Verlagsliteratur
Filtern
Erscheinungsjahr
Dokumenttyp
- Zeitschriftenartikel (9909)
- Beitrag zu einem Sammelband (2009)
- Beitrag zu einem Tagungsband (1844)
- Buchkapitel (246)
- Forschungsbericht (100)
- Sonstiges (73)
- Monografie (28)
- Dissertation (19)
- Zeitschriftenheft (Herausgeberschaft für das komplette Heft) (15)
- Sammelband (Herausgeberschaft für den kompletten Band) (13)
Sprache
- Englisch (8416)
- Deutsch (5723)
- Mehrsprachig (75)
- Französisch (19)
- Russisch (16)
- Ungarisch (9)
- Japanisch (5)
- Polnisch (4)
- Italienisch (3)
- Niederländisch (3)
Schlagworte
- Concrete (139)
- Fluorescence (129)
- Corrosion (105)
- Radar (104)
- Non-destructive testing (102)
- Simulation (94)
- Korrosion (90)
- XPS (89)
- Zerstörungsfreie Prüfung (85)
- Beton (82)
Organisationseinheit der BAM
- 1 Analytische Chemie; Referenzmaterialien (922)
- 7 Bauwerkssicherheit (773)
- 8 Zerstörungsfreie Prüfung (749)
- 6 Materialschutz und Oberflächentechnik (639)
- 5 Werkstofftechnik (402)
- 4 Material und Umwelt (384)
- 9 Komponentensicherheit (364)
- 1.3 Strukturanalytik (268)
- 3 Gefahrgutumschließungen (242)
- 2 Chemische Sicherheitstechnik (220)
The formation of transformation products (TPs) from contaminants and residues is becoming an increasing focus of scientific community. All organic compounds can form different TPs, thus demonstrating the complexity and interdisciplinarity of this topic. The properties of TPs could stand in relation to the unchanged substance or be more harmful and persistent. To get important information about the generated TPs, methods are needed to simulate natural and manmade transformation processes. Current tools are based on metabolism studies, photochemical methods, electrochemical methods, and Fenton's reagent. Finally, most transformation processes are based on redox reactions. This review aims to compare these methods for structurally different compounds. The groups of pesticides, pharmaceuticals, brominated flame retardants, and mycotoxins were selected as important residues/contaminants relating to their worldwide occurrence and impact to health, food, and environmental safety issues. Thus, there is an increasing need for investigation of transformation processes and identification of TPs by fast and reliable methods.
Elastomers are usually reinforced by large amount of fillers like carbon black (CB) or silica in order to improve various mechanical properties, such as Young’s modulus, hardness, tear resistance, abrasion resistance, and gas barrier properties. In recent years, such improvements were also obtained by using nanoparticles at significantly lower filler loadings. Graphene is a twodimensional (2D) sheet of a thickness in the atomic scale, composed of a honeycomb structure of sp2 carbon atoms. Besides significant mechanical reinforcement, graphene harbors the potential to be used as a multifunctional filler, as it can also increase the conductivity and weathering stability of elastomer matrices. Ultraviolet (UV) irradiation and oxidative agents can lead to the degradation of elastomers due to a multistep photooxidative process, including the formation of radicals. Carbon-based fillers have an influence on these reactions, as they can absorb UV radiation and act as radical scavengers.
This chapter summarizes the results of our larger project on multilayer graphene (MLG)/elastomer nanocomposites, previously published, which present a comprehensive case study of MLG as a multifunctional nanofiller in elastomer/graphene nanocomposites. Different elastomeric matrices are compared in order to demonstrate the outstanding impact of MLG as a general benefit. The dependency of this effect on concentration is discussed in detail. Taking into account the key role of dispersion, different mixing procedures are compared, evaluating a facile implementation of graphene nanocomposites into conventional rubber processing. Finally, the most probable commercial uses of MLG nanofillers in combination with conventional CB are studied. The nanocomposites were prepared in the kg scale in order to obtain enough specimens to investigate various properties of the uncured and vulcanized rubbers at the highest quality level, including rheology, curing, morphology, several mechanical properties, abrasion, conductivity, gas permeation, burning behavior, and weathering stability. The structure property relationships are asserted and questioned, for example, by investigating the radical scavenging ability or aspect ratio of the MLG. This chapter illustrates the state of the art of graphene/rubber nanocomposites targeted for commercial mass applications.
The quality of components made by laser beam melting (LBM) additive manufacturing is naturally influenced by the quality of the powder bed. A packing density <1 and porosity inside the powder particles lead to intrinsic voids in the powder bed. Since the packing density is determined by the particle size and shape distribution, the determination of these properties is of significant interest to assess the printing process. In this work, the size and shape distribution, the amount of the particle’s intrinsic porosity, as well as the packing density of micrometric powder used for LBM, have been investigated by means of synchrotron X-ray computed tomography (CT). Two different powder batches were investigated: Ti–6Al–4V produced by plasma atomization and stainless steel 316L produced by gas atomization. Plasma atomization particles were observed to be more spherical in terms of the mean anisotropy compared to particles produced by gas atomization. The two kinds of particles were comparable in size according to the equivalent diameter. The packing density was lower (i.e., the powder bed contained more voids in between particles) for the Ti–6Al–4V particles. The comparison of the tomographic results with laser diffraction, as another particle size measurement technique, proved to be in agreement.
Editorial
(2019)
Dear Readers, a new year started for all of us (as I write these lines, possibly it was already some time ago when these lines are finally available) and this is the time for the so-called New Year’s resolutions. Setting goals and changing our behavior as well in a private as in a professional context.
For Scientists the resolutions may comprise tasks like finalizing a longago started publication, picking up the loose ends of an application for funding or just bringing the running projects in a greater structure.
Knowledge of the compressional and thermal behaviour of metals and alloys is of a high fundamental and applied value. In this work, we studied the behaviour of Ir, Rh, and their fcc-structured alloys, Ir0.42Rh0.58 and Ir0.26Os0.05Pt0.31Rh0.23Ru0.15, up to 70 GPa using the diamond anvil cell technique with synchrotron X-ray diffraction. We found that all these materials are structurally stable upon room-temperature hydrostatic compression in the whole pressure interval, as well as upon heating to 2273 K both at ambient and high pressure. Rh, Ir0.42Rh0.58 and Ir0.26Os0.05Pt0.31Rh0.23Ru0.15 were investigated under static compression for the first time. According to our data, the compressibility of Ir, Rh, fcc–Ir0.42Rh0.58, and fcc Ir0.26Os0.05Pt0.31Rh0.23Ru0.15, can be described with the 3rd order Birch-Murnaghan equation of state with the following parameters: V0 = 14.14(6) Å3·atom−1, B0 = 341(10) GPa, and B0' = 4.7(3); V0 = 13.73(7) Å3·atom−1, B0 = 301(9) GPa, and B0' = 3.1(2); V0 = 13.90(8) Å3·atom−1, B0 = 317(17) GPa, and B0' = 6.0(5); V0 = 14.16(9) Å3·atom−1, B0 = 300(22) GPa, B0' = 6(1), where V0 is the unit cell volume, B0 and B0' – are the bulk modulus and its pressure derivative.
For the first time, lonsdaleite-rich impact diamonds from one of the largest Popigai impact crater (Northern Siberia) with a high concentration of structural defects are investigated under hydrostatic compression up to 25 GPa. It is found that, depending on the nature of a sample, the bulk modulus for lonsdaleite experimentally obtained by X-ray diffraction in diamond-anvil cells is systematically lower and equal to 93.3−100.5% of the average values of the bulk moduli of a diamond matrix. Density functional theory calculations reveal possible coexistence of a number of diamond/lonsdaleite and twin diamond biphases. Among the different mutual configurations, separate inclusions of one lonsdaleite (001) plane per four diamond (111) demonstrate the lowest energy per carbon atom, suggesting a favorable formation of single-layer lonsdaleite (001) fragments inserted in the diamond matrix. Calculated formation energies and experimental diamond (311) and lonsdaleite (331) powder X-ray diffraction patterns indicate that all biphases could be formed
under high-temperature, high-pressure conditions. Following the equation of states, the bulk modulus of the diamond (111)/lonsdaleite (001) biphase is the largest one among all bulk moduli, including pristine diamond and lonsdaleite.
Active thermography is a well suited non-destructive testing method for the challenging inspection of wind rotor blades. Since the GFRP structures are up to some centimetres thick, long pulse heating is required to provide an appropriate energy input into the structure. So far, no best practice exists to guarantee a reliable detection of deep-lying flaws. In this work, a step wedge specimen having a maximum thickness of 34mm is systematically investigated by experiment and well-matched simulations to assess the influence of the experimental parameters, like the absorbed energy, on thermal contrasts. Finally, a scheme to conduct full-scale test of a wind rotor blade in less than three hours is proposed.
Due to their excellent creep resistance and good oxidation resistance, 9–12% Cr ferritic–martensitic stainless steels are widely used as high temperature construction materials in power plants. However, the mutual combination of different loadings (e.g., creep and fatigue), due to a “flexible” operation of power plants, may seriously reduce the lifetimes of the respective components. In the present study, low cycle fatigue (LCF) and relaxation fatigue (RF) tests performed on grade P92 helped to understand the behavior of ferritic–martensitic steels under a combined loading. The softening and lifetime behavior strongly depend on the temperature and total strain range. Especially at small strain amplitudes, the lifetime is seriously reduced when adding a hold time which indicates the importance of considering technically relevant small strains.
Das Ziel dieses Kapitels besteht darin, die Rolle von Konformitätsbewertung für die Erhöhung der Cybersicherheit von Produkten, Dienstleistungen und Prozessen zu betrachten. Dazu wird der Begriff Cybersicherheit beleuchtet sowie ausgewählte Cybersicherheitsnormen kurz vorgestellt. Im Folgenden wird der regulative europäische Rahmen für die Konformitätsbewertung aus ordnungspolitischer Sicht sowie der aktuelle Verordnungsentwurf zum Cybersecurity Act dargestellt und kritsch beleuchtet.