunther A1 - Rehmer, Birgit A1 - Skrotzki, Birgit A1 - Falkenberg, Rainer A1 - Bettge, Dirk A1 - Madia, Mauro A1 - Zerbst, Uwe A1 - Kromm, Arne A1 - Hilgenberg, Kai A1 - Kannengießer, Thomas A1 - Bruno, Giovanni T1 - Ageing behaviour of laser powder bed fused 316L: a powder to failure approach N2 - Laser powder bed fusion (LPBF) is an additive manufacturing process for materials which inherently tends to yield various degrees of metastable hierarchical microstructures, defects and high residual stresses in the as-built condition depending on the process parameters. The understanding of the evolution of these typical features during heat treatment and subsequent thermal and mechanical ageing is crucial for the wider acceptance for safety critical structures. A multi-disciplinary research project at BAM studying the development of the microstructure, defects, residual stresses typical of LPBF 316L and their evolution during thermal and mechanical ageing has led to insights into the stability of these inherent features. This presentation aims to give a broad overview of the project with a few specific cases of investigation. Firstly, the formation of residual stresses, the nature of the initial microstructure, the tensile properties and a modelling approach to understand the anisotropy will be presented. This will be followed by examples of studies of their evolution during heat treatment, long term thermal exposure, and room temperature and high temperature mechanical testing compared to a baseline of conventional wrought variant of the same alloy. T2 - International Conference on Additive Manufacturing 2021 (ICAM 2021) CY - Online meeting DA - 01.11.2021 KW - Ageing KW - Additive manufacturing KW - Laser powder bed fusion KW - AGIL PY - 2021 AN - OPUS4-54106 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Werner, Tiago A1 - Madia, Mauro A1 - Zerbst, Uwe A1 - Sonnenburg, Elke T1 - Comparison of the fatigue behavior of wrought and additively manufactured AISI 316L N2 - Additively Manufactured (AM) parts are still far from being used in safety-relevant applications, mainly due to a lack of understanding of the feedstock-process-propertiesperformance relationship. This work aims at providing a characterization of the fatigue behavior of the additively manufactured AISI 316L austenitic stainless steel and a direct comparison with the fatigue performance of the wrought steel. A set of specimens has been produced by laser powder bed fusion (L-PBF) and a second set of specimens has been machined out of hot-rolled plates. The L-PBF material shows a higher fatigue limit and better finite life performance compared to the wrought material, accompanied by an extensive amount of cyclic softening. T2 - Fatigue Design 2021 CY - Online meeting DA - 17.11.2021 KW - Additive Manufacturing KW - AM KW - 316L KW - Fatigue KW - High Cycle Fatigue KW - Low Cycle Fatigue PY - 2021 AN - OPUS4-53780 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Dudziak, Mateusz A1 - Topolniak, Ievgeniia A1 - Silbernagl, Dorothee A1 - Altmann, Korinna A1 - Sturm, Heinz T1 - Long-time behavior of surface properties of microstructures fabricated by multiphoton lithography N2 - The multiphoton lithography (MPL) technique represents the future of 3D microprinting, enabling the production of complex microscale objects with high precision. Although the MPL fabrication parameters are widely evaluated and discussed, not much attention has been given to the microscopic properties of 3D objects with respect to their surface properties and time-dependent stability. These properties are of crucial importance when it comes to the safe and durable use of these structures in biomedical applications. In this work, we investigate the surface properties of the MPL-produced SZ2080 polymeric microstructures with regard to the physical aging processes during the post-production stage. The influence of aging on the polymeric microstructures was investigated by means of Atomic Force Microscopy (AFM) and X-ray Photoelectron Spectroscopy (XPS). As a result, a time-dependent change in Young’s Modulus, plastic deformation, and adhesion and their correlation to the development in chemical composition of the surface of MPL-microstructures are evaluated. The results presented here are valuable for the application of MPL-fabricated 3D objects in general, but especially in medical technology as they give detailed information of the physical and chemical time-dependent dynamic behavior of MPL-printed surfaces and thus their suitability and performance in biological systems. KW - Multiphoton lithography KW - Additive manufacturing KW - Microfabrication KW - SZ2080 negative photo-resist KW - Young´s modulus KW - Aging KW - Surface properties KW - X-ray photoelectron spectroscopy KW - Atomic force microscopy KW - Force-distance-curve PY - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-542166 SN - 2079-4991 VL - 11 IS - 12 SP - 1 EP - 12 PB - MDPI CY - Basel AN - OPUS4-54216 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schröder, Jakob A1 - Mishurova, Tatiana A1 - Fritsch, Tobias A1 - Serrano Munoz, Itziar A1 - Evans, Alexander A1 - Sprengel, Maximilian A1 - Klaus, M. A1 - Genzel, C. A1 - Schneider, J. A1 - Bruno, Giovanni T1 - The heat treatment of L-PBF Inconel 718: A manyfold problem N2 - The interest to additively manufacture Nickel-based superalloys has substantially grown within the past decade both academically and industrially. More specifically, additive manufacturing processes such as laser powder bed fusion (LPBF) offer the ability to produce dense parts within a single manufacturing step. In fact, the exceptional freedom in design associated with the layer-based nature of the processes is of particular interest for the complex shapes typically required in turbine applications. In certain cases, the overall part performance can be achieved by tailoring the microstructure and the crystallographic texture to the specific application. However, these advantages must be paid at a price: the large local temperature gradients associated with the rapid melting and solidification produce parts that inherently contain large residual stress in the as-manufactured state. In addition, the presence of pores in the final part may further affect the in-service part failure. As among Nickel-based alloys Inconel 718 exhibits excellent weldability, this alloy has been widely studied in open research in the domain of LPBF. However, significant microsegregation of the heavier alloying elements such as Niobium and Molybdenum accompanied by dislocation entanglements may preclude the application of conventional heat treatment schedules. Therefore, different post processing heat treatments are required for laser powder bed fused Inconel 718 as compared to conventional variants of the same alloy. In this study, we investigated two different heat treatment routes for LPBF Inconel 718. In a first routine, the samples were stress relieved and subsequently subjected to hot isostatic pressing (HIP) followed by a solution heat treatment and a two-step age (referred to as FHT). In a second routine, the samples were subjected to a single-step direct age post stress relieving heat treatment (referred to DA). We investigated the consequences of such heat treatment schedules on the microstructure, texture, and mechanical behavior. We show that by applying a DA heat treatment the typical columnar microstructure possessing a crystallographic texture is retained, while an equiaxed untextured microstructure prevails in case of an FHT heat treatment. We further evaluate how these heat treatments affect the mechanical behaviour on the macroscopic and microscopic scale. T2 - 4th European Symposium on Superalloys and their Applications EuroSuperalloys 2022 CY - Bamberg, Germany DA - 18.09.2022 KW - Electron Backscatter Diffraction KW - Additive Manufacturing KW - Laser Powder Bed Fusion KW - Mechanical Behavior KW - Heat Treatment KW - X-Ray Diffraction PY - 2022 AN - OPUS4-55811 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Madia, Mauro A1 - Werner, Tiago A1 - Zerbst, Uwe A1 - Sommer, Konstantin A1 - Sprengel, Maximilian A1 - Bergant, M. A1 - Evans, Alex A1 - Roveda, Ilaria A1 - Serrano Munoz, Itziar A1 - Yawny, A. T1 - Damage Tolerant Approach in Additively Manufactured Metallic Materials N2 - Damage tolerance counts as one of the most widespread approach to fatigue assessment and surely as one of the most promising in understanding the process-structure-property-performance relationships in additively manufactured metallic materials. Manufacturing defects, surface roughness, microstructural features, short and long crack fatigue propagation, residual stresses and applied loads can be taken into consideration in a fracture mechanics-based fatigue assessment. Many aspects are crucial to the reliable component life prediction. Among those a prominent role is played by an accurate measurement and modelling of the short crack fatigue behavior, and reliable statistical characterization of defects and residual stresses. This work aims at addressing the issues related to both experimental testing, fatigue and fatigue crack propagation, and fracture mechanics-based modelling of fatigue lives. Examples will be provided on an additively manufactured AISI 316 L. T2 - TMS2021 VIRTUAL CY - Online meeting DA - 15.03.2021 KW - AISI 316L KW - Additive Manufacturing KW - Damage Tolerance KW - Microstructure KW - Defects KW - Residual Stress PY - 2021 AN - OPUS4-52293 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sommer, Konstantin A1 - Bettge, Dirk A1 - Nolze, Gert T1 - Microstructure analysis in AM 316L N2 - Additive manufacturing (AM) offers diverse advantages compared to conventional manufacturing. In this work the microstructure of austenitic steel 316L, manufactured with Selective Laser Melting (SLM), was analyzed and compared to microstructure of 316L hot rolled material. Methods used for analysis are microprobe, optical microscopy and electron backscatter diffraction. T2 - BAM workshop on Additive Manufacturing CY - Berlin, Germany DA - 13.05.2019 KW - 316L KW - selective laser melting KW - microstructure analysis PY - 2019 AN - OPUS4-49880 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sommer, Konstantin A1 - Bettge, Dirk A1 - Nolze, Gert T1 - Microstructure Characterization of Additively Manufactured Austenitic Steel 316L N2 - Additive manufacturing processes (AM) offer different advantages compared to conventional manufacturing processes. In this work the microstructure of austenitic steel 316L, manufactured with Selective Laser Melting (SLM), and the powder, used for the process, were investigated. T2 - BAM workshop on Additive Manufacturing CY - Berlin, Germany DA - 13.05.2019 KW - 316L KW - Selective laser melting KW - Microstructure analysis KW - Metal powder characterization PY - 2019 AN - OPUS4-49884 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Agudo Jácome, Leonardo A1 - Sommer, Konstantin A1 - Hesse, René A1 - Bettge, Dirk T1 - Revealing the Nature of Melt Pool Boundaries in Additively Manufactured Stainless Steel by Nano-sized Modulation N2 - Additive manufacturing (AM) of metallic alloys has gained momentum in the past decade for industrial applications. The microstructures of AM metallic alloys are complex and hierarchical from the macroscopic to the nanometer scale. When using laser-based powder bed fusion (L-PBF) process, two main microstructural features emerge at the nanoscale: the melt pool boundaries (MPB) and the solidification cellular substructure. Here, details of the MPB are revealed to clearly show the three-dimensional nature of MPBs with changes of cell growth of direction and their relation to their surrounding cellular substructure, as investigated by transmission electron microscopy (TEM) for L-PBF 316L austenitic stainless steel (cf. Figure 1). A hitherto unknown modulated substructure with a period of 21 nm is further discovered within cells as the result of a partial Ga+-focused ion beam-induced ferritic transformation of the austenite. Cell cores and cell boundaries differ notably regarding the modulated substructure. T2 - 3. Fachtagung Werkstoffe und Additive Fertigung 2022 CY - Dresden, Germany DA - 11.05.2022 KW - Additive manufacturing KW - Austenitic steel 316L KW - Melt pool boundary KW - Microstructural characterization KW - Transmission electron microscopy PY - 2022 AN - OPUS4-54836 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Le, Quynh Hoa A1 - Balzer, B A1 - Bettge, Dirk T1 - „Auffällige große Streifen“ im Schwingbruch N2 - Die „auffälligen großen Streifen“ sind von echten Schwingstreifen nur sehr schwer zu trennen, weil sie parallel zu den Schwingstreifen verlaufen und meistens ebenfalls nicht sehr groß sind. Die im Labor getesteten Proben zeigten, dass diese großen Streifen zusammen mit Verreibungen auftraten und „tire tracks“ („Reifenspuren“) verursachten. Dies wurde durch eine hochauflösende REM-Untersuchung bestätigt, die „tire tracks“ auf den „großen Streifen“ zeigte. Ein weiterer Hinweis ist die Änderung des R-Werts von -1 auf 0,1, was zu einer Bruchfläche ohne große Streifen und „tire tracks“ führt. T2 - Treffen der AG Fraktographie im Gemeinschaftsausschuss Rasterelektronenmikroskopie in der Materialprüfung CY - Online meeting DA - 19.11.2021 KW - Fractography KW - Fracture surface KW - SEM KW - REM KW - Fraktographie KW - Schwingstreifen KW - Fatigue PY - 2021 UR - https://dgm.inventum.de/widget/preview/45d8c33d-622b-43e2-8459-ba783394a723/611d133ebdac0611d133ebdac1 AN - OPUS4-53796 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bettge, Dirk A1 - Le, Quynh-Hoa A1 - Yarysh, Anna T1 - MGA Round Robin Test on Al-AM Fatigue Testing - Fractographic Results N2 - Presentation of results of an investigation of fracture mechanisms and crack start sites of an additive manufactured aluminium alloy after fatigue testing. Collaboration within the MGA initiative (Mobility Goes Additive). T2 - MGA Mid Term Meeting 2022 CY - Berlin, Germany DA - 05.07.2022 KW - Aluminium Alloy KW - Fractography KW - Additive Manufacturing PY - 2022 AN - OPUS4-55192 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Werner, Tiago A1 - Madia, Mauro A1 - Agudo Jácome, Leonardo A1 - Nolze, Gert A1 - Cios, G. A1 - Saliwan Neumann, Romeo A1 - Sonnenburg, Elke A1 - Hesse, René T1 - Ermüdung von additiv gefertigtem Stahl AISI 316L: Zyklische plastische Verformung N2 - Das zyklische plastische Verformungsverhalten von additiv gefertigtem Edelstahl AISI 316L wurde in dehnungsgeregelten Kurzzeitfestigkeitsversuchen (LCF-Versuchen) untersucht. Dabei wurden zwei Wärmebehandlungszustände betrachtet: Beim ersten Zustand war die fertigungsbedingte zelluläre Struktur vorhanden, während sie durch die zweite Wärmebehandlung aufgelöst wurde. Untersuchungen im Transmissions-Elektronen-Mikroskop (TEM) zeigten, dass die zyklische Verformung die Zellstruktur lokal zerstörte und Gleitbänder entstanden, was die Entfestigung in diesem Fall erklärt. Für Material ohne Zellstrukturen resultierten nach zyklischer Verformung ähnliche Versetzungsstrukturen wie in konventionell gefertigtem (warmgewalzten) Material. T2 - OVGU-Kolloquium (BMDK des IWF) CY - Magdeburg, Germany DA - 23.06.2022 KW - Additive Fertigung KW - Kurzzeitfestigkeit KW - Mikrostrukturentwicklung KW - Versetzungsstrukturen KW - TEM PY - 2022 AN - OPUS4-56789 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ferrari, Bruno A1 - Mishurova, Tatiana A1 - Roveda, Ilaria A1 - Schicchi Said, D. A1 - Darvishi Kamachali, Reza A1 - Evans, Alexander A1 - Agudo Jacome, Leonardo A1 - Serrano-Munoz, Itziar T1 - Microstructural evolution of PBF-LB/M Inconel 718 during solution-aging heat treatments - an in-situ x-ray diffraction study N2 - Inconel 718 (IN718) is a traditional age-hardenable nickel-based alloy that has been increasingly processed by additive manufacturing (AM) in recent years. In the as-solidified condition, IN718 exhibits chemical segregation and the undesired Laves phase, requiring a solution annealing (SA) prior to aging. The material produced by AM does not respond to the established thermal routines in the same way as conventionally produced IN718, and there is still no consensus on which routine yields optimal results. This work aims to provide a fundamental understanding of the heat treatment (HT) response by continuously monitoring the microstructural evolution during SA via time-resolved synchrotron x-ray diffraction, complemented by ex-situ scanning electron microscopy (SEM). The samples were produced by laser powder bed fusion to a geometry of 10x20x90 mm³, from which Ø1x5 mm³ cylindric specimens were extracted. Two different scanning strategies – incremental 67° rotations, Rot, and alternating 0°/67° tracks, Alt – were used, leading to two different as-built conditions. 1-hour SAs were carried out in the beamline ID22 of the ESRF at 50 KeV. Two SA temperatures, SA1 = 1020 °C, and SA2 = 1080 °C were tested for each scanning strategy. Data were processed using the software PDIndexer. In the as-built state, all samples showed typical subgrain columnar cell structures with predominant Nb/Mo segregation and Laves phase at the cell walls, as seen by SEM. The Alt scan induced higher intensity on the Laves peaks than the Rot scan, suggesting a greater content of Laves. Chemical homogenization in the SA was largely achieved during the heating ramp (Fig. 1). SA2 eliminated the Laves peaks just before reaching 1080 °C, and mitigated differences between Rot and Alt samples. On the other hand, SA1 induced the precipitation of the generally detrimental δ phase, also observed by SEM. Furthermore, the Rot scan showed higher δ peak intensities than the Alt scan, indicating a higher content of δ in the latter. No signs of recrystallization were observed in any of the investigated SAs. T2 - FEMS EUROMAT 2023 CY - Frankfurt a. M., Germany DA - 03.09.2023 KW - Additive Manufacturing KW - X-Ray Diffraction KW - Inconel 718 KW - Heat Treatments KW - Microstructure PY - 2023 AN - OPUS4-58392 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ulbricht, Alexander A1 - Avila Calderon, Luis A1 - Sommer, Konstantin A1 - Mohr, Gunther A1 - Evans, Alexander A1 - Skrotzki, Birgit A1 - Bruno, Giovanni T1 - Evolution of Creep Damage of 316L Produced by Laser Powder Bed Fusion N2 - The damage mechanisms of metallic components produced by process laser powder bed fusion differ significantly from those typically observed in conventionally manufactured variants of the same alloy. This is due to the unique microstructures of additively manufactured materials. Herein, the focus is on the study of the evolution of creep damage in stainless steel 316L specimens produced by laser powder bed fusion. X-ray computed tomography is used to unravel the influence of the process-specific microstructure from the influence of the initial void distribution on creep damage mechanisms. The void distribution of two specimens tested at 600 °C and 650 °C is analyzed before a creep test, after an interruption, and after fracture. The results indicate that the formation of damage is not connected to the initial void distribution. Instead, damage accumulation at grain boundaries resulting from intergranular cracking is observed. T2 - Annual International Solid Freeform Fabrication Symposium CY - Austin, TX, USA DA - 14.08.2023 KW - AISI 316L KW - Additive Manufacturing KW - Computed Tomography KW - Creep KW - Laser Powder Bed Fusion KW - Microstructure KW - PBF-LB/M/316L PY - 2023 AN - OPUS4-58285 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Evans, Alexander A1 - Sprengel, Maximilian A1 - Ulbricht, Alexander A1 - Kromm, Arne A1 - Werner, Tiago A1 - Sommer, Konstantin A1 - Kelleher, Joe A1 - Mishurova, Tatiana A1 - Serrano Munoz, Itziar A1 - Fritsch, Tobias A1 - Schröder, Jakob A1 - Kannengießer, Thomas A1 - Bruno, Giovanni T1 - Manufacturing a safer world: Diffraction based residual stress analysis for metal additive manufacturing N2 - Metal Additive Manufacturing (AM) technologies such as Laser Powder Bed Fusion (LPBF) are characterized by layer wise construction, which enable advancements of component design, with associated potential gains in performance and efficiency. However, high magnitude residual stresses (RS) are often a product of the rapid thermal cycles typical of the layerwise process. Therefore, a deep understanding of the formation of RS, the influence of process parameters on their magnitude and the impact on mechanical performance is crucial for widespread application. The experimental characterisation of these RS is essential for safety related engineering application and supports the development of reliable numerical models. Diffraction-based methods for RS analysis using neutrons and high energy X-rays enable non-destructive spatially resolved characterisation of both surface and bulk residual stresses in complex components. This presentation will provide an overview of recent research by the BAM at large scale facilities for the characterization of residual stresses in LPBF metallic alloys as a function of process parameters. In addition, the challenges posed by the textured and hierarchical microstructures of LPBF materials on diffraction-based RS analysis in AM materials will be discussed. This will include the question of the d0 reference lattice spacing and the appropriate choice of the diffraction elastic constants (DECs) to calculate the level of RS in LPBF manufactured alloys. T2 - 11th INternational Conference on Residual Stress (ICRS11) CY - Online meeting DA - 28.03.2021 KW - Residual stress analysis KW - Neutron diffraction KW - X-ray diffraction KW - Additive manufacturing KW - Laser powder bed fusion KW - AGIL PY - 2022 AN - OPUS4-54676 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schröder, Jakob A1 - Evans, Alexander A1 - Polatidis, E. A1 - Capek, J. A1 - Mohr, Gunther A1 - Serrano Munoz, Itziar A1 - Bruno, Giovanni T1 - Texture Dependent Micromechanical Anisotropy of Laser Powder Bed Fused Inconel 718 N2 - Additive manufacturing methods such as laser powder bed fusion (LPBF) allow geometrically complex parts to be manufactured within a single step. However, as an aftereffect of the localized heat input, the rapid cooling rates are the origin of the large residual stress (RS) retained in as-manufactured parts. With a view on the microstructure, the rapid directional cooling leads to a cellular solidification mode which is accompanied by columnar grown grains possessing crystallographic texture. The solidification conditions can be controlled by the processing parameters and the scanning strategy. Thus, the process allows one to tailor the microstructure and the texture to the specific needs. Yet, such microstructures are not only the origin of the mechanical anisotropy but also pose metrological challenges for the diffraction-based RS determination. In that context the micromechanical elastic anisotropy plays an important role: it translates the measured microscopic strain to macroscopic stress. Therefore, it is of uttermost importance to understand the influence of the hierarchical microstructures and the texture on the elastic anisotropy of LPBF manufactured materials. This study reveals the influence of the build orientation and the texture on the micro-mechanical anisotropy of as-built Inconel 718. Through variations of the build orientation and the scanning strategy, we manufactured specimens possessing [001]/[011]-, [001]-, and [011]/[111]-type textures. The resulting microstructures lead to differences in the macroscopic mechanical properties. Even further, tensile in-situ loading experiments during neutron diffraction measurements along the different texture components revealed differences in the microstrain response of multiple crystal lattice planes. In particular, the load partitioning and the residual strain accumulation among the [011]/[111] textured specimen displayed distinct differences measured up to a macroscopic strain of 10 %. However, the behavior of the specimens possessing [001]/[011]-and [001]-type texture was only minorly affected. The consequences on the metrology of RS analysis by diffraction-based methods are discussed. T2 - International Conference on Additive Manufacturing ICAM 2022 CY - Orlando, FL, USA DA - 31.10.2022 KW - Laser powder bed fusion KW - Neutron diffraction KW - Electron backscatter diffraction KW - Mechanical behavior PY - 2022 AN - OPUS4-56376 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schröder, Jakob A1 - Evans, Alexander A1 - Polatidis, E. A1 - Čapek, J. A1 - Mohr, Gunther A1 - Serrano Munoz, Itziar A1 - Kromm, Arne A1 - Luzin, V. A1 - Bruno, Giovanni T1 - Fundamentals of diffraction-based residual stress and texture analysis of PBF-LB Inconel 718 N2 - Laser powder bed fusion (PBF-LB/M) of metallic alloys is a layer wise additive manufacturing process which provides significant scope for more efficient designs of components, benefiting performance and weight, leading to efficiency improvements for various sectors of industry. However, to benefit from these design freedoms, knowledge of the high produced induced residual stress and mechanical property anisotropy associated with the unique microstructures is critical. X-ray and neutron diffraction are considered the benchmark for non-destructive characterization of surface and bulk internal residual stress. The latter, characterized by the high penetration power in most engineering alloys, allows for the use of diffraction angle close to 90° enabling a near cubic sampling volume to be specified. However, the complex microstructures of columnar growth with inherent crystallographic texture typically produced during PBF-LB/M of metallics present significant challenges to the assumptions typically required for time efficient determination of residual stress. These challenges include the selection of an appropriate set of diffraction elastic constants and a representative strain-free reference for the material of interest. In this presentation advancements in the field of diffraction-based residual stress analysis of L-PBF Inconel 718 will be presented. The choice of an appropriate set of diffraction-elastic constants depending on the underlying microstructure will be described. T2 - MLZ User Meeting 2022 CY - Munich, Germany DA - 08.12.2022 KW - Diffraction KW - Residual Stress KW - Microstructure KW - Texture KW - Mechanical behavior PY - 2022 AN - OPUS4-56804 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bhadeliya, Ashok A1 - Rehmer, Birgit A1 - Fedelich, Bernard A1 - Skrotzki, Birgit A1 - Olbricht, Jürgen T1 - High temperature fatigue crack growth in nickel-based alloys joined by brazing and additive manufacturing N2 - Gas turbine components, made of nickel-based alloys, undergo material damage due to high temperatures and mechanical stresses. These components need periodic replacement to avoid efficiency loss and failure. Repair of these parts is more cost-effective than replacement. State-of-the-art repair technologies, including different additive manufacturing (AM) and brazing processes, are considered for efficient restoration. Materials properties mismatches and/or internal defects in repaired parts may expedite crack initiation and propagation, reducing fatigue life. To understand the crack growth behavior in joining zones and predict the remaining life of repaired components, fatigue crack growth (FCG) tests were conducted on specimens of nickel-based alloys joined via brazing, pre-sintered preforms and AM. The FCG experimental technique was successfully adapted for joined specimens and results indicate that the investigated braze material provides a lower resistance to crack growth. In AM-sandwich specimens, the crack growth rates are significantly reduced at the interface of AM and cast material. T2 - TMS 2024 Annual Meeting & Exhibition CY - Orlando, Florida, USA DA - 03.03.2024 KW - Fatigue crack growth KW - Joined nickel-based alloys PY - 2024 AN - OPUS4-59854 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hernandez Garcia, Maria Amparo A1 - Bell, Jeremy A1 - Rurack, Knut T1 - Characterization and testing of commercial photo-resins for the fabrication of free-form optical elements with standard LCD 3D printer for advanced opto-biosensing applications N2 - Optical biosensors often show remarkable performance and can be configured in many ways for sensitive, selective, and rapid measurements. However, the high-quality and advanced optical assemblies required to read out the sensor signals, for example, Total Internal Reflection Fluorescence (TIRF) or Supercritical Angle Fluorescence (SAF) microscopy, which necessitate complex and expensive optical elements. Particularly in optical method development, researchers or developers are often confronted with limitations because conventional manufacturing processes for optical elements can be restrictive in terms of design, material, time, and cost. Modern and high-resolution 3D printing techniques make it possible to overcome these challenges and enable the fabrication of individualized and personalized free-form optical components, which can reduce costs and significantly shorten the prototyping timeline—from months to hours. In this work, we use a modern, high-resolution (< 22 µm) commercial Liquid Crystal Display (LCD)-based 3D printer, for which we spectroscopically and physically characterized commercial photo-resins printable with the LCD technique in the first step (Figure 1). The aim was not only to produce a printed element with a high surface quality that mitigates the inner filter effects caused by attenuation (high optical density (OD) due to reflection and scattering), but also to select a material with a high refractive index (RI>1.5) and high transmission values (>90% transmittance) in the visible to near-infrared spectral range (approx. 450 – 900 nm) that exhibits little or no autofluorescence. Using a selection of suitable resins, lenses and free-form optical elements were manufactured for comparison with standard glass or plastic counterparts. T2 - Europt(r)ode XVI CY - Birmingham, England DA - 24.03.2024 KW - 3D-printing KW - Optics KW - Photopolymerization KW - Sensors KW - Rapid prototyping PY - 2024 AN - OPUS4-59875 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Günster, Jens A1 - Zocca, Andrea T1 - Dense Powder Beds for the Additive Manufacturing of Ceramics N2 - Regarding feedstocks for the additive manufacturing (AM) of ceramics, two features are most critical in classical powder based AM processes: a high particle packing density (typically >50% TD) must be achieved with very fine particles (typically submicron) in order to ensure sufficient sintering activity. Three innovative approaches will be introduced to overcome this problem: 1. Layer wise slurry deposition: The use of water based ceramic slurries as feedstock for the additive manufacture of ceramics has many advantages which are not fully exploit yet. In the layerwise slurry deposition (LSD) process a slurry with no or low organic content is repetitively spread as thin layers on each other by means of a doctor blade. During the deposition, the ceramic particles settle on the previously deposited and dried material to form thin layers with a high packing density (55-60%). The LSD therefore shares aspects both of tape casting and slip casting. The LSD differentiates from the classical powder-based AM layer deposition, which typically achieves with a flowable coarse grained powder a low packing density (35-50%) only, consequently hindering the ability of sintering ceramic parts to full density. The LSD is coupled with the principles of selective laser sintering (SLS) or binder jetting, to generate novel processes which take advantage of the possibility of achieving a highly dense powder-bed. 2. Laser induced slip casting: Contrary to the LSD process, which requires drying of each individual layer, the direct interaction of ceramic slurries with intense laser radiation, for the laser induced slip casting (LIS), is a promising approach for the additive manufacture of voluminous parts. 3. Gas flow assisted powder deposition: By the application of a vacuum pump a gas flow is realized throughout the powder bed. This gas flow stabilizes the powder bed and results into an enhanced flowability and packing density of the powder during layer deposition. The presentation will provide a detailed discussion of potentialities and issues connected to the mentioned technologies and will describe the most recent developments in their application to technical ceramics. T2 - SmatMade 2022 CY - Osaka, Japan DA - 25.10.2022 KW - Additive Manufacturing KW - Advanced ceramics PY - 2022 AN - OPUS4-59886 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Günster, Jens T1 - Binder Jetting of Advanced Ceramics N2 - The Binder Jetting BJ process is one of the most versatile additive manufacturing technologies in use. In this process a binder is locally jetted into a powder bed for the consolidation of a 3D structure, layer by layer. Basically, all materials which can be provided as a flowable powder and, thus, spreadable to a thin layer, can be processed. Metals, ceramics and polymers are processable, but also materials from nature, such as sand, wood sawdust and insect frass. Moreover, the BJ technology is adapted to large building volumes of some cubic meters easily. Besides these striking advantages, the manufacture of ceramic parts by BJ is still challenging, as the packing density of the powder bed is generally too low and the particle size of a flowable powder too large for a successful densification of printed parts in a subsequent sintering step to an advanced ceramic product. After an introduction of binder jetting in general and highlighting some examples, strategies for obtaining dense ceramic parts by BJ will be introduced. T2 - yCAM 2022 CY - Barcelona, Spain DA - 08.11.2022 KW - Additive Manufacturing KW - Ceramics PY - 2022 AN - OPUS4-59887 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Günster, Jens A1 - Sänger, Johanna T1 - Tailoring powder properties for the light based volumetric additive manufacture of Ceramics N2 - In order to be able to manipulate ceramic powder compacts and ceramic suspensions (slurries) within their volume with light, a minimum transparency of the materials is required. Compared to polymers and metals, ceramic materials are characterized by the fact that they have a wide electronic band gap and therefore a wide optical window of transparency. The optical window generally ranges from less than 0.3 µm to 5 µm wavelength. In order to focus light into the volume of a ceramic powder compact, its light scattering properties must therefore be tailored. In this study, we present the physical background and material development strategies for the application of two-photon polymerization (2PP) and selective volumetric sintering for the additive manufacturing of structures in the volume of ceramic slips and green compacts. T2 - SmartMade 2024 CY - Osaka, Japan DA - 10.04.2024 KW - Additive Manufacturing KW - Two Photon Polymerization KW - Advanced ceramics PY - 2024 AN - OPUS4-59888 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Günster, Jens A1 - Sänger, Johanna A1 - Pauw, Brian T1 - Tailoring powder properties for the light based volumetric additive manufacture of Ceramics N2 - Manipulating ceramic powder compacts and ceramic suspensions (slurries) within their volume with light requires a minimum transparency of the materials. Compared to polymers and metals, ceramic materials are unique as they offer a wide electronic band gap and thus a wide optical window of transparency. The optical window typically ranges from below 0.3 µm up to 5µm wavelength. Hence, to penetrate with light into the volume of a ceramic powder compound, its light scattering properties need to be investigated and tailored. In the present study we introduce the physical background and material development strategies to apply two-photon-polymerization (2PP), and other volumetric methods for the additive manufacture of filigree structures within the volume of ceramic slurries. T2 - ICACC 2024 CY - Daytona Beach, Florida, USA DA - 28.01.2024 KW - Additive Manufacturing KW - Two Photon Polymerization KW - Advanced ceramics PY - 2024 AN - OPUS4-59889 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kern, Simon A1 - Wander, Lukas A1 - Bornemann-Pfeiffer, Martin A1 - Guhl, Svetlana A1 - Meyer, Klas A1 - Maiwald, Michael T1 - Novel Flow Cell Designs for Process Monitoring with Compact NMR Spectroscopy N2 - Compact nuclear magnetic resonance (NMR) instruments make NMR spectroscopy and relaxometry accessible in industrial and harsh environments for reaction characterization and process control. Robust field integration of NMR systems have to face explosion protection or integration into process control systems with short set-up times. This paves the way for industrial automation in real process environments. The design of failsafe, temperature and pressure resistant flow through cells along with their NMR-specific requirements is an essential cornerstone to enter industrial production plants and fulfill explosion safety requirements. Additionally, if fast reactions are monitored, suitable mixing devices need to be placed in close vicinity to the measuring volume to mix the reactants properly. NMR-specific requirements aim at full quantitative pre-magnetization and acquisition with maximum sensitivity while reducing sample transfer times and dwell-times. All parameters are individually dependent on the applied NMR instrument. Luckily, an increasing number of applications are reported together with an increasing variety of commercial equipment. However, these contributions have to be reviewed thoroughly. The performance of sample flow cells commonly used in online analytics and especially for low-field NMR spectroscopy was experimentally and theoretically investigated by 1H-NMR experiments and numerical simulations. Especially, the applicability of 3D printed zirconium dioxide for innovative flow cell designs was of interest. Here, we demonstrate and discuss an automated test method to determine the critical parameters of flow through cells for quantitative online NMR spectroscopy. The setup is based on randomized setpoints of flow rates in order to reduce temperature related effects. Five flow cells and tubing were assessed and compared for high-field as well as low-field NMR spectrometers. T2 - Practical Applications of NMR in Industry Conference ​(PANIC) 2018 CY - La Jolla, California, USA DA - 04.03.2018 KW - Process Monitoring KW - Process Control KW - Flow Cell KW - Online NMR Spectroscopy KW - Additive Manufacturing KW - CONSENS PY - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-444364 N1 - Geburtsname von Bornemann-Pfeiffer, Martin: Bornemann, M. - Birth name of Bornemann-Pfeiffer, Martin: Bornemann, M. AN - OPUS4-44436 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sommer, Konstantin A1 - Kranzmann, Axel A1 - Reimers, W. T1 - Microstructure characterization of additive produced parts N2 - Due to the advantages of additive manufacturing (AM), it has been increasingly integrated into many industrial sectors. The application of AM materials for safety-critical parts requires the detailed knowledge about their microstructure stability under thermo-mechanical or mechanical load and knowledge on ageing process mechanisms. Ageing processes are characterized by change of the material microstructure that is to be initially investigated. This work deals with the Investigation of 316L stainless steel manufactured by selective laser melting (SLM). Describing Parameters must be defined and applied on the microstructure of these materials in their initial state and after loads were applied. The findings of this work form the basis for the investigation of AM material ageing. T2 - FEMS Junior EUROMAT 2018 CY - Budapest, Hungary DA - 08.07.2018 KW - Additive manufacturing KW - Selective laser melting KW - 316L KW - Material characterization KW - Microstructure PY - 2018 AN - OPUS4-47176 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Evans, Alexander A1 - Mohr, Gunther A1 - Hilgenberg, Kai A1 - Straße, Anne A1 - Gumenyuk, Andrey A1 - Winterkorn, René A1 - Pittner, Andreas A1 - Sommer, Konstantin A1 - Bettge, Dirk A1 - Kranzmann, Axel A1 - Nolze, Gert A1 - Avila, Luis A1 - Rehmer, Birgit A1 - Charmi, Amir A1 - Falkenberg, Rainer A1 - Skrotzki, Birgit A1 - Werner, Tiago A1 - Madia, Mauro A1 - Zerbst, Uwe A1 - Ulbricht, Alexander A1 - Sprengel, Maximilian A1 - Kromm, Arne A1 - Thiede, Tobias A1 - Bruno, Giovanni T1 - Ageing in additively manufactured metallic components: from powder to mechanical failure” an overview of the project agil N2 - An overview of the BAM funed Focus Area Materials Project "AGIL" will be presented. AGIL focussed on the stdiy of the ageing characteristics of additively manufactured austenitic stainless steel with a "powder to mechanical failure" Approach. Recent Highlights are presented and a perspective for future studies. T2 - Workshop on Additive Manufacturing CY - BAM, Berlin, Germany DA - 13.05.2019 KW - Residual stress KW - Additive Manufacturing KW - Non-destructive testing KW - Microstructure characterisation KW - Tensile testing KW - Fatigue KW - Crystal Plasticity Modelling KW - Crack propagation PY - 2019 AN - OPUS4-49823 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sommer, Konstantin A1 - Ávila, Luis T1 - Microstructure ageing of stainless steel AISI 316L manufactured by selective laser melting (SLM) N2 - Additive manufacturing (AM) processes, such as SLM, offer a variety of advantages compared to conventional manufacturing. Today AM parts are still comparatively less cost-effective if they are manufactured in large quantities. To make the AM parts more cost-efficient, the AM process has to be improved. It requires a good understanding of microstructure formation, microstructure-property-relations and ageing processes affected by different loads. In this work the ageing behavior of SLM manufactured AISI 316L stainless steel is evaluated. The microstructure effected by mechanical, thermal and corrosive loads are investigated and compared to as-built microstructure. Tensile tests are used for mechanical ageing. For thermal and corrosive loads the typical application conditions of 316L apply. The methods of microstructure investigation include SEM, TEM, CT and EBSD. The main object of this work is the description of microstructure and ageing processes of AM parts. T2 - European Conference on Structural Integrity of Additively Manufactured Materials (ESIAM) 2019 CY - Trondheim, Norway DA - 09.09.2019 KW - 316L KW - Selective laser melting KW - Microstructure evolution PY - 2019 AN - OPUS4-49886 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Evans, Alexander A1 - Ávila, Luis A1 - Werner, Tiago A1 - Sommer, Konstantin A1 - Ulbricht, Alexander A1 - Sprengel, Maximilian A1 - Charmi, Amir A1 - Mohr, Gunther A1 - Altenburg, Simon A1 - Rehmer, Birgit A1 - Skrotzki, Birgit A1 - Falkenberg, Rainer A1 - Bettge, Dirk A1 - Madia, Mauro A1 - Zerbst, Uwe A1 - Kromm, Arne A1 - Hilgenberg, Kai A1 - Kannengießer, Thomas A1 - Bruno, Giovanni T1 - Entwicklung der Mikrostruktur der mechanischen Eigenschaften und der Eigenspannungen in L-PBF 316L N2 - Die additive Fertigung (AM) metallischer Werkstoffe mittels Laser Powder Bed Fusion (L-PBF) ermöglicht einzigartige hierarchische Mikrostrukturen, die zu Verbesserungen bestimmter mechanischer Eigenschaften gegenüber konventionell hergestellten Varianten derselben Legierung führen können. Allerdings ist das L-PBF-Verfahren häufig durch das Vorhandensein hoher Eigenspannungen gekennzeichnet, die es zu verstehen und zu mindern gilt. Daher ist das Verständnis der Mikrostrukturen, der Eigenspannungen und der daraus resultierenden mechanischen Eigenschaften entscheidend für eine breite Akzeptanz bei sicherheitskritischen Anwendungen. Die BAM hat ein multidisziplinäres Forschungsprogramm gestartet, um diese Aspekte bei LPBF 316L zu untersuchen. Der vorliegende Beitrag stellt einige der wichtigsten Ergebnisse vor: der Einfluss von Prozessparametern auf die Mikrostruktur, der Einfluss von Mikrostruktur und Textur auf die Festigkeit, Kriechverhalten und Schädigung und die Stabilität von Eigenspannungen und Mikrostruktur unter Wärmebehandlungsbedingungen. T2 - DGM 3. Fachtagung Werkstoffe und Additive Fertigung CY - Dresden, Germany DA - 11.05.2022 KW - Mechanische Eigenschaften KW - Additive Fertigung KW - L-PBF 316L KW - Entwicklung KW - Mikrostruktur KW - Eigenspannung PY - 2022 AN - OPUS4-55786 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ávila Calderón, Luis Alexander A1 - Rehmer, Birgit A1 - Schriever, Sina A1 - Ulbricht, Alexander A1 - Agudo Jácome, Leonardo A1 - Sommer, Konstantin A1 - Mohr, Gunther A1 - Skrotzki, Birgit T1 - Kriech- und Bruchverhalten von additiv hergestelltem austenitischem Stahl 316L. Vergleich zum konventionellen Werkstoff. N2 - Eine kritische Aufgabe im Rahmen der Etablierung von Prozess-Struktur-Eigenschafts-Performance-Beziehungen bei der additiven Fertigung (AM) von Metallen ist die Ermittlung von zuverlässigen und gut dokumentierten Kennwerten zum Materialverhalten sowie das Schaffen von Wissen über die Struktur-Eigenschafts-Korrelation. Schließlich ist dies die Grundlage für die Entwicklung gezielterer Prozessoptimierungen und zuverlässigerer Lebensdauer-Vorhersagen. In diesem Zusammenhang zielt dieser Beitrag darauf ab, Daten und Erkenntnisse über das Kriechverhalten des austenitischen Edelstahls 316L zu liefern, der mittels Laser-Powder-Bed-Fusion (L-PBF) hergestellt wird. Um dieses Ziel zu erreichen, wurden Proben aus konventionellem warmgewalztem sowie AM-Material gemäß den bestehenden Normen für konventionelles Material geprüft und vor und nach dem Versagen mikrostrukturell charakterisiert. Die Probekörper wurden aus einzelnen Blöcken des AM-Materials gefertigt. Die Blöcke wurden mit einer Standard-Scan- und Aufbaustrategie hergestellt und anschließend wärmebehandelt. Das Kriechverhalten wird anhand der Kriechlebensdauer und ausgewählter Kriechkurven und Kennwerte beschrieben und vergleichend bewertet. Der Einfluss von Defekten und Mikrostruktur auf das Materialverhalten wird anhand von zerstörenden und zerstörungsfreien Auswertungen an ausgewählten Proben analysiert. Der AM-Werkstoff zeigt kürzere Kriechlebensdauern, erreicht das sekundäre Kriechstadium deutlich schneller und bei geringerer Dehnung und weist eine geringere Kriechduktilität im Vergleich zu seinem konventionellen Gegenstück auf. Das Kriechschädigungsverhalten des AM-Werkstoffs ist eher mikrostruktur- als defektgesteuert und ist durch die Bildung intergranularer Kriechrisse gekennzeichnet. Als kritische Merkmale werden die Versetzungsdichte sowie die Versprödung der Korngrenzen identifiziert. Die Mikro-Computertomographie (µCT) erweist sich als Alternative zur Metallographie, um die Kriechschädigung zu analysieren. T2 - Sitzung des DGM-Arbeitskreises Mechanisches Werkstoffverhalten bei hoher Temperatur CY - Online meeting DA - 07.10.2020 KW - 316L KW - Kriechen KW - Additive Fertigung KW - Mikrostruktur KW - Mikro-Computertomographie PY - 2020 AN - OPUS4-51824 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ávila Calderón, Luis Alexander A1 - Rehmer, Birgit A1 - Schriever, Sina A1 - Ulbricht, Alexander A1 - Agudo Jácome, Leonardo A1 - Sommer, Konstantin A1 - Mohr, Gunther A1 - Skrotzki, Birgit T1 - Creep and fracture behavior of conventionally and additively manufactured stainless steel 316L N2 - A critical task within the frame of establishing process-structure-property-performance relationships in additive manufacturing (AM) of metals is producing reliable and well-documented material behavior’s data and knowledge regarding the structure-property correlation, including the role of defects. After all, it represents the basis for developing more targeted process optimizations and more reliable predictions of performance in the future. Within this context, this contribution aims to close the actual gap of limited historical data and knowledge concerning the creep behavior of the widely used austenitic stainless steel 316L, manufactured by Laser-Powder-Bed-Fusion (L-PBF). To address this objective, specimens from conventional hot-rolled and AM material were tested under application-relevant conditions according to existing standards for conventional material, and microstructurally characterized before and after failure. The test specimens were machined from single blocks from the AM material. The blocks were manufactured using a standard scan and build-up strategy and were subsequently heat-treated. The creep behavior is described and comparatively assessed based on the creep lifetime and selected creep curves and characteristic values. The effect of defects and microstructure on the material’s behavior is analyzed based on destructive and non-destructive evaluations on selected specimens. The AM material shows shorter creep lives, reaches the secondary creep stage much faster and at a lower strain, and features lower creep ductility compared to its conventional counterpart. The creep damage behavior of the AM material is more microstructure than defect controlled and is characterized by the formation and accumulation of single intergranular damage along the whole volume. Critical features identified are the grain morphology and the grain-boundary as well as the dislocation’s density. Micro-computed tomography (µCT) proves to be an alternative to metallography to analyze the creep damage. T2 - ASTM International Conference on Additive Manufacturing 2020 CY - Online meeting DA - 16.11.2020 KW - 316L KW - Creep behavior KW - Laser powder bed fusion KW - Additive manufacturing KW - Microstructure PY - 2020 AN - OPUS4-51823 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Werner, Tiago A1 - Madia, Mauro A1 - Sommer, Konstantin A1 - Sprengel, Maximilian A1 - Zerbst, Uwe T1 - Short fatigue crack propagation in L-PBF 316L stainless steel N2 - Fracture mechanics is a key to fatigue assessment in AM metal components. Short fatigue cracks are initiated at defects and pronounced surface roughness intrinsic to AM. The subsequent crack-propagation is strongly influenced by microstructural interactions and the build-up of crack-closure. The aim of the present study is to give an insight into short-crack propagation in AM-metals. Fatigue crack propagation resistance curves were determined experimentally for AISI 316L manufactured by Laser Powder Bed Fusion (L-PBF) which was heat treated at three different temperatures. Differences in the build-up of the fatigue-crack propagation threshold in between the L-PBF specimens and compared to wrought material are due to the residual stress states, a pronounced roughness of the crack-faces in the L-PBF specimens and phase transformation in the vicinity of the crack-tip, resulting in increased crack-closure. This, together with crack-branching found along the crack path, enhances the resistance to the propagation of fatigue cracks. T2 - ASTM International Conference on Additive Manufacturing 2020 CY - Online meeting DA - 16.11.2020 KW - Additive Manufacturing KW - Cyclic R-Curve KW - Component assessment KW - L-PBF KW - 316L KW - Residual Stress KW - Fatigue Crack Growth PY - 2020 AN - OPUS4-51585 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mohr, Gunther A1 - Seeger, Stefan A1 - Hilgenberg, Kai T1 - Measurement of particle emissions in Laser Powder Bed Fusion (L-PBF) processes and its potential for in-situ process monitoring N2 - Laser Powder Bed Fusion (L-PBF) is a promising additive manufacturing (AM) technology for metal part production especially for complex and lightweight structures or functional designs. In L PBF processes several by-products including welding plume and its condensates, spatter and ejected powder are generated during laser exposure. Investigations of micro- and nano-sized by-products have received little attention in literature. This study focuses on the analysis of particle emissions in L PBF of 316L stainless steel using a scattered light aerosol spectrometer and a fast mobility particle sizer spectrometer during the process which allows for in-situ analysis of particle sizes in the range of 6 nm to 100 µm. A distinct correlation of emission signals to part position can be revealed. In addition, a significant influence of laser scanning vector directions on emission signals is presented. Furthermore, differing powder layer thicknesses can be recognised by deviations in emission signals. T2 - Euro PM 2019 CY - Maastricht, The Netherlands DA - 13.10.2019 KW - Plume KW - Laser Powder Bed Fusion (L-PBF) KW - Additive Manufacturing (AM) KW - Spatter KW - Fume KW - Particle gas emission KW - Aerosol measurements PY - 2019 SP - 1 EP - 7 AN - OPUS4-49388 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hilgenberg, Kai A1 - Daum, Werner A1 - Maierhofer, Christiane A1 - Altenburg, Simon A1 - Bruno, Giovanni A1 - Heckel, Thomas A1 - Skrotzki, Birgit A1 - Zerbst, Uwe A1 - Kranzmann, Axel A1 - Bettge, Dirk A1 - Sommer, Konstantin A1 - Seeger, Stefan A1 - Nitsche, Michael A1 - Günster, Jens A1 - Evans, Alexander T1 - Additive manufacturing at the BAM: We focus on Safety N2 - In Germany, the Federal Institute for Materials Research and Testing (BAM) is addressing challenges in the implementation of additive manufacturing on the industrial landscape for safety-critical applications. KW - Process development KW - Additive Manufacturing KW - In-situ Process Monitoring KW - Non-destructive Materials KW - Characterisation KW - Safety KW - Fatigue KW - Environment KW - Standardisation PY - 2019 UR - https://static.asminternational.org/amp/201910/22/ SN - 0882-7958 VL - 177 IS - 7 SP - 22 EP - 26 PB - ASM International CY - Materials Park, OH, USA AN - OPUS4-49780 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mohr, Gunther A1 - Seeger, Stefan A1 - Hilgenberg, Kai T1 - Measurement of particle emissions in Laser Powder Bed Fusion (L-PBF) processes and its potential for in-situ process monitoring N2 - Laser Powder Bed Fusion (L-PBF) is a promising additive manufacturing (AM) technology for metal part production especially for complex and lightweight structures or functional designs. In L PBF processes several by-products including welding plume and its condensates, spatter and ejected powder are generated during laser exposure. Investigations of micro- and nano-sized by-products have received little attention in literature. This study focuses on the analysis of particle emissions in L PBF of 316L stainless steel using a scattered light aerosol spectrometer and a fast mobility particle sizer spectrometer during the process which allows for in-situ analysis of particle sizes in the range of 6 nm to 100 µm. A distinct correlation of emission signals to part position can be revealed. In addition, a significant influence of laser scanning vector directions on emission signals is presented. Furthermore, differing powder layer thicknesses can be recognised by deviations in emission signals. T2 - Euro PM2019 CY - Maastricht, The Netherlands DA - 13.10.2019 KW - Aerosol measurements KW - Laser Powder Bed Fusion (L-PBF) KW - Additive Manufacturing (AM) KW - Spatter KW - Fume KW - Plume KW - Particle gas emission PY - 2019 AN - OPUS4-49387 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Altenburg, Simon A1 - Maierhofer, Christiane A1 - Hilgenberg, Kai A1 - Mohr, Gunther A1 - Gumenyuk, Andrey A1 - Straße, Anne A1 - Pittner, Andreas A1 - Günster, Jens A1 - Gornushkin, Igor B. A1 - Pelkner, Matthias A1 - Ehlers, Henrik A1 - Heckel, Thomas A1 - Zscherpel, Uwe A1 - Seeger, Stefan A1 - Bruno, Giovanni T1 - ProMoAM - Verfahrensentwicklung für das Prozessmonitoring in der additiven Fertigung N2 - Verfahren zum in-situ Monitoring der Prozess- und Bauteilparameter sollen Fehlstellen und Inhomogenitäten bereits während der Fertigung nachweisen und zukünftig auch die Regelung der Prozessparameter ermöglichen. T2 - Challenges in Additive Manufacturing: Innovative Materials and Quality Control, Berlin Partner Workshop CY - Berlin, Germany DA - 12.09.2018 KW - Additive Fertigung KW - Prozessmonitoring KW - ProMoAM PY - 2018 AN - OPUS4-46300 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hilgenberg, Kai A1 - Mohr, Gunther A1 - Altenburg, Simon A1 - Ulbricht, Alexander A1 - Seeger, Stefan T1 - Prozessmonitoring für die additive Fertigung: Entwicklungen an der BAM N2 - Das Prozessmonitoring stellt einen wichtigen Baustein für eine Qualitätssicherung additiv gefertigter Bauteile dar, insbesondere bei kleinen Losgrößen. Der Vortrag zeigt einen Überblick aktueller Entwicklungen der BAM im Bereich des Prozessmonitorings für das Laserstrahlschmelzen (laser powder bed fusion) metallischer Werkstoffe. Durch Vergleich mit der Referenzmethode Computertomografie wird am Beispiel der thermografischen Verfahren gezeigt, wie relevante Defekte in Bauteilen detektiert werden können und Einsatzpotenziale sowie Limitierungen aufgezeigt. T2 - Forum Additive Fertigung Rheinland-Pfalz CY - Ludwigshafen, Germany DA - 07.11.2019 KW - Optische Tomografie KW - Additive Fertigung KW - Prozessmonitoring KW - Thermografie PY - 2019 AN - OPUS4-49958 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Altenburg, Simon A1 - Mohr, Gunther A1 - Baesso, Ilaria A1 - Straße, Anne A1 - Pittner, Andreas A1 - Pignatelli, Giuseppe A1 - Seeger, Stefan A1 - Nazarzadehmoafi, Maryam A1 - Ehlers, Henrik A1 - Gohlke, Dirk A1 - Homann, Tobias A1 - Scheuschner, Nils A1 - Ulbricht, Alexander A1 - Heinrich, P. A1 - Maierhofer, Christiane T1 - Process monitoring of additive manufacturing of metals - an overview of the project ProMoAM N2 - The project ProMoAM is presented. The goal of the project is to evaluate which NDT techniques or combination of techniques is suited for in-situ quality assurance in additive manufacturing of metals. To this end, also 3d-data fusion and visualization techniques are applied. Additional ex-situ NDT-techniques are used as references for defect detection and quantification. Feasability studies for NDT-techniques that are presently not applicable for in-situ use are performed as well. The presentation gives a brief overview of the whole project and the different involved NDT-techniques. T2 - Workshop od Additive Manufacturing: Process, materials, simulation & implants CY - Berlin, Germany DA - 13.05.2019 KW - Additive manufacturing KW - Process monitoring KW - NDT PY - 2019 AN - OPUS4-48087 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Günster, Jens A1 - Sänger, Johanna A1 - Pauw, Brian T1 - Two-Photon-Polymerization for Ceramics Powder Processing N2 - Manipulating ceramic powder compacts and ceramic suspensions (slurries) within their volume with light requires a minimum transparency of the materials. Compared to polymers and metals, ceramic materials are unique as they offer a wide electronic band gap and thus a wide optical window of transparency. The optical window typically ranges from below 0.3 µm up to 5µm wavelength. Hence, to penetrate with laser light into the volume of a ceramic powder compound its light scattering properties need to be investigated and tailored. In the present study we introduce the physical background and material development strategies to apply two-photon-polymerization (2PP) for the additive manufacture of filigree structures within the volume of ceramic slurries. T2 - DKG Jahrestagung 2023 CY - Jena, Germany DA - 27.03.2023 KW - Additive Manufacturing KW - Transparent ceramics PY - 2023 AN - OPUS4-59880 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Günster, Jens A1 - Sänger, Johanna A1 - Pauw, Brian T1 - Two-Photon-Polymerization for Ceramics Powder Processing N2 - Manipulating ceramic powder compacts and ceramic suspensions (slurries) within their volume with light requires a minimum transparency of the materials. Compared to polymers and metals, ceramic materials are unique as they offer a wide electronic band gap and thus a wide optical window of transparency. The optical window typically ranges from below 0.3 µm up to 5µm wavelength. Hence, to penetrate with laser light into the volume of a ceramic powder compound its light scattering properties need to be investigated and tailored. In the present study we introduce the physical background and material development strategies to apply two-photon-polymerization (2PP) for the additive manufacture of filigree structures within the volume of ceramic slurries. T2 - ECerSXVIII Conference Exhebition of the European Ceramic Society CY - Lyon, France DA - 02.07.2023 KW - Additive Manufacturing KW - Transparent ceramics PY - 2023 AN - OPUS4-59883 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schröder, Jakob A1 - Heldmann, Alexander A1 - Hofmann, Michael A1 - Evans, Alexander A1 - Petry, Winfried A1 - Bruno, Giovanni T1 - Diffraction and Single-Crystal Elastic Constants of Laser Powder Bed Fused Inconel 718 N2 - In this presentation, the results of the determination of the diffraction and single-crystal elastic constants of laser powder bed fused Inconel 718 are presented. The analysis is based on high-energy synchrotron diffraction experiments performed at the Deutsches Elektronen-Synchrotron. It is shown that the characteristic microstructure of laser powder bed fused Inconel 718 impacts the elastic anisotropy and therefore the diffraction and single-crystal elastic constants. Finally, the consequences on the diffraction-based residual stress determination of laser powder bed fused Inconel 718 are discussed. T2 - AWT-Fachausschuss 13 "Eigenspannungen" CY - Wolfsburg, Germany DA - 19.03.2024 KW - Additive Manufacturing KW - Laser Powder Bed fusion KW - Diffraction KW - In-Situ Testing KW - Diffraction Elastic Constants PY - 2024 AN - OPUS4-59900 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -