• Treffer 8 von 18
Zurück zur Trefferliste

Defect Characterization in Plate Models Facilitated by Algorithmic Differentiation

  • In non-destructive testing and structural health monitoring with ultrasonic waves, the quantification of damage in components is one of the main tasks. In many shell-like structures, such as plates, pipes, or laminate components, ultrasonic waves propagate as guided waves. Although guided waves enable the testing of large areas, their multimodal and dispersive properties make it challenging to analyze signals. So, there is a need for more advanced algorithms to handle these properties, especially when reconstructing damage position and geometry. The reconstruction can be formulated as an inverse problem where the measured signals are fitted with a simulative forward model. Due to the small wavelength of ultrasonic waves, classic forward models based on, e.g., the Finite Element Method are computationally intensive. In contrast, the authors use the semi-analytical Scaled Boundary Finite Element Method (SBFEM) to reduce the computational effort. The SBFEM approximates arbitrary long,In non-destructive testing and structural health monitoring with ultrasonic waves, the quantification of damage in components is one of the main tasks. In many shell-like structures, such as plates, pipes, or laminate components, ultrasonic waves propagate as guided waves. Although guided waves enable the testing of large areas, their multimodal and dispersive properties make it challenging to analyze signals. So, there is a need for more advanced algorithms to handle these properties, especially when reconstructing damage position and geometry. The reconstruction can be formulated as an inverse problem where the measured signals are fitted with a simulative forward model. Due to the small wavelength of ultrasonic waves, classic forward models based on, e.g., the Finite Element Method are computationally intensive. In contrast, the authors use the semi-analytical Scaled Boundary Finite Element Method (SBFEM) to reduce the computational effort. The SBFEM approximates arbitrary long, undamaged parts of the structure with only a few degrees of freedom. This contribution summarizes a general inverse procedure based on algorithmic differentiation in combination with the SBFEM. Results are presented for damaged 2D cross-sectional models of waveguides. These results include an analysis of the robustness of the proposed algorithms against noise.zeige mehrzeige weniger

Volltext Dateien herunterladen

  • 000375.pdf
    eng

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar Anzahl der Zugriffe auf dieses Dokument
Metadaten
Autor*innen:Jannis Bulling, B. Jurgelucks, Jens PragerORCiD, A. Walther
Dokumenttyp:Beitrag zu einem Tagungsband
Veröffentlichungsform:Graue Literatur
Sprache:Englisch
Titel des übergeordneten Werkes (Deutsch):Tagungsband zur DAGA 2022
Jahr der Erstveröffentlichung:2022
Organisationseinheit der BAM:8 Zerstörungsfreie Prüfung
8 Zerstörungsfreie Prüfung / 8.4 Akustische und elektromagnetische Verfahren
Jahrgang/Band:2022
Erste Seite:871
Letzte Seite:874
DDC-Klassifikation:Naturwissenschaften und Mathematik / Chemie / Analytische Chemie
Freie Schlagwörter:Algorithmic Differentiation; Inverse Methods; Non-destructive testing; SBFEM; Structural health monitoring
Themenfelder/Aktivitätsfelder der BAM:Chemie und Prozesstechnik
Veranstaltung:DAGA 22
Veranstaltungsort:Stuttgart, Germany
Beginndatum der Veranstaltung:21.03.2022
Enddatum der Veranstaltung:24.03.2022
Verfügbarkeit des Dokuments:Datei im Netzwerk der BAM verfügbar ("Closed Access")
Datum der Freischaltung:14.12.2022
Referierte Publikation:Nein
Einverstanden
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.