Das Suchergebnis hat sich seit Ihrer Suchanfrage verändert. Eventuell werden Dokumente in anderer Reihenfolge angezeigt.
  • Treffer 2 von 938
Zurück zur Trefferliste

Quantitative and qualitative analysis of liquid samples

  • Spatial heterodyne spectroscopy (SHS) is an optical setup that combines both dispersive and interference based methods to obtain spectroscopic information. It has the high light throughput characteristic for interference based methods, but at the same time it has the high resolution typical of grated spectrometers. The basic SHS optical setup is similar to that of the Michelson interferometer, with the mirrors replaced by diffraction gratings positioned at fixed, equal distances from the beamsplitter and are slightly tilted. The resulting interference pattern is recorded by a digital camera and the spectrum is recovered by using Fourier Transformation. Although initially SHS was developed for astronomical and satellite-based atmospheric measurements, where spectroscopy of faint but large light sources are investigated, but in recent years the application of SHS spectroscopy is gaining popularity. Our research group is active both in Raman-SHS and LIBS-SHS, due to the fact that thereSpatial heterodyne spectroscopy (SHS) is an optical setup that combines both dispersive and interference based methods to obtain spectroscopic information. It has the high light throughput characteristic for interference based methods, but at the same time it has the high resolution typical of grated spectrometers. The basic SHS optical setup is similar to that of the Michelson interferometer, with the mirrors replaced by diffraction gratings positioned at fixed, equal distances from the beamsplitter and are slightly tilted. The resulting interference pattern is recorded by a digital camera and the spectrum is recovered by using Fourier Transformation. Although initially SHS was developed for astronomical and satellite-based atmospheric measurements, where spectroscopy of faint but large light sources are investigated, but in recent years the application of SHS spectroscopy is gaining popularity. Our research group is active both in Raman-SHS and LIBS-SHS, due to the fact that there are many overlapping challenges for the two spectroscopies in terms of optical and optoelectronic optimization. In the present study, we investigated the possibility of using SH detection for the qualitative and quantitative Raman spectroscopy of liquid samples. We constructed our own compact spatial heterodyne spectrometer using 300 mm-1 gratings (Newport), a 50:50 cube beamsplitter (Thorlabs), dischroic mirrors, bandpass and notch filters (Semrock), a Tamron telelens and a Retiga R1 CCD camera. A DPSS laser (532 nm, 20 ns) with variable energy and repetition rate (up to 100 µJ and 80 kHz) was used for excitation, with its beam driven through a 10x microscope objective (Thorlabs) to focus the laser light inside the liquid samples. The evaluation of the recorded interference patterns was carried out by self-developed software written in Octave. In the qualitative experiments, we investigated several oils and additives and employed principal component analysis (PCA) for their classification. It was found that the recorded spectra could be separated well in the subspace of just two principal components. The quantitative experiments were conducted with two sets of binary solvent mixtures (isopropanol-cyclohexane, glycerol-water). The simple univariate method based on the net intensity of one spectral peak did not give good results, but principal component regression (PCR) gave rise to fairly good and robust calibrations. Our results therefore show that a relatively simple and robust SHS setup can be advantageously used for both quantitative and qualitative Raman spectroscopy.zeige mehrzeige weniger

Volltext Dateien herunterladen

  • Quantitative and qualitative analysis of liquid samples.pdf
    eng

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar Anzahl der Zugriffe auf dieses Dokument
Metadaten
Autor*innen:Ardian GojaniORCiD
Koautor*innen:Igor B. Gornushkin, David J. Palásti, G. Galbacs
Dokumenttyp:Posterpräsentation
Veröffentlichungsform:Präsentation
Sprache:Englisch
Jahr der Erstveröffentlichung:2019
Organisationseinheit der BAM:1 Analytische Chemie; Referenzmaterialien
1 Analytische Chemie; Referenzmaterialien / 1.9 Chemische und optische Sensorik
DDC-Klassifikation:Naturwissenschaften und Mathematik / Chemie / Analytische Chemie
Freie Schlagwörter:Raman spectroscopy; SHS; Spatial Heterodyne Spectrometer
Themenfelder/Aktivitätsfelder der BAM:Chemie und Prozesstechnik
Chemie und Prozesstechnik / Chemische Charakterisierung und Spurenanalytik
Veranstaltung:European Winter Conference on Plasma Spectrochemistry (EWSPS-2019)
Veranstaltungsort:Pau, France
Beginndatum der Veranstaltung:03.02.2019
Enddatum der Veranstaltung:08.02.2019
Verfügbarkeit des Dokuments:Datei im Netzwerk der BAM verfügbar ("Closed Access")
Datum der Freischaltung:22.05.2019
Referierte Publikation:Nein
Einverstanden
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.