Graue Literatur
Filtern
Erscheinungsjahr
Dokumenttyp
- Beitrag zu einem Tagungsband (3778)
- Zeitschriftenartikel (764)
- Forschungsbericht (255)
- Sonstiges (150)
- Forschungsdatensatz (147)
- Dissertation (100)
- Beitrag zu einem Sammelband (99)
- Preprint (22)
- Posterpräsentation (17)
- Tagungsband (Herausgeberschaft für den kompletten Band) (10)
Sprache
- Englisch (2999)
- Deutsch (2310)
- Mehrsprachig (22)
- Französisch (10)
- Tschechisch (6)
- Russisch (6)
- Spanisch (5)
- Italienisch (3)
- Mongolisch (3)
- Portugiesisch (2)
Schlagworte
- Concrete (65)
- Corrosion (62)
- Simulation (56)
- Korrosion (44)
- Zerstörungsfreie Prüfung (44)
- Non-destructive testing (40)
- Structural health monitoring (40)
- Monitoring (39)
- NDT (39)
- Ultrasound (38)
Organisationseinheit der BAM
- 8 Zerstörungsfreie Prüfung (421)
- 7 Bauwerkssicherheit (241)
- 6 Materialchemie (170)
- 9 Komponentensicherheit (161)
- 3 Gefahrgutumschließungen; Energiespeicher (146)
- 5 Werkstofftechnik (108)
- 8.4 Akustische und elektromagnetische Verfahren (108)
- 4 Material und Umwelt (103)
- 8.2 Zerstörungsfreie Prüfmethoden für das Bauwesen (97)
- 1 Analytische Chemie; Referenzmaterialien (91)
Eingeladener Vortrag
- nein (6)
Die Gefährdungen durch die Freisetzung von Gasen und Dämpfen infolge der Ableitung über Ausbläser aus Sicherheitsventilen, Prozess-Berstscheiben, Entlüftungs- und Entspannungsleitungen sind in einer Gefährdungsbeurteilung zu bewerten. Freisetzungen aus Druckanlagen können nach TRBS 2141 beurteilt werden.
In der Fachbereich AKTUELL werden verschiedene Methoden mit ihren benötigten Eingangsdaten und Anwendungsgrenzen zur Beurteilung der Gefahren an Ausbläsern für brennbare Gase vorgestellt, um den Anwendern und Prüfern von solchen Anlagen eine Hilfestellung bei der Bewertung und Beurteilung möglicher Gefahren an den prozessbedingten Stoffauslässen ins Freie zu geben.
Electron-beam-induced conversion of materials in a transmission electron microscope uses the high power density of a localized electron beam of acceleration voltages above 100 kV as an energy source to transform matter at the sub-micron scale. Here, the e-beam-induced transformation of precursor microparticles employing a low-energy e-beam with an acceleration voltage of 30 kV in a scanning electron microscope is developed to increase the versatility and efficiency of the technique. Under these conditions, the technique can be classified between e-beam lithography, where the e-beam is used to mill holes in or grow some different material onto a substrate, and e-beam welding, where matter can be welded together when overcoming the melting phase. Modifying gold microparticles on an amorphous SiOx substrate reveals the dominant role of inelastic electron-matter interaction and subsequent localized heating for the observed melting and vaporization of the precursor microparticles under the electron beam. Monte-Carlo scattering simulations and thermodynamic modeling further support the findings.
This thesis deals with the development of a novel optical fiber sensing scheme based on geometric phase for sensing strain and its application to seismology. Interference of two coherent frequency offset electromagnetic waves gives rise to a geometric phase in the resulting beat signal. The existence of this phase was recently reported along with requisite conditions for its existence. This thesis proposes to detect and use this geometric phase in the context of distributed and dynamic fiber optic strain sensing, also known as distributed acoustic sensing (DAS). In the first part, I devise a novel DAS hardware setup capable of detecting the geometric phase considering that its measurement methods require the measurement of beam intensities and the beat signal’s envelope. The geometric phase is a function of relative intensity and polarisation state of two interfering beams. Therefore, its measurement is verified by determining its relation on these quantities using a polarisation scrambler and a piezoelectric transducer, inline an optical fiber. It is a fundamental study that has implications in coherent optical communication and novel sensing mechanisms.
The second part involves using the geometric phase in DAS for measurement of strain. I attempt to replace the traditionally measured dynamic phase in a DAS setup with the geometric phase. This is made possible by the fact that the geometric and dynamic phases are reportedly coupled over every beat period such that their sum remains constant. However, the spatial resolution for geometric phase is lower as it is measured per beat period. I determine an equivalence for the two phases empirically as well as optimum test parameters such as the required frequency offset between the interfering beams. The advantages offered by the use of geometric phase are demonstrated; geometric phase can be measured even when the two interfering beams have non-identical polarisation states, unlike the traditionally measured dynamic phase. Moreover, it does not require phase unwrapping and is therefore free from unwrapping errors.
In the third and final part, the setup, after optimisation, is tested in the field to detect seismic waves travelling on the surface of the Earth in response to a set of blasts carried out at a test-site. The surface waves are used for the characterisation of the structure and material properties of the first tens of meters of the Earth with applications in earthquake monitoring, resource exploration and infrastructure planning.
In short, this study is the first of its kind to measure geometric phase in beat signal of light using optical fiber medium and to measure strain with it, for which a novel hardware setup and a novel sensing mechanism is designed and tested in addition to its application in real-world seismology measurements.
Monitoring of composite pressure vessels using surface applied distributed fiber optic sensors
(2024)
In this paper, we report on surface-applied distributed fibre optic sensors for monitoring composite pressure vessels designed for hydrogen storage. Previous reports have revealed that integrating optical fibres within vessel composite structures effectively enables the monitoring of structural behavior throughout their lifetime.
However, integrating optical fibres during the manufacturing process is complex and time-consuming. Therefore, we aim to simplify this process by attaching the optical fibres to the vessel’s surface. This method is significantly more timeefficient than the integration process and can be applied to any vessel. Our results demonstrate that surface-applied fibre optic sensors can detect and precisely localise damage.
Additionally, signs of damage can be recognised even before the damage occurs. Predictive maintenance using fibre optic sensors could reduce premature maintenance costs and periodic inspections while increasing safety and extending the vessel’s useful service life. The role of machine learning in predictive maintenance is also discussed.
Die Erforschung des Proteoms, der Gesamtheit der Proteine eines Lebewesens, ist von großer Bedeutung für das Verständnis biologischer Systeme. Aufgrund dessen ist die Proteomik ist eines der bedeutendsten aktuellen Forschungsfelder der Biowissenschaften. In der Bottom-Up-Proteomik werden die Proteine einer Probe vor ihrer Analyse einem enzymatischen Verdau mit Proteasen unterzogen, was eine erleichterte Analyse mit hohem Durchsatz ermöglicht. Aufgrund seiner hohen Aktivität und Effektivität hat sich die Serinprotease Trypsin als Standard-Enzym der Proteomik etabliert. Die weitere Verbesserung ihrer Enzymcharakteristika, wie Thermostabilität und Aktivität, ist unter anderem durch Immobilisierung an ein Trägermaterial oder genetische Modifikation möglich. In der vorliegenden Arbeit wurde eine von Xiao et al. 2023 entwickelte thermostabile Trypsin-Variante mit erhöhter Oberflächen-Hydrophobizität rekombinant in E. coli hergestellt und sowohl immobilisiert als auch in Lösung hinsichtlich ihrer Enzymaktivität und Thermostabilität im Vergleich zum Wildtyp charakterisiert. Die vorliegende Arbeit stellt dabei eine Erstbeschreibung der Immobilisierung einer thermostabilen Trypsin-Spezies an ein Trägermaterial dar und untersucht somit erstmalig das Zusammenspiel der beiden Optimierungsstrategien Immobilisierung und genetische Modifikation.
Das thermostabile Trypsin und sein Wildtyp wurden rekombinant als Zymogene hergestellt, wobei trotz verschiedener Strategien zum Erhalt der nativen Konformation, wie der Fusion mit dem Chaperon-ähnlichen Maltose-bindenden Protein (MBP), eine starke Aggregation in Einschlusskörperchen (inclusion bodies, IB) erfolgte. Im Zuge der Rückfaltung der fehlgefalteten Proteine wurden verschiedene Rückfaltungsbedingungen untersucht, wobei die Vorteile einer langsamen Absenkung des Gehalts der Denaturierungsreagenz in Kombination mit einem Cystein-Cystine- Redoxsystem dargelegt werden konnten. Es konnte keine Verbesserung der Aktivität und Thermostabilität des genetisch modifizierten Enzyms in freier Form festgestellt werden, jedoch eine erhöhte Substrataffinität. Durch Immobilisierung an Magnetbeads mit tosylfunktionalisierter Oberfläche konnte die Enzymaktivität der genetisch modifizierten Trypsin-Variante bei 80 °C vollständig erhalten werden, während die Aktivität des Wildtyps verringert wurde. Dies legt nahe, dass die erhöhte Oberflächen-Hydrophobizität der modifizierten Trypsin-Variante zu einer erhöhten Bindung an das Trägermaterial beiträgt, was eine Verbesserung der Stabilität bei thermischer Erhitzung bewirkt.
Technology selection is an important part of the planning process when setting
up a waste management programme. This continues to be crucial during
implementation of the programme to evaluate if suitable technologies are being
implemented. This Domain Insight document provides guidance on the assessment
and selection of potential technologies for implementation during the pre-disposal
phase of the waste management lifecycle, considering factors such as cost-benefit ratio and availability (EURAD Pre-disposal theme overview, domain 2.1.3, Technology Selection), as a part of the sub-theme “Planning pre-disposal
management of radioactive waste in close cooperation with waste generators”
(Planning) and, on the broader theme 2 “Pre-disposal Activities prior to geological disposal” (Pre-disposal).
In the planning process for a waste management programme, it is critical for the waste owner to assess the feasibility of technologies for processing, storage, and monitoring, taking economic constraints into account and considering subsequent stages in the waste management lifecycle, including final disposal. In addition, technology selection must be based on the waste inventory that has been generated, planned waste stream composition and the evolution of resulting waste packages in storages. The accuracy, effectiveness and efficiency of the technologies deployed in a facility require periodic review and update, as needed, throughout the lifetime of the facility.
The digitalization of quality control processes and the use of digital data infrastructures is a novel idea that can be applied for ensuring the operational safety and reliability of pressure vessels, particularly in the context of hydrogen storage at high pressure. Despite the critical role these pressure vessels play, current safety regulations lack an established concept for Structural Health Monitoring (SHM). This research addresses this gap by presenting a study on the application of ultrasonic guided waves (GWs) for SHM of Type IV Composite Overwrapped Pressure Vessels (COPVs).
The study focuses on the development of a reliable measurement system to transition from conventional periodic inspections to SHM and predictive maintenance, prolonging the remaining lifetime of the vessels. A sensor network is employed, consisting of fifteen piezoelectric wafers arranged in three rings, which are mounted on the outer surface of the COPV.
Deploying GWs, known for their long-distance propagation and ability to cover complex structures, the study explores GW behavior under different environmental and operational conditions, including periodic pressure fluctuations and temperature loadings.
Meticulous analysis of GW signals by utilizing various features and damage indices, underscores their suitability for an effective SHM under realistic working conditions. The project aims to localize defects by considering temperature, and internal pressure. Mimicking the continuous monitoring of Type IV COPVs in H2 refueling gas stations under authentic operational conditions, the COPV underwent thousands of pressure load cycles in our special test facility. The implemented methodology facilitates early damage detection, showcasing the efficacy of the designed method in effective safety assurance.
These data sets serve as models for calculating the specific surface area (BET method) using gas sorption in accordance with ISO 9277.
The present measurements were carried out with nitrogen at 77 Kelvin and argon at 87 Kelvin.
It is recommended to use the following requirements for the molecular cross-sectional area:
Nitrogen: 0.1620 nm²
Argon: 0.1420 nm²
Expected specific surface area for nitrogen (BET): 140 to 154 m²/g
Expected specific surface area for argon (BET): 129 to 135 m²/g
Titanium dioxides certified with nitrogen sorption and additionally measured with argon for research purposes were used as sample material.
The resulting data sets are intended to serve as comparative data for own measurements and show the differences in sorption behaviour and evaluations between nitrogen and argon.
These data are stored in the universal AIF format (adsorption information format), which allows flexible use of the data.
These data sets serve as models for calculating the specific surface area (BET method) using gas sorption in accordance with ISO 9277.
The present measurements were carried out with nitrogen at 77 Kelvin and argon at 87 Kelvin.
It is recommended to use the following requirements for the molecular cross-sectional area:
Nitrogen: 0.1620 nm²
Argon: 0.1420 nm²
Expected specific surface area for nitrogen (BET): 24 to 25 m²/g
Expected specific surface area for argon (BET): 20 m²/g
Titanium dioxides certified with nitrogen sorption and additionally measured with argon for research purposes were used as sample material.
The resulting data sets are intended to serve as comparative data for own measurements and show the differences in sorption behaviour and evaluations between nitrogen and argon.
These data are stored in the universal AIF format (adsorption information format), which allows flexible use of the data.
This dataset accompanies the following publication:
Hülagü, D., Tobias, C., Dao, R., Komarov, P., Rurack, K., Hodoroaba, V.-D., Towards 3D determination of the surface roughness of core-shell microparticles as a routine quality control procedure by scanning electron microscopy. Sci.Rep, 14, 17936 (2024), https://doi.org/10.1038/s41598-024-68797-7.
It contains SEM and AFM-in-SEM images of polystyrene (PS) core particles, polystyrene-iron oxide (PS/Fe3O4) core-shell particles, and polystyrene-iron oxide-silica (PS/Fe3O4/SiO2) core-shell-shell particles. Please refer to the publication and its supporting information for more details on the acquisition and contents of the dataset, as well as the GitHub repository at https://github.Com/denizhulagu/roughness-analysis-by-electron-microscopy.
The investigated particles were produced at BAM laboratories as previously described in:
Hülagü, D. et al. Generalized analysis approach of the profile roughness by electron microscopy with the example of hierarchically grown polystyrene–iron oxide–silica core–shell–shell particles. Adv. Eng. Mater. 24, 2101344, https://doi.org/10.1002/adem.202101344 (2022).
Tobias, C., Climent, E., Gawlitza, K. & Rurack, K. Polystyrene microparticles with convergently grown mesoporous silica shells as a promising tool for multiplexed bioanalytical assays. ACS Appl. Mater. Interfaces 13, 207, https://dx.doi.org/10.1021/acsami.0c17940 (2020).