1.9 Chemische und optische Sensorik
Filtern
Dokumenttyp
- Zeitschriftenartikel (103)
- Vortrag (71)
- Posterpräsentation (57)
- Beitrag zu einem Tagungsband (6)
- Preprint (1)
- Forschungsbericht (1)
- Forschungsdatensatz (1)
Schlagworte
- Fluorescence (50)
- LIBS (29)
- Plasma modeling (26)
- Laser induced plasma (25)
- Plasma diagnostics (20)
- Core-shell particles (19)
- Microfluidics (14)
- Molecularly imprinted polymers (13)
- MIPs (12)
- Roughness (10)
Organisationseinheit der BAM
- 1 Analytische Chemie; Referenzmaterialien (240)
- 1.9 Chemische und optische Sensorik (240)
- 8 Zerstörungsfreie Prüfung (29)
- 6 Materialchemie (24)
- 1.5 Proteinanalytik (17)
- 8.1 Sensorik, mess- und prüftechnische Verfahren (17)
- 1.8 Umweltanalytik (12)
- 6.1 Oberflächen- und Dünnschichtanalyse (12)
- P Präsident (12)
- 6.3 Strukturanalytik (11)
Paper des Monats
- ja (4)
Eingeladener Vortrag
- nein (71)
Flow cytometry-based immunoassays are valuable in biomedical research and clinical applications due to their high throughput and multianalyte capability, but their adoption in areas such as food safety and environmental monitoring is limited by long assay times and complex workflows. Rapid, simplified bead-based cytometric immunoassays are needed to make these methods viable for point-of-need applications, especially with the increasing accessibility of miniaturized cytometers. This work introduces superparamagnetic hybrid polystyrene-silica core−shell microparticles as promising alternatives to conventional polymer beads in competitive cytometric immunoassays. These beads, featuring high specificity, sensitivity, and excellent handling capabilities via magnetic separation, were evaluated with three different antibodies and binding methods, showing variations in signal intensity based on the antibody and its attachment method. The optimal performance was achieved through a secondary antibody binding approach, providing strong and consistent signals with minimal uncertainty. The optimized protocol made it possible to achieve a detection limit of 0.025 nM in a total assay time of only 15 min and was successfully used to detect ochratoxin A (OTA) in raw flour samples. This work highlights the potential of these beads as versatile tools for flow cytometry-based immunoassays, with significant implications for food safety, animal health,
environmental monitoring, and clinical diagnostics.
ABSTRACT: Microorganisms often live in habitats characterized by fluid flow, and their adhesion to surfaces in industrial systems or clinical settings may lead to pipe clogging, microbially influenced corrosion, material deterioration, food spoilage, infections, and human illness. Here, a novel microfluidic platform was developed to investigate biofilm formation under precisely controlled (i) cell concentration, (ii) temperature, and (iii) flow conditions. The developed platform central unit is a single-channel microfluidic flow cell designed to ensure ultrahomogeneous flow and condition in its central area, where features, e.g., with trapping properties, can be incorporated. In comparison to static and macroflow chamber assays for biofilm studies, microfluidic chips allow in situ monitoring of biofilm formation under various flow regimes and have better environment control and smaller sample requirements.
Flow simulations and experiments with fluorescent particles were used to simulate bacteria flow in the platform cell for calculating flow velocity and direction at the microscale level. The combination of flow analysis and fluorescent strain injection in the cell showed that microtraps placed at the center of the channel were efficient in capturing bacteria at determined positions and to study how flow conditions, especially microvortices, can affect biofilm formation. The microfluidic platform exhibited improved performances in terms of homogeneity and robustness for in vitro biofilm formation. We anticipate the presented platform to be suitable for broad, versatile, and high-throughput biofilm studies at the microscale level.
In addition to sensitivity, selectivity, and portability, chemical sensing systems must generate reliable signals and offer modular configurability to address various small molecule targets, particularly in environmental applications. We present a versatile, modular strategy utilizing ratiometric molecularly imprinted particle probes based on BODIPY indicators and dyes for recognition and internal referencing. Our approach employs polystyrene core particles doped with a red fluorescent BODIPY as an internal standard, providing built-in reference for environmental influences. A molecularly imprinted polymer (MIP) recognition shell, incorporating a green-fluorescent BODIPY indicator monomer with a thiourea binding site for carboxylate containing analytes, is grafted from the core particles in the presence of the analyte as the template. The dual-fluorescent MIP probe detects fexofenadine as the model analyte with a change in green emission signal referenced against a stable red signal, achieving a detection limit of 0.13 μM and a broad dynamic range from 0.16 μM to 1.2 mM, with good discrimination against other antibiotics in acetonitrile. By selecting a versatile dye scaffold and recognition element, this approach can be extended to other carboxylate-containing analytes and/or wavelength combinations, potentially serving as a robust multiplexing platform.
This dataset accompanies the following publication:
Hülagü, D., Tobias, C., Dao, R., Komarov, P., Rurack, K., Hodoroaba, V.-D., Towards 3D determination of the surface roughness of core-shell microparticles as a routine quality control procedure by scanning electron microscopy. Sci.Rep, 14, 17936 (2024), https://doi.org/10.1038/s41598-024-68797-7.
It contains SEM and AFM-in-SEM images of polystyrene (PS) core particles, polystyrene-iron oxide (PS/Fe3O4) core-shell particles, and polystyrene-iron oxide-silica (PS/Fe3O4/SiO2) core-shell-shell particles. Please refer to the publication and its supporting information for more details on the acquisition and contents of the dataset, as well as the GitHub repository at https://github.Com/denizhulagu/roughness-analysis-by-electron-microscopy.
The investigated particles were produced at BAM laboratories as previously described in:
Hülagü, D. et al. Generalized analysis approach of the profile roughness by electron microscopy with the example of hierarchically grown polystyrene–iron oxide–silica core–shell–shell particles. Adv. Eng. Mater. 24, 2101344, https://doi.org/10.1002/adem.202101344 (2022).
Tobias, C., Climent, E., Gawlitza, K. & Rurack, K. Polystyrene microparticles with convergently grown mesoporous silica shells as a promising tool for multiplexed bioanalytical assays. ACS Appl. Mater. Interfaces 13, 207, https://dx.doi.org/10.1021/acsami.0c17940 (2020).
AbstractRecently, we have developed an algorithm to quantitatively evaluate the roughness of spherical microparticles using scanning electron microscopy (SEM) images. The algorithm calculates the root-mean-squared profile roughness (RMS-RQ) of a single particle by analyzing the particle’s boundary. The information extracted from a single SEM image yields however only two-dimensional (2D) profile roughness data from the horizontal plane of a particle. The present study offers a practical procedure and the necessary software tools to gain quasi three-dimensional (3D) information from 2D particle contours recorded at different particle inclinations by tilting the sample (stage). This new approach was tested on a set of polystyrene core-iron oxide shell-silica shell particles as few micrometer-sized beads with different (tailored) surface roughness, providing the proof of principle that validates the applicability of the proposed method. SEM images of these particles were analyzed by the latest version of the developed algorithm, which allows to determine the analysis of particles in terms of roughness both within a batch and across the batches as a routine quality control procedure. A separate set of particles has been analyzed by atomic force microscopy (AFM) as a powerful complementary surface analysis technique integrated into SEM, and the roughness results have been compared.
Guaranteeing safety and security of citizens requires a significant effort and innovative tools from national and international agencies and governments, especially when it comes to the field of explosives detection. The need to detect Improvised Explosive Devices (IEDs) and Home-made Explosives (HMEs) at a point of suspicion, has grown rapidly due to the ease with which the precursors can be obtained and the reagents synthesised. The limited availability of immunoanalytical tools for HME detection presents an opportunity for the development of new devices, which enable a rapid detection and recognise the target analyte with high specificity and sensitivity. In this work, we introduce an optical biosensor for highly specific and sensitive HME detection. The immunoassay system is placed in a hydrogel environment permeable to the analyte and transparent to light interrogating the fluorescently labelled antibodies. The readout of the immunoanalytical system is realized with Supercritical Angle Fluorescence (SAF), an advanced microscopy technique. To accomplish this, we made use of recent, commercial high resolution (< 22 µm) Liquid Crystal Display 3D printers to fabricate a parabolic optical element with high refractive index (RI>1.5) and transmission values (>90%) from photo-resin. Aiming at a new generation of sensors, which not only can meet the requirements of trace detection, but can also be used for substance identification, the combination of immunoanalytical recognition with SAF detection offers a modularity and versatility that is principally well suitable for the measurements of target analytes at trace levels.
Ensuring the purity of air and water is essential for the overall well-being of life on earth and the sustainability of the planet's diverse ecosystems. To achieve the goal of zero pollution, as outlined in the 2020 European Green Deal by the European Commission,[1] significant efforts are in progress. A key aspect of this commitment involves advancing more efficient and economically viable methods for treating wastewater. This includes the systematic monitoring of harmful pollutants such as heavy metals, microplastics, pesticides, and pharmaceuticals.
One example is the presence of the anti-inflammatory drug diclofenac in water systems, primarily originating from its use as a gel or lotion for joint pain treatment. Diclofenac contamination in surface waters has been detected at approximately 10 μg L-1 (0.03 μM)[2] which is not solely due to widespread usage but also because of the drug's resistance to microbial degradation. Conventional wastewater treatment plants (WWTPs), which rely on biodegradation, sludge sorption, ozone oxidation, and powdered activated carbon treatment, struggle to efficiently remove diclofenac from wastewater.[3],[4] For instance, to enable WWTPs to efficiently monitor and optimize their processes, it would be advantageous to develop on-site detection and extraction methods for persistent pharmaceutical residues in aqueous samples.
In this work, a sol-gel process was used to prepare Nile blue-doped silica nanoparticles (dSiO2-NPs) with a diameter of ca. 30 nm that were further functionalized to enable reversible-addition-fragmentation chain-transfer (RAFT) polymerization. To achieve fluorescence detection, a fluorescent monomer was used as a probe for diclofenac in ethyl acetate, generating stable complexes through hydrogen bond formation. The diclofenac/fluorescent monomer complexes were imprinted into thin molecularly imprinted polymer (MIP) shells on the surface of the dSiO2-NPs. Thus, the MIP binding behaviour could be easily evaluated by fluorescence titrations to monitor the spectral changes upon addition of the analyte. Doping the core substrate with Nile blue generates effective dual fluorescent signal transduction. This approach does not solely depend on a single fluorescence emission band in response to analyte recognition. Instead, it enables the fluorescent core to function as an internal reference, minimizing analyte-independent factors such as background fluorescence, instrumental fluctuation, and operational parameters.[5] Rebinding studies showed that the MIP particles have excellent selectivity towards the imprinted template and good discrimination against the competitor ibuprofen, with a discrimination factor of 2.5. Additionally, the limit of detection was determined to be 0.6 μM. Thus, with further optimization of the MIP, there is potential for the development of a MIP-based biphasic extract-&-detect fluorescence assay for simple, sensitive and specific sensing of diclofenac in aqueous samples down to the required concentrations of 0.03 μM.
Per- and polyfluoroalkyl substances (PFAS) represent a class of synthetic organofluorine chemicals extensively utilized in the manufacturing of various materials such as firefighting foams, adhesives, and stain- and oil-resistant coatings. In recent years, PFAS have been considered as emerging environmental contaminants, with particular focus on perfluoroalkyl carboxylic acids (PFCAs), the most prevalent type among PFAS. PFCAs are characterized by a fully fluorinated carbon backbone and a charged carboxylic acid headgroup. Notably, they have been designated as Substances of Very High Concern and added to the REACH Candidate List due to their persistence in the environment, non-biodegradability and toxicological effects.
Conventional techniques for the analysis of PFCA, such as GC-MS, HRMS and HPLC-based methods, are laborious, not portable, costly and require skilled personnel. In contrast, fluorescence assays can be designed as easy-to-operate, portable and cost-effective methods with high sensitivity and fast response, especially when analyte binding leads to a specific increase of a probe’s emission. Integration of such probes with a carrier platform and a miniaturized optofluidic device affords a promising alternative for PFCA monitoring.
Here, a novel guanidine BODIPY fluorescent indicator monomer has been synthesized, characterized, and incorporated into a molecularly imprinted polymer (MIP) for the specific detection of perfluorooctanoic acid (PFOA). The MIP layer was formed on tris(bipyridine)ruthenium(II) chloride doped silica core particles for optical internal reference and calibration-free assays. Such system allows selective and reliable detection of PFCA from surface water samples, with minimum interference by competitors, matrix effects and other factors. Integration of the assay into an opto-microfluidic setup resulted in a miniaturized and easy-to-operate detection system allowing for micromolar detection of PFOA in less than 15 minutes from surface water sample.
Optical biosensors often show remarkable performance and can be configured in many ways for sensitive, selective, and rapid measurements. However, the high-quality and advanced optical assemblies required to read out the sensor signals, for example, Total Internal Reflection Fluorescence (TIRF) or Supercritical Angle Fluorescence (SAF) microscopy, which necessitate complex and expensive optical elements. Particularly in optical method development, researchers or developers are often confronted with limitations because conventional manufacturing processes for optical elements can be restrictive in terms of design, material, time, and cost. Modern and high-resolution 3D printing techniques make it possible to overcome these challenges and enable the fabrication of individualized and personalized free-form optical components, which can reduce costs and significantly shorten the prototyping timeline—from months to hours. In this work, we use a modern, high-resolution (< 22 µm) commercial Liquid Crystal Display (LCD)-based 3D printer, for which we spectroscopically and physically characterized commercial photo-resins printable with the LCD technique in the first step (Figure 1). The aim was not only to produce a printed element with a high surface quality that mitigates the inner filter effects caused by attenuation (high optical density (OD) due to reflection and scattering), but also to select a material with a high refractive index (RI>1.5) and high transmission values (>90% transmittance) in the visible to near-infrared spectral range (approx. 450 – 900 nm) that exhibits little or no autofluorescence. Using a selection of suitable resins, lenses and free-form optical elements were manufactured for comparison with standard glass or plastic counterparts.
Faecal contaminants in water are considered serious threats for human health, due to the presence of viruses, bacteria and other harmful microorganisms.1 Urobilin (UB) is a well-known faecal pigment and can be used as a marker for faecal matter in water.2 UB is commonly present in the urine of all mammals as the catabolic end product of bilirubin degradation.2 As the only simple chemical approach to its detection, Schlesinger’s test is usually used to enhance the weak fluorescence of UB in alcoholic media by complexation with Zinc.2, 3 The major limitation of this method is the only weak enhancement of the intrinsically weak UB fluorescence in aqueous media.3 This work presents an approach to introduce different Zn salts for improved fluorescence response, where we found a clear dependence of the fluorescence yield of UB-Zn(II) complexes on the counterion of the salt in water. By employing a combination of fluorescence parameters like transition energy, fluorescence intensity, and fluorescence lifetime, a photophysical understanding of the structure and conformation of the UB-Zn(II) complexes responsible for the fluorescence enhancement in water could be gained. The possibilities of developing a sensitive analytical method based on the acquired understanding are also discussed.