TY - CONF A1 - Oster, Simon A1 - Breese, Philipp P. A1 - Becker, Tina A1 - Altenburg, Simon J. T1 - Prozessüberwachung mittels Thermografie im Laser-Pulverbettschweißen zur Vorhersage von Fehlstellen im Bauteilvolumen N2 - Metallbasierte additive Fertigungsverfahren werden zunehmend industriell zur Anfertigung von komplex geformten Komponenten eingesetzt. In diesem Zusammenhang ist das Laser-Pulverbettschweißen von Metall (PBF-LB/M) ist ein weitläufig genutztes Verfahren. Im PBF-LB/M-Prozess werden lagenweise aufgetragene Metallpulverschichten selektiv mittels eines Lasers aufgeschmolzen. Die Entstehung von internen Fehlstellen (bspw. Porosität, Lunker oder Risse) während des Fertigungsvorgangs stellt ein ernstzunehmendes Risiko für die Bauteilsicherheit und somit für die weitere industrielle Etablierung des Verfahrens dar. Die Entstehung von Fehlstellen hängt eng mit lokalen Änderungen der thermischen Historie des Bauteils zusammen. Mit Hilfe von thermografischen Kameras zur Prozessüberwachung kann die thermische Historie bereits während der Fertigung erfasst werden. Damit eröffnet sich die Möglichkeit, die Entstehung von Fehlstellen anhand der thermografischen Daten vorherzusagen und somit potenziell Kosten für eine nachgelagerte Qualitätssicherung einzusparen. In diesem Beitrag soll die Modellierung der Fehlstellenvorhersage anhand thermografischer Prozessdaten diskutiert werden. Hierbei liegt ein Schwerpunkt auf der Fragestellung, mit welcher Genauigkeit unterschiedliche Formen von Fehlstellen, im speziellen Anbindungsfehler und Keyhole-Porosität, auf lokaler Bauteilebene vorhergesagt werden können. Weiterhin werden verschiedenen Modelltypen aus dem Bereich des Maschinellen Lernens auf ihre Eignung für die Fehlstellenvorhersage verglichen. Ein weiterer zentraler Aspekt in diesem Zusammenhang ist die Untersuchung der Eingangsdaten des Modells auf ihre Relevanz für das Vorhersageergebnis. Als Datengrundlage für die durchgeführten Untersuchungen dienen die Fertigungsprozesse von zwei identischen Haynes-282-Bauteilen (Nickel-Basislegierung), welche mit Hilfe einer im kurzwelligen Infrarotbereich arbeitenden Thermografiekamera überwacht wurden. Das Bauteildesign umfasste lokale Bereiche, in denen mit Hilfe einer Parametervariation die Entstehung von Fehlstellen forciert wurde. Um die Position und Größe der entstandenen Defekte zu quantifizieren, wurden beide Bauteile nach erfolgter Fertigung mittels Computertomografie (CT) geprüft. Im Rahmen der Datenvorbereitung für die Modellierung erfolgte eine Reduzierung der erhobenen Thermogramme zu physikalisch-interpretierbaren Merkmalen (bspw. Schmelzbadfläche oder Zeit-über-Schwellwert). Weiterhin erfolgte eine Registrierung der thermografischen Daten mit den Fehlstellen-Referenzdaten der CT, um eine exakte örtliche Überlagerung von thermischer Information und lokalem Fehlstellenbild zu erzielen. Zur Ermöglichung einer lokalen Fehlstellenvorhersage wurden die thermografischen Daten schichtweise in kleinteiligen Volumina angeordnet, welche als Eingangsgröße für die genutzten ML-Algorithmen dienten. Die Ergebnisse der Untersuchungen zeigen, dass sich die Porosität auf Bauteilschichtebene mit einer hohen Genauigkeit vorhersagen lässt. Eine Vorhersage der Porosität auf lokaler Bauteilebene erweist sich noch als herausfordernd. Die erprobten ML-Algorithmen zeigen vergleichbare Ergebnisse, obwohl ihnen unterschiedliche Modellierungsannahmen zugrunde liegen und sie variierende Komplexität aufweisen. Mit Hilfe der erzielten Erkenntnisse eröffnet sich die Möglichkeit, Rückschlüsse auf die gewählte Prozessüberwachungshardware und Datenvorverarbeitung zu ziehen und somit langfristig die Leistungsfähigkeit von Modellen zur Fehlstellenvorhersage zu verbessern. T2 - Temperatur 2024 CY - Berlin, Germany DA - 05.06.2024 KW - Laser-Pulverbettschweißen KW - Porositätsvorhersage KW - Qualitätsüberwachung KW - Thermografie KW - Machine Learning PY - 2024 AN - OPUS4-60267 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -