• Treffer 3 von 3
Zurück zur Trefferliste

Acoustic emission study of heat-induced cracking in fly ash-based alkali-activated pastes and lightweight mortars

  • Alkali-activated fly ashes have been proposed for various applications where resistance against high temperatures is required, yet several details regarding the response of these materials to heat-exposure need to be clarified. In the present study, heat-induced cracking in fly ash-based alkali-activated pastes and lightweight mortars was analyzed by in-situ acoustic emission (AE) detection during complete heating-cooling cycles (up to ∼1100 °C), augmented by thermogravimetry and ex-situ SEM and XRD analyses. The applicability of the lightweight mortars as passive fire protection coatings was assessed by recording temperature-time curves of mortar-coated steel plates. Cracking during heating was limited and associated exclusively with the dehydration of the materials in the temperature range ∼90–360 °C. However, samples heated to temperatures above ∼600 °C exhibited intense cracking on cooling. This was attributed to differential deformations caused by local sintering and partialAlkali-activated fly ashes have been proposed for various applications where resistance against high temperatures is required, yet several details regarding the response of these materials to heat-exposure need to be clarified. In the present study, heat-induced cracking in fly ash-based alkali-activated pastes and lightweight mortars was analyzed by in-situ acoustic emission (AE) detection during complete heating-cooling cycles (up to ∼1100 °C), augmented by thermogravimetry and ex-situ SEM and XRD analyses. The applicability of the lightweight mortars as passive fire protection coatings was assessed by recording temperature-time curves of mortar-coated steel plates. Cracking during heating was limited and associated exclusively with the dehydration of the materials in the temperature range ∼90–360 °C. However, samples heated to temperatures above ∼600 °C exhibited intense cracking on cooling. This was attributed to differential deformations caused by local sintering and partial melting at the glass transition temperature, and subsequent quenching on cooling.zeige mehrzeige weniger

Volltext Dateien herunterladen

  • Carabba_et_al_2019.pdf
    eng

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar Anzahl der Zugriffe auf dieses Dokument
Metadaten
Autor*innen:L. Carabba, Stephan PirskawetzORCiD, Simone KrügerORCiD, Gregor GluthORCiD, M.C. Bignozzi
Dokumenttyp:Zeitschriftenartikel
Veröffentlichungsform:Verlagsliteratur
Sprache:Englisch
Titel des übergeordneten Werkes (Englisch):Cement and Concrete Composites
Jahr der Erstveröffentlichung:2019
Organisationseinheit der BAM:7 Bauwerkssicherheit
7 Bauwerkssicherheit / 7.1 Baustoffe
7 Bauwerkssicherheit / 7.4 Baustofftechnologie
7 Bauwerkssicherheit / 7.5 Technische Eigenschaften von Polymerwerkstoffen
Verlag:Elsevier
Jahrgang/Band:102
Erste Seite:145
Letzte Seite:156
DDC-Klassifikation:Technik, Medizin, angewandte Wissenschaften / Ingenieurwissenschaften / Ingenieurbau
Freie Schlagwörter:Acoustic emission; Alkali-activated materials; Cracking; Fire proofing; Heat resistance
Themenfelder/Aktivitätsfelder der BAM:Infrastruktur
Infrastruktur / Fire Science
DOI:10.1016/j.cemconcomp.2019.04.013
ISSN:0958-9465
ISSN:1873-393X
Verfügbarkeit des Dokuments:Datei im Netzwerk der BAM verfügbar ("Closed Access")
Datum der Freischaltung:08.05.2019
Referierte Publikation:Ja
Datum der Eintragung als referierte Publikation:04.07.2019
Einverstanden
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.