Analytical Sciences
Filtern
Dokumenttyp
- Vortrag (1801)
- Zeitschriftenartikel (1530)
- Posterpräsentation (819)
- Beitrag zu einem Tagungsband (377)
- Sonstiges (99)
- Buchkapitel (42)
- Dissertation (31)
- Beitrag zu einem Sammelband (29)
- Forschungsbericht (29)
- Forschungsdatensatz (15)
Sprache
- Englisch (3928)
- Deutsch (841)
- Mehrsprachig (14)
- Spanisch (5)
- Russisch (4)
- Französisch (3)
- Polnisch (2)
- Italienisch (1)
Schlagworte
- Fluorescence (195)
- Nanoparticles (182)
- LIBS (119)
- XPS (109)
- Nanoparticle (107)
- Concrete (102)
- Quantum yield (96)
- Mechanochemistry (95)
- Zerstörungsfreie Prüfung (80)
- Ultrasound (79)
Organisationseinheit der BAM
- 1 Analytische Chemie; Referenzmaterialien (1743)
- 8 Zerstörungsfreie Prüfung (1403)
- 6 Materialchemie (1347)
- 6.1 Oberflächenanalytik und Grenzflächenchemie (495)
- 6.3 Strukturanalytik (414)
- 1.4 Prozessanalytik (345)
- 8.2 Zerstörungsfreie Prüfmethoden für das Bauwesen (330)
- 1.1 Anorganische Spurenanalytik (316)
- 1.2 Biophotonik (285)
- 8.1 Sensorik, mess- und prüftechnische Verfahren (284)
Paper des Monats
- ja (9)
Due to the fast growth of industry and the use of metal-containing compounds such as sewage sludge in agricultural fields, soil pollution associated with heavy metals presents a terrifying threat to the environment. Throughout the world, there are already 5 million sites of soil contaminated by heavy metals1. Some heavy metals pollutants can influence food chain safety and food quality, which in turn affects human health. According to the German Federal Soil Protection and Contaminated Site Ordinance (BBodSchV) 13 heavy metals such as arsenic (As), lead (Pb) and cadmium (Cd) are classified as heavily toxic to human health2. Therefore, elemental analysis and precise quantification of the heavy metals in soil are of great importance.
Inductively coupled plasma mass spectrometry (ICP-MS) emerged as a powerful technique for trace analysis of soil due to its multi-element capability, high sensitivity and low sample consumption. However, despite its success and widespread use, ICP-MS has several persistent drawbacks, such as high argon gas consumption, argon-based polyatomic interferences and the need for complicated RF-power generators. Unlike argon-based ICP, the nitrogen microwave inductively coupled atmospheric pressure mass spectrometry (MICAP-MS) uses nitrogen as plasma gas, which eliminates high operating costs associated with argon-gas consumption as well as the argon-based interferences3. For the first time, the applicability of MICAP-MS for elemental analysis of environmental soils is investigated in this work. For this purpose, 7 reference- and 3 random soil samples containing vanadium (V), cobalt (Co), zink (Zn), copper (Cu), chrome (Cr), mercury (Hg), As, Pb and Cd are digested with aqua regia and used for analysis. Concentrations of selected elements are determined using MICAP-MS and validated using ICP-MS. Sensitivities, limits of detection and gas consumption for both methods are compared and discussed in detail. Moreover, the performance of MICAP-MS under different nitrogen plasma gas concentrations is investigated and compared.
Due to the fast growth of industry and the use of metal-containing compounds such as sewage sludge in agricultural fields, soil pollution associated with heavy metals presents a terrifying threat to the environment. Throughout the world, there are already 5 million sites of soil contaminated by heavy metals1. Some heavy metals pollutants can influence food chain safety and food quality, which in turn affects human health. According to the German Federal Soil Protection and Contaminated Site Ordinance (BBodSchV) 13 heavy metals such as arsenic (As), lead (Pb) and cadmium (Cd) are classified as heavily toxic to human health2. Therefore, elemental analysis and precise quantification of the heavy metals in soil are of great importance.
Inductively coupled plasma mass spectrometry (ICP-MS) emerged as a powerful technique for trace analysis of soil due to its multi-element capability, high sensitivity and low sample consumption. However, despite its success and widespread use, ICP-MS has several persistent drawbacks, such as high argon gas consumption, argon-based polyatomic interferences and the need for complicated RF-power generators. Unlike argon-based ICP, the nitrogen microwave inductively coupled atmospheric pressure mass spectrometry (MICAP-MS) uses nitrogen as plasma gas, which eliminates high operating costs associated with argon-gas consumption as well as the argon-based interferences3. For the first time, the applicability of MICAP-MS for elemental analysis of environmental soils is investigated in this work. For this purpose, 7 reference- and 3 random soil samples containing vanadium (V), cobalt (Co), zink (Zn), copper (Cu), chrome (Cr), mercury (Hg), As, Pb and Cd are digested with aqua regia and used for analysis. Concentrations of selected elements are determined using MICAP-MS and validated using ICP-MS. Sensitivities, limits of detection and gas consumption for both methods are compared and discussed in detail. Moreover, the performance of MICAP-MS under different nitrogen plasma gas concentrations is investigated and compared
We present our achievements in the development of distributed fiber optic sensing systems based on Brillouin optical frequency-domain analysis for structural health monitoring. The focus of the applications is on the gapless monitoring of geotechnical structures, large area infrastructures and electrical grids. The work includes the latest use of machine learning algorithms to reduce measurement time by coexistent increasing the measurement accuracy.
Laser-induced plasmas are widely used in many areas of science and technology; examples include spectrochemical analysis, thin film deposition, and material processing. Several topics will be addressed. First, general phenomenology of laser-induced plasmas will be discussed. Then, a chemical model will be presented based on a coupled solution of Navier-Stokes, state, radiative transfer, material transport, and chemical equations. Results of computer simulations for several chemical systems will be shown and compared to experimental observations obtained by optical imaging, spectroscopy, and tomography. The latter diagnostic tools will also be briefly discussed. Finally, a prospective application of laser-induced plasma and plasma modeling will be illustrated on the example of chemical vapor deposition of molybdenum borides and micro processing and coating of titanium dental implants.
IRWG strategy update
(2022)
Silicon photonic micro-ring resonators (MRR) developed on the silicon-on-insulator (SOI) platform, owing to their high sensitivity and small footprint, show great potential for many chemical and biological sensing applications such as label-free detection in environmental monitoring, biomedical engineering, and food analysis. In this tutorial,we provide the theoretical background and give design guidelines for SOI-based MRR as well as examples of surface functionalization procedures for label-free detection of molecules. After introducing the advantages and perspectives of MRR, fundamentals of MRR are described in detail, followed by an introduction to the fabrication methods, which are based on a complementary metal-oxide semiconductor (CMOS) technology. Optimization of MRR for chemical and biological sensing is provided, with special emphasis on the optimization of waveguide geometry. At this point, the difference between chemical bulk sensing and label-free surface sensing is explained, and definitions like waveguide sensitivity, ring sensitivity, overall sensitivity as well as the limit of detection (LoD) of MRR are introduced. Further, we show and explain chemical bulk sensing of sodium chloride (NaCl) in water and provide a recipe for label-free surface sensing.
In this study, carried out within the Joint Danube Survey 4, a comprehensive microplastic screening in the water column within a large European river basin from its source to estuary, including major tributaries, was realized. The objective was to develop principles of a systematic and practicable microplastic monitoring strategy using sedimentation boxes for collection of suspended particulate matter followed by its subsequent analysis using thermal extraction desorption-gas chromatography/mass spectrometry. In total, 18 sampling sites in the Danube River Basin were investigated. The obtained suspended particulate matter samples were subdivided into the fractions of >100 μm and <100 μm and subsequently analyzed for microplastic mass contents. The results showed that microplastics were detected in all samples, with polyethylene being the predominant polymer with maximum contents of 22.24 μg/mg, 3.23 μg/mg for polystyrene, 1.03 μg/mg for styrene-butadiene-rubber, and 0.45 μg/mg for polypropylene. Further, polymers such as different sorts of polyester, polyacrylates, polylactide, and natural rubber were not detected or below the detection limit. Additional investigations on possible interference of polyethylene signals by algae-derived fatty acids were assessed. In the context of targeted monitoring, repeated measurements provide more certainty in the interpretation of the results for the individual sites. Nevertheless, it can be stated that the chosen approach using an integrative sampling and determination of total plastic content proved to be successful.
In view of the increasing digitization of research and the use of data-intensive measurement and analysis methods, research institutions and their staff are faced with the challenge of documenting a constantly growing volume of data in a comprehensible manner, archiving them for the long term, and making them available for discovery and re-use by others in accordance with the FAIR principles. At BAM, we aim to facilitate the integration of research data management (RDM) strategies during the whole research cycle from the creation and standardized description of materials datasets to their publication in open repositories. To this end, we present the BAM Data Store, a central system for internal RDM that fulfills the heterogenous demands of materials science and engineering labs. The BAM Data Store is based on openBIS, an open-source software developed by the ETH Zurich that has originally been created for life science laboratories but that has since been deployed in a variety of research domains. The software offers a browser-based user interface for the digital representation of lab inventory entities (e.g., samples, chemicals, instruments, and protocols) and an electronic lab notebook for the standardized documentation of experiments and analyses.
To investigate whether openBIS is a suitable framework for the BAM Data Store, we carried out a pilot phase during which five research groups with employees from 16 different BAM divisions were introduced to the software. The pilot groups were chosen to represent a diverse array of domain use cases and RDM requirements (e.g., small vs big data volume, heterogenous vs structured data types) as well as varying levels of prior IT knowledge on the users’ side.
Overall, the results of the pilot phase are promising: While the creation of custom data structures and metadata schemas can be time-intensive and requires the involvement of domain experts, the system offers specific benefits in the form of a simplified documentation and automation of research processes, as well as constituting a basis for data-driven analysis. In this way, heterogeneous research workflows in various materials science research domains could be implemented, from the synthesis and characterization of nanomaterials to the monitoring of engineering structures. In addition to the technical deployment and the development of domain-specific metadata standards, the pilot phase also highlighted the need for suitable institutional infrastructures, processes, and role models. An institute-wide rollout of the BAM Data Store is currently being planned.