Datei für die Öffentlichkeit verfügbar ("Open Access")
Filtern
Erscheinungsjahr
Dokumenttyp
- Zeitschriftenartikel (2158)
- Beitrag zu einem Tagungsband (418)
- Forschungsbericht (385)
- Zeitschriftenheft (Herausgeberschaft für das komplette Heft) (222)
- Dissertation (216)
- Forschungsdatensatz (154)
- Sonstiges (58)
- Posterpräsentation (50)
- Vortrag (44)
- Preprint (22)
Sprache
- Englisch (2790)
- Deutsch (1016)
- Mehrsprachig (27)
- Portugiesisch (1)
Schlagworte
- Additive manufacturing (82)
- SAXS (68)
- Nanoparticles (67)
- Fluorescence (57)
- Concrete (53)
- XPS (44)
- Zerstörungsfreie Prüfung (44)
- Ultrasound (43)
- Corrosion (42)
- Simulation (42)
Organisationseinheit der BAM
- 6 Materialchemie (585)
- 8 Zerstörungsfreie Prüfung (535)
- 1 Analytische Chemie; Referenzmaterialien (406)
- 5 Werkstofftechnik (272)
- 7 Bauwerkssicherheit (267)
- 4 Material und Umwelt (247)
- 9 Komponentensicherheit (240)
- 6.3 Strukturanalytik (192)
- 8.5 Röntgenbildgebung (152)
- 6.1 Oberflächen- und Dünnschichtanalyse (148)
Paper des Monats
- ja (71)
Eingeladener Vortrag
- nein (44)
An accurate measurement of the amount fraction of hydrogen in gas mixtures is mandatory for practical applications, requiring methods that are fast, continuous, robust, and cost-effective. This study compares the performance of Raman and benchtop NMR process spectroscopy for determining the hydrogen amount fraction in gas mixtures. A setup was designed to integrate both techniques, enabling measurements of the same sample.
Tests were conducted with gravimetrically prepared gas mixtures of reference quality ranging from 1.20 cmol/mol to 85.83 cmol/mol of hydrogen. The results demonstrate that Raman spectroscopy provides superior performance, with a minimal root mean square error (RMSE) of 0.22 cmol/mol and excellent linearity. In contrast, benchtop NMR spectroscopy faced challenges, such as overlapping peaks and longer measurement times, resulting in a higher RMSE of 0.71 cmol/mol. Raman spectroscopy proves to be particularly well-suited for
practical applications due to its high accuracy and linearity. Meanwhile, benchtop NMR spectroscopy holds potential for future enhancements through ongoing technological advances, such as higher magnetic field strengths. In summary, the results from our study indicate that Raman spectroscopy is already a serviceable method for precise hydrogen quantification, whereas benchtop NMR spectroscopy can be attributed potential for future applications.
Extrusion based 3D concrete printing (3DCP) is a growing technology because of its high potential for automating construction and the new possibilities of design. In conventional construction methods, a sample is taken to be representative for one material batch. However, in 3DCP continuous mixing is used which results in variations during the mixing process. Therefore, one sample is not representative for the entire structure. This leads to the necessity of continuous and real-time process monitoring.
This study focuses on the variations of pressure and temperature which are caused by changes in the material due to the ongoing mixing process. Changes in material, which is transported downstream, are influencing sensor signals in different positions with a time delay. In the following, the data is analysed to investigate if the changing material and the so caused change in pressure can be used to calculate volume flow.
Das Ziel dieses Grundlagenforschungsprojektes war, die Abbaubarkeit syntheti-scher Polymere unter realitätsnahen Umweltbedingungen durch eine Mischung bzw. Blend eines Hydrolyse- mit einem Oxidations-empfindlichen Polymer zu verbessern, während er unter Nutzungsbedingungen stabil sein sollte. Die Arbeits-hypothese war, dass sich die Polymere gegenseitig in ihrem Abbau beschleunigen, wenn sie der alternierenden Wechselbeanspruchung aus UV-Strahlung und hydrolytischer Beanspruchung ausgesetzt sind. Hierfür wurden vier Blends aus Polylactid (PLA) und Polystyrol (PS) oder Polymethylmethacrylat (PMMA) in unterschiedlichen Mischverhältnissen und Phasenstrukturen mittels additiver Fertigung hergestellt. Die Blends wurden über acht Wochen bei 45 °C mittels alternierender Wechselbeanspruchung aus je fünf Tagen UV-Bestrahlung und zwei Tagen hydrolytischer Beanspruchung beschleunigt gealtert. Für eine Basis-charakterisierung und als Vergleichsgrundlage wurden zusätzlich die Ausgangs-polymere PLA, PS und PMMA jeweils einzeln der hydrolytischen Beanspruchung, UV-Beanspruchung und alternierenden Wechselbeanspruchung unterzogen. Neben der Bestimmung der physiko-chemischen Effekte auf Prüfkörperoberflächen und Bulk wurden erstmalig auch die Wassermedien auf Mikroplastikgehalte und ökotoxikologische Wirkungen analysiert.
Die Ergebnisse ergaben, dass reines PLA kaum degradierte, aber der PLA-Abbau sowohl durch Mischung mit PS als auch PMMA verstärkt wurde. Entgegen der Hypothese wurde dadurch allerdings sowohl die Degradation von PS als auch von PMMA gehemmt. Es konnte gezeigt werden, dass sich PS und PMMA im Blend mit PLA durch radikalische Depolymerisation abbauten und die dabei entstehenden Radikale die PLA-Hydrolyse beschleunigten, was wiederum den Abbau der PS- und PMMA-Phasen verlangsamte. Die Ergebnisse zeigten, dass bei dem PLA/PS-Schichtblend (PLA/PS-50) der höchste PS-Gehalt von 50 % den stärksten Effekt auf den PLA-Abbau hatte. Insgesamt war allerdings selbst in diesem Fall die PLA-Degradation nach achtwöchiger Beanspruchung als gering einzustufen. Der totale Masseverlust von PLA/PS-50 entsprach nach achtwöchiger Wechselbeanspruchung -2,6 ± 0,2 mg absolut bzw. ca. -1,5 ± 0,1 % der Prüfkörpermasse, wovon 0,001 % in partikuläres Mikroplastik fragmentierte (PLA: 0,2 – 2,7 μg/g; PS: 3,0 – 3,4 μg/g). Folglich war der größte Teil des Masseverlustes der Prüfkörper auf die Bildung gelöster und/oder gasförmiger Degradationsprodukte zurückzuführen.
Ferner zeigten ökotoxikologische Untersuchungen der wechselbeanspruchten Wassermedien von PLA/PS-50 eine zunehmende Hemmung des Algenwachstums der Grünalge Desmodesmus subspicatus, die nach sechs Wochen Wechsel-beanspruchung zu 100 % Hemmung und nach acht Wochen zu einem Absterben der eingesetzten Algenzellen führte. Ergänzende Algenwachstumshemmungstests mit
2
Prüfkörpern der Ausgangspolymere PLA und PS zeigten, dass dies nicht auf der Bildung von partikulärem Mikroplastik, sondern gelösten PS-Degradations-produkten basierte, wie z. B. Benzaldehyd oder Benzoesäure.
Zusammenfassend lässt sich sagen, dass nur eine geringe Beschleunigung des PLA-Abbaus bei gleichzeitiger Hemmung des PS- bzw. PMMA-Abbaus stattfand - und das auch erst bei hohen PS- bzw. PMMA-Gehalten. Weiterführende Experimente zeigten, dass dies speziell für PS höchst bedenklich und nicht empfehlenswert ist, da es abhängig von der Konzentration der gelösten PS-Degradationsprodukte zu starken ökotoxikologischen Effekten kommen kann, die von der Hemmung des Algen-wachstums bis zum Algenabsterben reichen können. Folglich konnte die Arbeits-hypothese nur sehr eingeschränkt verifiziert werden und ist mit den hier untersuchten Polymeren als nicht zielführend einzuschätzen.
Quantum dots (QDs) possess unique optoelectronic properties, which make them very attractive to be used as optical probes in biosensing and bioimaging applications. The strong absorbance and light scattering of biological compounds like tissue and blood in the visible range pose a problem. However, if optical probes emitting in the near-infrared (NIR) range are used, scattering, absorption, and autofluorescence of biological components are strongly reduced. This allows for an increased light penetration depth and higher spatial and temporal resolution for the investigation of biological processes. The synthesis and application of NIR emitting QDs is a fast-growing research field and the benefits of using QDs were demonstrated for a variety of applications, such as photoelectrochemical biosensor, in vivo vascular imaging, and fluorescence-guided surgery. This article reviews the state-of-the-art developments in the preparation of NIR/IR QDs and highlights the latest research about their utilization in biosensing and bioimaging applications.
Electron-beam-induced conversion of materials in a transmission electron microscope uses the high power density of a localized electron beam of acceleration voltages above 100 kV as an energy source to transform matter at the sub-micron scale. Here, the e-beam-induced transformation of precursor microparticles employing a low-energy e-beam with an acceleration voltage of 30 kV in a scanning electron microscope is developed to increase the versatility and efficiency of the technique. Under these conditions, the technique can be classified between e-beam lithography, where the e-beam is used to mill holes in or grow some different material onto a substrate, and e-beam welding, where matter can be welded together when overcoming the melting phase. Modifying gold microparticles on an amorphous SiOx substrate reveals the dominant role of inelastic electron-matter interaction and subsequent localized heating for the observed melting and vaporization of the precursor microparticles under the electron beam. Monte-Carlo scattering simulations and thermodynamic modeling further support the findings.
The analysis of the presence and content of substances that are toxic to aquatic life in waste is essential for classification of waste with regard to hazard property (HP) 14 ‘ecotoxic’. For the determination of HP14 classified copper (Cu) and zinc (Zn) compounds in various municipal solid waste incineration bottom ashes (IBA) and one fly ash (FA) from Germany we applied X-ray absorption near-edge structure (XANES) spectroscopy in combination with linear combination fitting. The analysis showed that approx. 50–70% of Cu in the IBA are Cu(I) compounds and elemental Cu(0), but these compounds were not equally distributed in the different IBA. In contrast, the majority (approx. 50–70%) of Zn in all IBA is elemental zinc, which originates from brass or other alloys and galvanized metals with a large content of zinc in the waste. The FA contain higher mass fraction on Zn and other toxic elements, but similar Cu and Zn species. Additional performed selective extraction at a pH of 4 with an organic acid of some IBA showed that the ecotoxic Zn fraction is mainly elemental zinc and zinc oxide. In contrast, for the ecotoxic Cu fraction within the IBA no specific compound could be identified. Furthermore, the XANES analysis showed that the HP14 properties of especially Cu in IBA is overestimated with current best-practice guidelines for sample processing for the current substance-related approach with the 0.1% cut-off rule for each substance. However, it should be considered whether it would not be better from an environmental point of view to take the ecotoxicologically leachable copper and zinc as a reference value.
In addition to sensitivity, selectivity, and portability, chemical sensing systems must generate reliable signals and offer modular configurability to address various small molecule targets, particularly in environmental applications. We present a versatile, modular strategy utilizing ratiometric molecularly imprinted particle probes based on BODIPY indicators and dyes for recognition and internal referencing. Our approach employs polystyrene core particles doped with a red fluorescent BODIPY as an internal standard, providing built-in reference for environmental influences. A molecularly imprinted polymer (MIP) recognition shell, incorporating a green-fluorescent BODIPY indicator monomer with a thiourea binding site for carboxylate containing analytes, is grafted from the core particles in the presence of the analyte as the template. The dual-fluorescent MIP probe detects fexofenadine as the model analyte with a change in green emission signal referenced against a stable red signal, achieving a detection limit of 0.13 μM and a broad dynamic range from 0.16 μM to 1.2 mM, with good discrimination against other antibiotics in acetonitrile. By selecting a versatile dye scaffold and recognition element, this approach can be extended to other carboxylate-containing analytes and/or wavelength combinations, potentially serving as a robust multiplexing platform.
Atmospheric deposition of particulate matter is an important indicator of air pollution and a significant factor in material surface fouling. The elemental composition of this nutrient-containing dust depends largely on the exposure region and time as well as on climate. Therefore, in this paper we report an analysis of atmospheric pollutions with a self-made low-cost bulk deposition sampler directed at sampling deposition via air transport and rainfall. We used the device in diverse environments - thus comparing an urban region, an area surrounded by forest and an area mainly dominated by agriculture. The total organic carbon (TOC) and total nitrogen (TN) amounts were selected as indicator parameters and analyzed in a biweekly rhythm for three and a half and two years, respectively. The TOC value responded to particulate matter in the urban area, especially significant were the influences of the New Year's firework in urban and pollen in the rural forest area. In contrast, the TN value was more under the influence of the nitrogen emissions in the agriculture-dominated area. However, the TN value did not correlate with the NOx values in the urban area because the atmospheric nitrogen emissions in the city might originate from various emission sources. Summarizing, the TOC and TN values of the self-made low-cost bulk deposition sampler were in good agreement with environmental events of their immediate surrounding. Moreover, the selected containers and sampling procedures are universally applicable to monitor and analyze organic as well as inorganic parameters (e.g. metal ions) of atmospheric deposition.
The chemical reaction between CO2 and a blended Portland cement concrete, referred to as carbonation, can lead to reduced performance, particularly when concrete is exposed to elevated levels of CO2 (i.e., accelerated carbonation conditions). When slight changes in concrete mix designs or testing conditions are adopted, conflicting carbonation results are often reported. The RILEM TC 281-CCC ‘Carbonation of Concrete with Supplementary Cementitious Materials’ has conducted a critical analysis of the standardised testing methodologies that are currently applied to determine carbonation resistance of concrete in different regions. There are at least 17 different standards or recommendations being actively used for this purpose, with significant differences in sample curing, pre-conditioning, carbonation exposure conditions, and methods used for determination of carbonation depth after exposure. These differences strongly influence the carbonation depths recorded and the carbonation coefficient values calculated. Considering the importance of accurately determining carbonation potential of concrete, not just for predicting their durability performance, but also for determining the amount of CO2 that concrete can re-absorb during or after its service life, it is imperative to recognise the applicability and limitations of the results obtained from different tests. This will enable researchers and practitioners to adopt the most appropriate testing methodologies to evaluate carbonation resistance, depending on the purpose of the conclusions derived from such testing (e. g. materials selection, service life prediction, CO2 capture potential).
The integration of additive manufacturing with traditional processes, termed hybrid additive manufacturing, has expanded its application domain, particularly in the repair of gas turbine blade tips. However, process-related defects in additively manufactured materials, interface formation, and material property mismatches in dual-material structures can significantly impact the fatigue performance of components. This investigation examines the low cycle fatigue and fatigue crack growth behaviors in dual-material specimens of nickel-based alloys, specifically the additively manufactured STAL15 and the cast alloy 247DS, at elevated temperatures. Low cycle fatigue experiments were conducted at temperatures of 950 °C and 1000 °C under a range of strain levels (0.3%–0.8%) and fatigue crack growth tests were conducted at 950 °C with stress ratios of 0.1 and −1. Fractographic and microscopic analyses were performed to comprehend fatigue crack initiation and crack growth mechanisms in the dual-material structure. The results consistently indicated crack initiation and fatigue fracture in the additively manufactured STAL15 material. Notably, fatigue crack growth retardation was observed near the interface when the crack extended from the additively manufactured STAL15 material to the perpendicularly positioned interface. This study highlights the importance of considering yield strength mismatch, as well as the potential effects of residual stresses and grain structure differences, in the interpretation of fatigue crack growth behavior at the interface.