Analytische Chemie
Filtern
Erscheinungsjahr
Dokumenttyp
- Vortrag (2224)
- Zeitschriftenartikel (1983)
- Posterpräsentation (1016)
- Beitrag zu einem Tagungsband (514)
- Sonstiges (115)
- Forschungsbericht (66)
- Forschungsdatensatz (57)
- Buchkapitel (52)
- Dissertation (39)
- Newsletter (38)
Sprache
- Englisch (5075)
- Deutsch (1060)
- Mehrsprachig (54)
- Spanisch (5)
- Französisch (4)
- Russisch (4)
- Polnisch (2)
- Italienisch (1)
Schlagworte
- Fluorescence (241)
- Nanoparticles (194)
- LIBS (144)
- Concrete (136)
- Quantum yield (124)
- XPS (121)
- Nanoparticle (117)
- Zerstörungsfreie Prüfung (102)
- Mechanochemistry (101)
- Ultrasound (98)
Organisationseinheit der BAM
- 1 Analytische Chemie; Referenzmaterialien (1527)
- 8 Zerstörungsfreie Prüfung (1323)
- 6 Materialchemie (1075)
- 6.1 Oberflächen- und Dünnschichtanalyse (369)
- 6.3 Strukturanalytik (343)
- 8.2 Zerstörungsfreie Prüfmethoden für das Bauwesen (329)
- 1.1 Anorganische Spurenanalytik (300)
- 1.2 Biophotonik (281)
- 8.4 Akustische und elektromagnetische Verfahren (259)
- 1.4 Prozessanalytik (251)
Paper des Monats
- ja (31)
In diesem Vortrag geht es um eine Übersicht über die Thematik der Mikroplastik, Was ist Mikroplastik, wie entsteht es und wo kommt es her. Es wird beschrieben wie eine repräsentative Probenahme erfolgen kann und wie welche Herausforderungen bei der Probenvorbereitung existieren. Die Detektion wird ausführlich beschrieben, sowohl mit Partikelanzahl als auch Masse. Im weiteren werden erste Referenzmaterialien und ihre Anwendung in internationalen Ringversuchen beschrieben. Der zweite Teil zeigt die Normungsaktivitäten im Bereich der Mikroplastik.
Atherosclerosis is a chronic inflammatory condition of the arteries and represents the primary cause of various cardiovascular diseases. Despite ongoing progress, finding effective anti-inflammatory therapeutic strategies for atherosclerosis remains a challenge. Here, we assessed the potential of molecular magnetic resonance imaging (MRI) to visualize the effects of 01BSUR, an anti-interleukin-1β monoclonal antibody, for treating atherosclerosis in a murine model. Male apolipoprotein E-deficient mice were divided into a therapy group (01BSUR, 2 × 0.3 mg/kg subcutaneously, n = 10) and control group (no treatment, n = 10) and received a high-fat diet for eight weeks. The plaque burden was assessed using an elastin-targeted gadolinium-based contrast probe (0.2 mmol/kg intravenously) on a 3 T MRI scanner. T1-weighted imaging showed a significantly lower contrast-to-noise (CNR) ratio in the 01BSUR group (pre: 3.93042664; post: 8.4007067) compared to the control group (pre: 3.70679168; post: 13.2982156) following administration of the elastin-specific MRI probe (p < 0.05). Histological examinations demonstrated a significant reduction in plaque size (p < 0.05) and a significant decrease in plaque elastin content (p < 0.05) in the treatment group compared to control animals. This study demonstrated that 01BSUR hinders the progression of atherosclerosis in a mouse model. Using an elastin-targeted MRI probe, we could quantify these therapeutic effects in MRI.
Photophysical and mechanistic studies, the comparison of different emitter classes, and the rational design of the next generation of molecular and nanoscale reporters require quantitative photoluminescence measurements and the reliable determination of the key performance parameter photoluminescence quantum yield (QY), i.e., the number of emitted per absorbed photons. This is of special importance for all photoluminescence applications in the life and material sciences in the UV/vis/NIR/SWIR. To improve the reliability and comparability of photoluminescence and QY measurements across laboratories, pitfalls, achievable uncertainties, and material-specific effects related to certain emitter classes must be explored. Also, suitable protocols and reference materials are needed which have been validated in interlaboratory comparisons for different wavelength regions and transparent and scattering luminophores.[1] Based on absolute and relative photoluminescence measurements of functional dyes and nanomaterials like semiconductor quantum dots and rods, spectrally shifting lanthanide upconversion nanocrystals, perovskites, and YAG:Cer converter materials, reliable methods for determining QY of transparent and scattering luminophores, nonlinear emitters, and solid luminescent nanomaterials have been developed.[2,3] Thereby, material- and method-related uncertainties of relative and absolute QY measurements and achievable uncertainties could be quantified for linear and nonlinear UV/vis/NIR/SWIR emitters and lately for also luminescent and scattering materials and solid phoshors, here in an interlaboratory comparison of three labs utilizing integrating sphere spectroscopy.[4,5] In addition, to provide simple tools for a better comparability of QY measurements, recently, a first set of UV/vis/NIR quantum yield standards has been developed and certified with complete uncertainty budgets.[6] In the following, the outcome of these studies will be presented, thereby addressing common pitfalls and providing recommendations on the performance of reliable QY measurements of linear and non-linear emitters in transparent, scattering, and solid samples.
As part of the "Journées de Chimie Analytique, JCA Dschang 2024", this plenary scientific conference will explore how analytical electrochemistry is fundamentally changing modern chemical analysis methods. We will highlight key innovations such as wearable/handheld sensors, lab-on-a-chip, lab-on-paper, lab-on-a-glove, integrated detection systems with artificial intelligence, and point-of-care (POC) technologies. We will also address the couplings between analytical electrochemistry and various analytical techniques such as mass spectrometry (EC-MS), chromatography (EC-LC), spectroscopy [EC-spectroscopy (UV-VIS, Raman, IR, NMR)], microscopy [EC-microscopy (EM, AFM)], and capillary electrophoresis (EC-CE). These advances enable faster, more accurate, and more accessible analyses, opening new perspectives for research and practical applications in environmental science, food and agriculture, public health, and advanced materials.
The electrochemical behavior of 4-phenylurazole (Ph-Ur) was studied and the latter was used as a molecular anchor for the electrochemical bioconjugation of tyrosine (Y). Cyclic voltammetry (CV) and controlled potential coulometry (CPC) allowed to generate in situ from phenylurazole the PTAD (4-phenyl-3H-1,2,4-triazole-3,5(4H)-dione) species on demand for tyrosine electrolabeling. To evaluate the performance of tyrosine electrolabeling, coulometric analyses at controlled potentials were performed on solutions of phenylurazole and the phenylurazole-tyrosine mixture in different proportions (2:1, 1:1, and 1:2). The electrolysis of the phenylurazole-tyrosine mixture in the ratio (1:2) produced a charge of 2.07 C, very close to the theoretical value (1.93 C) with high reaction kinetics, a result obtained here for the first time. The products obtained were identified and characterized by liquid chromatography coupled to high-resolution electrospray ionization mass spectrometry (LC-HRMS and LC-HRMMS). Two products were formed from the click reactions, one of which was the majority. Another part of this work was to study the electrochemical degradation of the molecular anchor 4-phenylazole (Ph-Ur). Four stable degradation products of phenylurazole were identified (C7H9N2O, C6H8N, C6H8NO, C14H13N4O2) based on chromatographic profiles and mass spectrometry results. The charge generated during the electrolysis of phenylurazole (two-electron process) (2.85 C) is inconsistent with the theoretical or calculated charge (1.93 C), indicating that secondary/parasitic reactions occurred during the electrolysis of the latter. In conclusion, the electrochemically promoted click phenylurazole-tyrosine reactions give rise to click products with high reaction kinetics and yields in the (1:2) phenylurazole-tyrosine ratios, and the presence of side reactions is likely to affect the yield of the click phenylurazole-tyrosine reaction.
Ergot alkaloids, potent mycotoxins produced by Claviceps spp., particularly Claviceps purpurea, pose significant health risks when they contaminate rye and related cereals, leading to ergotism in humans and mammals [1]. In response, the European Union has established Regulation 2023/915, setting maximum residue levels for the sum of 12 principal ergot alkaloids and other mycotoxins including fumonisins (FUM), deoxynivalenol (DON), zearalenone (ZEN), and T2/HT2 toxins in food products. Given the prevalent co-occurrence of mycotoxins, their simultaneous detection is crucial for ensuring the safety of food and feed [2, 3].
Traditionally, chromatographic techniques such as liquid chromatography coupled with (tandem) mass spectrometry (LC-MS/MS) have been employed for multiplex detection of mycotoxins [4, 5]. While effective, these methods require specialized facilities, expensive equipment, and skilled personnel. Immunoassays like ELISA and lateral flow assays offer a more accessible alternative for rapid mycotoxin detection, yet they generally lack the capability for concurrent multi-toxin screening.
This study introduces the SAFIA (Suspension Array Fluorescence Immunoassay), a particle-based immunoassay utilizing fluorescence-encoded microparticles for the simultaneous detection of multiple analytes [6, 7]. The assay's innovative advancement comes with the inclusion of ergot alkaloids, a novel addition to its existing detection capabilities for fusarium toxins and trichothecenes, thereby expanding its scope to a broader range of mycotoxins. The assay employs antibodies targeting the ergoline moiety common to all major ergot alkaloids, facilitated by a synthesized hapten mimicking the ergoline structure. This hapten was conjugated to amino-functionalized beads, and a panel of five monoclonal antibodies was evaluated for hapten recognition, binding specificity, and competitive binding efficiency.
Our findings demonstrate that all antibodies displayed similar affinities towards the hapten and lysergol (a stable and less hazardous analogue of lysergic acid used for calibration), achieving detection limits as low as 2 ppb. Cross-reactivity studies and analysis of round-robin test material indicated a significant underestimation of ergot alkaloid levels in samples. However, accurate detection of ergot alkaloids remains feasible through the application of a correction factor to the results, which compensates for this underestimation and ensures the assay's effectiveness. Despite this adjustment, the necessity for enhancements in antibody specificity to improve assay accuracy is evident. Furthermore, the inclusion of the ergot assay in a multiplexed setup for detecting FUM, DON, ZEN, and T-2 toxins showed no interference, although an unexpected inhibition among four out of five ergot antibodies was observed. This underscores the need for an improved immunogen structure to achieve optimal detection of ergot alkaloids.
In conclusion, our study presents a promising approach for the multiplexed detection of ergot alkaloids alongside other mycotoxins, highlighting the potential of SAFIA in enhancing food and feed safety through improved mycotoxin screening. Future work will focus on refining antibody specificity and assay configurations to overcome current limitations and ensure accurate, comprehensive mycotoxin detection.
Currently, there is a growing interest in the study of environmental degradation pathways of organic contaminants such as pesticides, with the objective to better understand their potential risk for environmental systems and living organisms. In this context, DFT (conceptual density functional theory) and predictive methods may systematically be used to simplify and accelerate the elucidation of environmental degradation. We report herein the electrochemical behavior/degradation of the carbendazim (CBZ) fungicide widely used to treat cereal and fruit crops. Oxidative degradation of CBZ was studied using an electrochemical flow-through cell directly coupled to a mass spectrometer for rapid identification of CBZ degradation products. The structural elucidation of CBZ oxidation products was based on retention time, accurate mass, isotopic distribution and fragmentation pattern by using LC-HRMS an LC-HRMS2. The most important chemical reactions found to occur in the transformation of CBZ were hydrolysis and hydroxylation. EC-LC-MS and EC-MS analysis has made it possible to highlight the identification of degradation products of CBZ. In addition to previously known transformation products common to those observed during environmental degradation (monocarbomethoxyguanidine, benzimidazole-isocyanate, 2-aminobenzimidazole, hydroxy-2-aminobenzimidazole, hydroxycarbendazim, CBZ-CBZ dimer), two new degradation products were identified in this work: a quinone imine and a nitrenium ion. Electrochemistry mass spectrometry hyphenated techniques represent an accessible, rapid and reliable tool to elucidate the oxidative degradation of CBZ, including reactive degradation products and conjugates.
Weitestgehendes Recycling vorhandener Materialien und Produkte ist ein wesentlicher Bestandteil der Kreislaufwirtschaft. Verpackungen auf Kunststoffbasis, darunter Behälter für Lebensmittel und Getränke, aber auch für die Lagerung und den Transport von Chemikalien und Gefahrgütern, werden derzeit größtenteils aus fossilen Rohstoffen hergestellt. Doch selbst für diese „kontaktempfindlichen“ Produkte besteht weiterhin das Ziel der Nachhaltigkeit durch den Einsatz von Recyclingmaterialien. Diese sehr aktuelle Diskussion findet derzeit im Rahmen der EU-Verpackungs- und Verpackungsabfallverordnung (PPWR) statt, die voraussichtlich noch in diesem Jahr abgeschlossen sein wird. Bei Verpackungen für den Transport gefährlicher Güter sind die Sicherheitseigenschaften der Behälter aus „neuen“ Materialien, einschließlich Polyethylen (PE), gut bekannt und werden im Rahmen ihrer Bauartzulassung getestet. Über ihre Gegenstücke aus Recyclingmaterialien ist jedoch weitaus weniger bekannt. Abgesehen von Materialschwächung kann der Eintrag von Rückständen in recycelte Kunststoffe zu einer Verunreinigung der Waren in der Verpackung führen.
Um diese Lücke zu schließen, haben wir Kanister aus hochdichtem PE (HDPE) aus Post-Consumer-Abfällen auf die Freisetzung von Kunststoffzusätzen und Verunreinigungen untersucht. Mithilfe eines umfassenden, nicht zielgerichteten Ansatzes mit hochauflösender Massenspektrometrie (HRMS) konnten wir je nach Art der gelagerten Chemikalie und Lagerdauer 895 verschiedene Komponenten detektieren. Die meisten Komponenten waren alleinig oder in wesentlich höherer Konzentration in recyceltem HDPE als in herkömmlichem HDPE nachzuweisen. 154 der Komponenten konnten identifiziert und auf ihre funktionale Verwendung hin analysiert werden. Interessanterweise ergab diese Analyse „Kosmetik“, „Duftstoffe“ und „Geschmacksstoffe“ als Hauptassoziationen neben bekannten und erwarteten Verwendungen im Bereich „Kunststoffe“. Dies deutete auf einen erheblichen Eintrag von Fremdverunreinigungen in das Produkt hin. Rezyklierte Kanister zeigten damit deutliche Nachteile im Vergleich zu herkömmlichen Kanistern. Eine detaillierte Bewertung der Ergebnisse im Hinblick auf die Materialsicherheit in diesem Produktsegment steht noch aus.
Flow cytometry-based immunoassays are valuable in biomedical research and clinical applications due to their high throughput and multianalyte capability, but their adoption in areas such as food safety and environmental monitoring is limited by long assay times and complex workflows. Rapid, simplified bead-based cytometric immunoassays are needed to make these methods viable for point-of-need applications, especially with the increasing accessibility of miniaturized cytometers. This work introduces superparamagnetic hybrid polystyrene-silica core−shell microparticles as promising alternatives to conventional polymer beads in competitive cytometric immunoassays. These beads, featuring high specificity, sensitivity, and excellent handling capabilities via magnetic separation, were evaluated with three different antibodies and binding methods, showing variations in signal intensity based on the antibody and its attachment method. The optimal performance was achieved through a secondary antibody binding approach, providing strong and consistent signals with minimal uncertainty. The optimized protocol made it possible to achieve a detection limit of 0.025 nM in a total assay time of only 15 min and was successfully used to detect ochratoxin A (OTA) in raw flour samples. This work highlights the potential of these beads as versatile tools for flow cytometry-based immunoassays, with significant implications for food safety, animal health,
environmental monitoring, and clinical diagnostics.
Single-particle inductively coupled plasma-mass spectrometry (sp-ICP-MS) is one of the most powerful tools in the thriving field of nanomaterial analysis. Along the same lines, single-cell ICP-MS (sc-ICP-MS) has become an invaluable tool in the study of the variances of cell populations down to a per-cell basis. Their importance and application fields have been listed numerous times, across various reports and reviews. However, not enough attention has been paid to the immense and ongoing development of the tools that are currently available to the analytical community for the acquisition, and more importantly, the treatment of single-particle and single-cell-related data. Due to the ever-increasing demands of modern research, the efficient and dependable treatment of the data has become more important than ever. In addition, the field of single-particle and single-cell analysis suffers due to a large number of approaches for the generated data—with varying levels of specificity and applicability. As a result, finding the appropriate tool or approach, or even comparing results, can be challenging. This article will attempt to bridge these gaps, by covering the evolution and current state of the tools at the disposal of sp-ICP-MS users.
Graphical Abstract