• Treffer 8 von 419
Zurück zur Trefferliste
Zitieren Sie bitte immer diesen URN: urn:nbn:de:kobv:b43-591044

Non-destructive classification of moisture deterioration in layered building floors using ground penetrating radar

  • In the event of moisture deterioration, rapid detection and localization is particularly important to prevent further deterioration and costs. For building floors, the layered structure poses a challenging obstacle for most moisture measurement methods. But especially here, layer-specific information on the depth of the water is crucial for efficient and effective repairs. Ground Penetrating Radar (GPR) shows the potential to generate such depth information. Therefore, the present work investigates the suitability of GPR in combination with machine learning methods for the automated classification of the typical deterioration cases (i) dry, (ii) wet insulation, and (iii) wet screed. First, a literature review was conducted to identify the most common methods for detecting moisture in building materials using GPR. Here, it especially became clear that all publications only investigated individual time-, amplitude- or frequency features separately, without combining them. This was seenIn the event of moisture deterioration, rapid detection and localization is particularly important to prevent further deterioration and costs. For building floors, the layered structure poses a challenging obstacle for most moisture measurement methods. But especially here, layer-specific information on the depth of the water is crucial for efficient and effective repairs. Ground Penetrating Radar (GPR) shows the potential to generate such depth information. Therefore, the present work investigates the suitability of GPR in combination with machine learning methods for the automated classification of the typical deterioration cases (i) dry, (ii) wet insulation, and (iii) wet screed. First, a literature review was conducted to identify the most common methods for detecting moisture in building materials using GPR. Here, it especially became clear that all publications only investigated individual time-, amplitude- or frequency features separately, without combining them. This was seen as a potential aspect for innovation, as the multivariate application of several signal features can help to overcome individual weaknesses and limitations. Preliminary investigations carried out on drying screed samples confirmed the profitable use of multivariate evaluations. In addition to the general suitability and dependencies of various features, first limitations due to possible interference between the direct wave and the reflection wave could be identified. This is particularly evident with thin or dry materials, for which the two-way travel times of the reflected radar signals become shorter. An extensive laboratory experiment was carried out, for which a modular test specimen was designed to enable the variation of the material type and thickness of screed and insulation, as well as the simulation of moisture deteriorations. The data collected revealed clear differences between dry and deteriored structures within measured B-scans. These deviations were to be detected with the newly introduced B-scan features, which evaluate the statistical deviation of A-scan features within a survey line. In this way, deteriorations to unknown floor structures are recognized, regardless of the material parameters present. In a subsequent training and cross-validation process of different classifiers, accuracies of over 88 \% of the 504 recorded measurements (252 different experimental setups) were achieved. For that, the combination of amplitude and frequency features, which covered all relevant reflections of the radar signals, was particularly beneficial. Furthermore, the data set showed only small differences between dry floors and deteriored screeds for the B-scan features, which could be attributed to a homogeneous distribution of the added water in the screeds. The successfully separation of these similar feature distributions raised the suspicion of overfitting, which was examined in more detail by means of a validation with on-site data. For this purpose, investigations were carried out at five different locations in Germany, using the identical measurement method like in the laboratory. By extracting drilling cores, it was possible to determine the deterioration case for each measurement point and thus generate a corresponding reference. However, numerous data had to be sorted out before classification, since disturbances due to underfloor heating, screed reinforcements, steel beams or missing insulation prevented comparability with the laboratory experiments. Validation of the remaining data (72 B-scans) achieved only low accuracy with 53 \% correctly classified deterioration cases. Here, the previously suspected overfitting of the small decision boundary between dry setups and deteriored screeds within the laboratory proved to be a problem. The generally larger deviations within (also dry) on-site B-scans were thus frequently misclassified as screed deterioration. In addition, there were sometimes strongly varying layer thicknesses or changing cases of deterioration within a survey line, which caused additional errors due to the local limitation of the drilling core reference. Nevertheless, individual on-site examples also showed the promising potential of the applied signal features and the GPR method in general, which partly allowed a profound interpretation of the measurements. However, this interpretation still requires the experience of trained personnel and could not be automated using machine learning with the available database. Nevertheless, such experience and knowledge can be enriched by the findings of this work, which provide the basis for further research. Future work should aim at building an open GPR data base of on-site moisture measurements on floors to provide a meaningful basis for applying machine learning. Here, referencing is a crucial point, whose limitations with respect to the moisture present and its distribution can easily reduce the potential of such efforts. The combination of several reference methods might help to overcome such limitations. Similarly, a focus on monitoring approaches can also help to reduce numerous unknown variables in moisture measurements and increase confidence in the detection of different deterioration cases.zeige mehrzeige weniger

Volltext Dateien herunterladen

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar Anzahl der Zugriffe auf dieses Dokument
Metadaten
Autor*innen:Tim KleweORCiD
Dokumenttyp:Dissertation
Veröffentlichungsform:Graue Literatur
Sprache:Englisch
Jahr der Erstveröffentlichung:2023
Organisationseinheit der BAM:8 Zerstörungsfreie Prüfung
8 Zerstörungsfreie Prüfung / 8.0 Abteilungsleitung und andere
Veröffentlichende Institution:Bundesanstalt für Materialforschung und -prüfung (BAM)
Titel verleihende Institution:Technische Universität Berlin, Fakultät VI – Planen Bauen Umwelt
Gutachter*innen:Sabine KruschwitzORCiD, Christoph StrangfeldORCiD, Christian Große, Markus Krüger
Datum der Abschlussprüfung:22.09.2023
Verlag:Technische Universität Berlin
Verlagsort:Berlin
Erste Seite:1
Letzte Seite:146
DDC-Klassifikation:Naturwissenschaften und Mathematik / Chemie / Analytische Chemie
Freie Schlagwörter:Building floor; Ground penetrating radar; Moisture measurement; NDT
Themenfelder/Aktivitätsfelder der BAM:Chemie und Prozesstechnik
DOI:10.14279/depositonce-19306
URN:urn:nbn:de:kobv:b43-591044
Verfügbarkeit des Dokuments:Datei für die Öffentlichkeit verfügbar ("Open Access")
Lizenz (Deutsch):License LogoCreative Commons - CC BY - Namensnennung 4.0 International
Datum der Freischaltung:13.12.2023
Referierte Publikation:Nein
Schriftenreihen ohne Nummerierung:BAM Dissertationen ohne Nummerierung
Einverstanden
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.