Chemie und Prozesstechnik
Filtern
Erscheinungsjahr
Dokumenttyp
- Vortrag (1450)
- Zeitschriftenartikel (1264)
- Posterpräsentation (522)
- Beitrag zu einem Tagungsband (267)
- Sonstiges (64)
- Forschungsdatensatz (56)
- Forschungsbericht (36)
- Buchkapitel (33)
- Dissertation (20)
- Beitrag zu einem Sammelband (17)
Sprache
- Englisch (3087)
- Deutsch (656)
- Mehrsprachig (10)
- Spanisch (5)
- Russisch (4)
- Französisch (1)
- Italienisch (1)
- Polnisch (1)
Schlagworte
- Nanoparticles (120)
- Fluorescence (114)
- LIBS (102)
- Concrete (91)
- Quantum yield (78)
- Ultrasound (76)
- Mechanochemistry (74)
- NDT (71)
- Non-destructive testing (70)
- SAXS (70)
Organisationseinheit der BAM
- 1 Analytische Chemie; Referenzmaterialien (1230)
- 8 Zerstörungsfreie Prüfung (1118)
- 6 Materialchemie (1085)
- 6.1 Oberflächen- und Dünnschichtanalyse (368)
- 6.3 Strukturanalytik (345)
- 8.2 Zerstörungsfreie Prüfmethoden für das Bauwesen (326)
- 1.1 Anorganische Spurenanalytik (306)
- 8.4 Akustische und elektromagnetische Verfahren (259)
- 4 Material und Umwelt (234)
- 1.2 Biophotonik (224)
Paper des Monats
- ja (27)
Flow cytometry-based immunoassays are valuable in biomedical research and clinical applications due to their high throughput and multianalyte capability, but their adoption in areas such as food safety and environmental monitoring is limited by long assay times and complex workflows. Rapid, simplified bead-based cytometric immunoassays are needed to make these methods viable for point-of-need applications, especially with the increasing accessibility of miniaturized cytometers. This work introduces superparamagnetic hybrid polystyrene-silica core−shell microparticles as promising alternatives to conventional polymer beads in competitive cytometric immunoassays. These beads, featuring high specificity, sensitivity, and excellent handling capabilities via magnetic separation, were evaluated with three different antibodies and binding methods, showing variations in signal intensity based on the antibody and its attachment method. The optimal performance was achieved through a secondary antibody binding approach, providing strong and consistent signals with minimal uncertainty. The optimized protocol made it possible to achieve a detection limit of 0.025 nM in a total assay time of only 15 min and was successfully used to detect ochratoxin A (OTA) in raw flour samples. This work highlights the potential of these beads as versatile tools for flow cytometry-based immunoassays, with significant implications for food safety, animal health,
environmental monitoring, and clinical diagnostics.
Single-particle inductively coupled plasma-mass spectrometry (sp-ICP-MS) is one of the most powerful tools in the thriving field of nanomaterial analysis. Along the same lines, single-cell ICP-MS (sc-ICP-MS) has become an invaluable tool in the study of the variances of cell populations down to a per-cell basis. Their importance and application fields have been listed numerous times, across various reports and reviews. However, not enough attention has been paid to the immense and ongoing development of the tools that are currently available to the analytical community for the acquisition, and more importantly, the treatment of single-particle and single-cell-related data. Due to the ever-increasing demands of modern research, the efficient and dependable treatment of the data has become more important than ever. In addition, the field of single-particle and single-cell analysis suffers due to a large number of approaches for the generated data—with varying levels of specificity and applicability. As a result, finding the appropriate tool or approach, or even comparing results, can be challenging. This article will attempt to bridge these gaps, by covering the evolution and current state of the tools at the disposal of sp-ICP-MS users.
Graphical Abstract
The analysis of per- and polyfluoroalkyl substances (PFAS) via sum parameters like extractable organic fluorine (EOF) in combination with high resolution-continuum source-graphite furnace molecular absorption spectrometry (HR–CS–GFMAS) is highly promising regarding fluorine sensitivity and selectivity. However, the HR–CS–GFMAS method includes several drying and heating steps which can lead to losses of volatile PFAS before the molecular formation step using e.g., GaF formation. Hence, the method leads to a strong discrimination of PFAS within the EOF depending on their physical/chemical properties and is therefore associated with reduced accuracy. To reduce this discrepancy and to indicate realistic PFAS pollution values, an optimization of the HR–CS–GFMAS method for PFAS analysis is needed. Hence, we determined fluorine response factors of several PFAS with different physical/chemical properties upon application of systematic optimization steps. We could therefore improve the method's sensitivity for PFAS analysis using a modifier drying pre-treatment step followed by a sequential injection of sample solutions. The highest improvement in sensitivity of volatile PFAS was shown upon addition of a Mg modifier during drying pre-treatment. Thereby, during optimization the relative standard deviation of fluorine response factors could be reduced from 55 % (initial method) to 27 % (optimized method) leading to a more accurate determination of organofluorine sum parameters. The method provides an instrumental LOD and LOQ of β(F) 1.71 μg/L and 5.13 μg/L, respectively. Further validation aimed to investigate several matrix effects with respect to water matrices. Here, substance-specific behavior was observed. For example, perfluorooctanoic acid (PFOA) which was used as calibrator, showed signal suppressions upon high chloride concentrations (>50 mg/L). Hence, a thorough separation of Cl from analytes during sample preparation is needed for accurate sum parameter analysis.
Ytterbium-doped LiYF4 (Yb:YLF) is a promising material for all-solid-state optical cryocoolers, but the impact of foreign rare-earth impurities on the laser-cooling performance is not completely understood. In particular, Tm3+ has been reported to reduce the background absorption. This study quantitatively assesses the impact of Ho3+, Tm3+, and Er3+ impurities on laser-cooling of Yb:YLF by anti-Stokes fluorescence. We grew five Yb(5%):YLF crystals intentionally doped with tens of ppm levels of these impurities. Laser-induced thermal modulation spectroscopy tests confirmed that these rare-earth impurities reduce the external quantum efficiency of Yb:YLF without affecting the background absorption coefficient. Although Er3+ is a well-known quencher for Yb3+, Er3+ co-doping only slightly decreases the laser-cooling efficiency at low pump intensities but becomes detrimental at high pump intensities (>5 kW cm−2). However, this detrimental effect diminishes at lower temperatures, as evidenced by cooling an Er3+ co-doped crystal to the same minimum temperature of 144K as a solely Yb3+-doped crystal. Contrary to previous reports, Tm3+ proved to be the most detrimental among the three impurities.
Therapeutic monoclonal antibodies are the fastest-growing class of biological agents and the development of reliable analytical methods for their quantification is becoming increasingly important. Liquid chromatography coupled with tandem mass spectrometry (LC–MS/MS) represents one of the leading technologies for antibody quantification. The serin protease trypsin has emerged as the gold standard enzyme for digesting intact protein into peptides for this approach. However, many protocols exist that often lead to different results. The talk will provide a brief introduction to the application of novel thermostable and surface-functionalized trypsin particles for improved antibody digestion as well as initial successes in polymer functionalization of the corundum surface to prevent nonspecific protein adsorption during the digestion procedure.
Aktuelles aus der Normung
(2024)
Every day, there are new headlines in the media about microplastics (1-1000 µm, ISO/TR 21960:2020) and nanoplastics (< 1 µm, ISO/TR 21960:2020) findings all over the planet with high variations in particle number and mass. The challenges in analytics are very complex, e.g. representative sampling, non-destructive sample preparation with concentrated particles and homogeneous distribution and true detection. All together lead to lacks in harmonization and results, which are hardly comparable. On the other hand, monitoring of microplastics is mandatory in the future strictly regulated by the EU commission in the Drinking water and Wastewater Framework Directive. One step to accurate and precise results will be the development of suitable reference materials mimicking particles in the environment.
BAM developed test materials, which are produced by mixing a small portion of microplastic particles with a water-soluble matrix. After solid phase dilution and homogenisation small portions are pressed into tablets and bottled in glass vials (Figure 1). These tablets are well characterized with particle size distribution and SEM images. Additionally, they are tested as reference material candidate according to homogeneity and stability for particle number with µ-IR and µ-Raman as well as on particle mass with Py-GC/MS and TED-GC/MS after ISO Guide 35. Results are promising. The material passed the homogeneity control. No changes are observed within 6 months of storage.
The same tested reference material is finally used in sample preparation experiments, where environmental suspended particular matter from surface water or baby milk powders are spiked with the tablets.
Over the last 20 years, many researchers, politicians and citizens have become increasingly aware of the growing plastic problem of our time. A lack of recycling concepts and plastic collection points as well as careless dumping lead to accumulation of plastic products in the environment. Natural weathering can cause these plastics to degrade and fractionate, meaning that microplastics (1 1,000 µm, ISO/TR 21960:2020) and nanoplastics (< 1 µm, ISO/TR 21960:2020) of various synthetic polymer materials can now be detected in all parts of the world. Whether microplastics or nanoplastics pose a toxicological hazard is being investigated in a variety of ways. Valid results are still pending. However, the EU precautionary principle applies to micro- and nanoplastics. Monitoring of microplastics is already required in the revision of the Drinking Water and Wastewater Framework Directive.
Reliable monitoring of rivers can be carried out by sampling with sedimentation boxes and microplastic detection by using thermal extraction desorption gas chromatography/mass spectrometry (TED-GC/MS) in routine operation (Figure 1). The river Rhine was sampled for microplastic masses at three different sampling locations over a period of one year and in addition the Danube at randomized sampling locations The TED-GC/MS results showed that various synthetic polymers frequently produced in industry, such as polyethylene, polypropylene or polystyrene as well as the tire compound styrene-butadiene rubber were found. The work not only shows a possible workflow for monitoring concepts, but also provides information on environmentally relevant concentrations of microplastics and tire components in surface waters. This in turn is necessary for ecotoxicological studies.
Die Gruppe der PFAS (Per- und polyfluorierte Alkylsubstanzen) mit mehr als 10.000 Substanzen stellt ein zunehmendes Problem bei der Bewertung und Entsorgung belasteter Abfälle dar. Die zuverlässige PFAS-Analytik stellt hier aufgrund der Vielzahl an Einzelparametern mit zum Teil sehr großen Konzentrationsunterschieden eine komplexe Herausforderung dar.
Der Vortrag gibt zunächst einen Überblick über grundlegende Anforderungen an die LC-MS/MS Analytik von PFAS-Targetsubstanzen. Am Beispiel eines von BAM und SenMVKU organisierten Ringversuches 2024 zur Bestimmung von PFAS in Bodenproben (Feststoffe und Eluate) wird auf spezifische Fragestellungen zur PFAS-Analytik eingegangen.
Zur Verbesserung von Richtigkeit und Vergleichbarkeit ist die Einhaltung von Normvorgaben und die Anwendung von Qualitätssicherungsmaßnahmen unerlässlich. Hierzu gehören u.a. die Verwendung zuverlässiger Kalibrierstandards, die Kalibrierung mit definierten n-Isomeren, die Quantifizierung der Summe aus n-/br-Isomeren, der Einsatz isotopenmarkierter interner Standards für die LC-MS/MS Analyse, die Verwendung von Matrix-Referenzmaterialien sowie die Teilnahme an Ringversuchen.
Germany has set itself the task to become a world leader in the field of green hydrogen technologies and is promoting the transition to a hydrogen economy. The H2Mare flagship project is exploring the offshore production of green hydrogen and other power-to-X products. One of the most important goals is the safe and cost-efficient operation of offshore infrastructures, where a service life of at least 25 years is aimed. However, the corrosive environment towards metallic materials presents challenges in marine areas. The atmosphere at one location could be affected by the distance to the sea level and does not have the same corrosivity for all exposed kinds of materials. The creation of an atmosphere corrosion atlas for marine environments by weathering campaigns aims to close this gap. Operators of offshore structures can use the data to estimate the corrosivity of the atmosphere on the construction site. This allows planning to be optimized in terms of platform safety as well as maintenance costs.