1 Analytische Chemie; Referenzmaterialien
Filtern
Dokumenttyp
- Zeitschriftenartikel (750)
- Vortrag (679)
- Posterpräsentation (558)
- Beitrag zu einem Tagungsband (55)
- Sonstiges (30)
- Buchkapitel (13)
- Forschungsbericht (10)
- Dissertation (8)
- Tagungsband (Herausgeberschaft für den kompletten Band) (5)
- Beitrag zu einem Sammelband (4)
Sprache
- Englisch (1634)
- Deutsch (474)
- Mehrsprachig (7)
- Französisch (1)
Schlagworte
- Fluorescence (186)
- Nanoparticle (102)
- Quantum yield (81)
- LIBS (71)
- Prozessanalytik (62)
- NIR (61)
- ICP-MS (53)
- Dye (52)
- Immunoassay (49)
- Upconversion (49)
Organisationseinheit der BAM
- 1 Analytische Chemie; Referenzmaterialien (2116)
- 1.4 Prozessanalytik (467)
- 1.2 Biophotonik (364)
- 1.1 Anorganische Spurenanalytik (335)
- 1.9 Chemische und optische Sensorik (309)
- 1.8 Umweltanalytik (282)
- 1.7 Organische Spuren- und Lebensmittelanalytik (204)
- 1.0 Abteilungsleitung und andere (167)
- P Präsidium (119)
- 6 Materialchemie (114)
Mycotoxigenic fungal pathogens Fusarium and Alternaria are a leading cause of loss in cereal production. On wheat-ears, they are confronted by bacterial antagonists such as pseudomonads.
Studies on these groups’ interactions often neglect the infection process’s temporal aspects and the associated priority effects. In the present study, the focus was on how the first colonizer affects the subsequent ones. In a climate chamber experiment, wheat-ears were successively inoculated with two different strains (Alternaria enuissima At625, Fusarium graminearum Fg23, or Pseudomonas simiae Ps9).
Over three weeks, microbial abundances and mycotoxin concentrations were analyzed and visualized via Self Organizing Maps with Sammon Mapping (SOM-SM). All three strains revealed different characteristics and strategies to deal with co-inoculation: Fg23, as the first colonizer, suppressed the establishment of At625 and Ps9. Nevertheless, primary inoculation of At625 reduced all of the Fusarium toxins and stopped Ps9 from establishing. Ps9 showed priority effects in delaying and blocking the production of the fungal mycotoxins. The SOM-SM analysis visualized the competitive strengths: Fg23 ranked first, At625 second, Ps9 third. Our findings of species-specific priority effects in a natural environment and the role of the mycotoxins involved are relevant for developing biocontrol strategies.
The Protocol Gap
(2021)
Although peer review is considered one of the main pillars of modern science, experimental methods and protocols seem to be not a rigorous subject of this process in many papers. Commercial equipment, test kits, labeling kits, previously published concepts, and standard protocols are often considered to be not worth a detailed description or validation. Even more disturbing is the extremely biased citation behavior in this context, which sometimes leads to surrogate citations to avoid low-impact journals, preprints, or to indicate traditional practices. This article describes some of these surprising habits and suggests some measures to avoid the most unpleasant effects, which in the long term may undermine the credibility of science as a whole.
The discussion of the surface-enhanced Raman scattering (SERS) spectra of p-aminothiophenol (PATP) and of ist photocatalytic reaction product 4,4′-dimercaptoazobenzene (DMAB) is important for understanding plasmon-supported spectroscopy and catalysis. Here, SERS spectra indicate that DMAB forms also in a nonphotocatalytic reaction on silver nanoparticles. Spectra measured at low pH, in the presence of the acids HCl, H2SO4, HNO3, and H3PO4, show that DMAB is reduced to PATP when both protons and chloride ions are present. Moreover, the successful reduction of DMAB in the presence of other, halide and nonhalide, ligands suggests a central role of these species in the reduction. As discussed, the ligands increase the efficiency of hot-electron harvesting. The pH-associated reversibility of the SERS spectrum of PATP is established as an Observation of the DMAB dimer at high pH and of PATP as a product of its hot-electron reduction at low pH, in the presence of the appropriate ligand.
In the DECHEMA Virtual Talks, general aspects of the safety and acceptance of hydrogen technologies were presented. How can trust in new technologies be built when past accidents led to myths and fairy tales? The presentation does away with general prejudices and shows that handling hydrogen is neither more unsafe nor safer than handling other fuel gases. The basis for the safe handling of hydrogen is always a risk analysis.
High spatially resolved quantitative bioimaging of CdSe/ZnS Quantum Dots uptake in two kinds of cells is investigated combining laser ablation inductively coupled plasma mass spectrometry and the spatially resolved analysis of dried pL-droplets from a solution with a known concentration of Quantum Dots. Single cells and dried pL-droplets are morphologically characterized by Atomic Force Microscopy. A number concentration of CdSe/ZnS QDs between 3.5 104 and 48 104 is estimated to be uptaken by several selected single cells, after being incubated in the presence of a QDs suspension added to a standard cell culture medium. Mono-elemental bioimaging at subcellular resolution seems to show a higher number concentration of the CdSe/ZnS QDs in the cytosol around the cell nucleus.
Polycarboxylate ethers (PCEs) are widely used in construction, but the exact nature of their interaction with cement is still debated. Aiming at a better understanding of the role of tricalcium Aluminate (C3A) in cement hydration, we assessed the potential of optical spectroscopy in combination with a water-soluble fluorescent organic reporter dye (S0586) to monitor the early hydration of C3A in the presence of 26 wt% CaSO4.2H2O (C3A26G-S) with and without PCE. As optical methods, steady-state fluorescence and diffuse reflectance (UV–VisDR) spectroscopy were employed. Phase characterization and particle size distribution were performed with in-situ X-ray diffraction (in-situ XRD) and dynamic light scattering (DLS). Our results show that fluorescence and UV–VisDR spectroscopy can be used to monitor the formation of metastable phases by the disaggregation of the dye S0586 in a cement paste as well as changes in ettringite formation. Addition of PCE slowed down the disaggregation of the dye as reflected by the corresponding changes of the dyes absorption and fluorescence. This prolonged induction period is a well-known side effect of PCEs and agrees with previous reported calorimetric studies and the Inhibition of gypsum dissolution observed by in-situ XRD. This demonstrates that fluorescence and UV–VisDR spectroscopy together with a suitable optical probe can provide deeper insights into the influence of PCE on C3A-gypsum hydration which could be e.g., utilized as screening method for comparing the influences
of different types of PCEs.
The demand for miniaturized analytical devices monitoring important parameters in the food and medical industry has increased strongly in the past decades. With fast progress, smart technologies are finding their way into our everyday life. For the future, it is, therefore, a major goal to also link analytical methods with smart technologies to create user-friendly on-site devices. In food industry the monitoring of harmful substances such as dioxins, heavy metals or mycotoxins plays a key role, since the European Commission prescribes legal limits for various food products and beverages. Therefore, companies often have their own laboratories and trained personnel. For one of the most abundant and toxic mycotoxins, Ochratoxin A (OTA) we want to present an electrochemical detection system in which the read-out can be performed with a smartphone connected via Bluetooth to a miniaturized potentiostat. The recognition of OTA is performed with specific antibodies in a competitive assay format. Anti-OTA-antibodies were captured on magnetic beads on which the competitive binding between OTA and an OTA horseradish peroxidase (HRP) tracer was performed. To quantify OTA, the enzymatic reaction of the tracer with 3,3′,5,5′-tetramethylbenzidine (TMB) and H2O2 is employed. Oxidized TMB, which is enzymatically produced by the reduction of H2O2, is quantified by amperometry with screen-printed electrodes in a custom-made flow system. Since it is well-known that oxidized TMB can precipitate on electrode surfaces, we have studied pitfalls of the electrochemical detection of TMB. By cyclic voltammetry we have compared the stability of the electrochemistry of TMB at different electrode materials (gold and carbon) and pH values (pH 1 and pH 4). It was found that a stable response of the electrode could be achieved at pH 1 on gold electrodes. Thus, we applied these reaction conditions for amperometric detection of TMB in the OTA assay. The results of the electrochemical detection method are in good correlation with the photometric detection of TMB. To demonstrate the applicability, we tested our system with OTA-spiked beer and performed the measurement via smartphone.
We demonstrate the potential of time-resolved luminescence spectroscopy for the straightforward assessment and in situ monitoring of the stability of upconversion nanocrystals (UCNPs). Therefore, we prepared hexagonal NaYF4:Yb3+,Er3+ UCNPs with various coatings with a focus on phosphonate ligands of different valency, using different ligand exchange procedures, and studied their dissolution behaviour in phosphate-buffered saline (PBS) dispersions at 20 °C and 37 °C with various analytical methods. The amount of the released UCNPs constituting fluoride ions was quantified by potentiometry using a Fluoride ion-sensitive electrode and particle disintegration was confirmed by transmission electron microscopy studies of the differently aged UCNPs. In parallel, the luminescence features of the UCNPs were measured with special emphasis on the lifetime of the sensitizer emission to demonstrate its suitability as Screening parameter for UCNP stability and changes in particle composition. The excellent correlation between the changes in luminescence lifetime and fluoride concentration highlights the potential of our luminescence lifetime method for UCNP stability screening and thereby indirect monitoring of the release of potentially hazardous fluoride ions during uptake and dissolution in biological systems. Additionally, the developed in situ optical method was used to distinguish the dissolution dynamics of differently sized and differently coated UCNPs.
The absorption and emission properties of organic dyes are generally tuned by altering the substitution pattern. However, tuning the fluorescence lifetimes over a range of several 10 ns while barely affecting the spectral features and maintaining a moderate fluorescence quantum yield is challenging. Such properties are required for lifetime multiplexing and barcoding applications. Here, we show how this can be achieved for the class of fluoranthene dyes, which have substitution-dependent lifetimes between 6 and 33 ns for single wavelength excitation and emission. We explore the substitution-dependent emissive properties in the crystalline solid state that would prevent applications.
Furthermore, by analyzing dye mixtures and embedding the dyes in carboxyfunctionalized 8 μm-sized polystyrene particles, the unprecedented potential of these dyes as labels and encoding fluorophores for time-resolved fluorescence detection techniques is demonstrated.