7.1 Baustoffe
Filtern
Dokumenttyp
- Vortrag (95)
- Beitrag zu einem Tagungsband (85)
- Zeitschriftenartikel (64)
- Posterpräsentation (39)
- Buchkapitel (8)
- Beitrag zu einem Sammelband (8)
- Dissertation (2)
- Sonstiges (2)
- Forschungsbericht (1)
Sprache
- Englisch (172)
- Deutsch (130)
- Mehrsprachig (2)
Schlagworte
- Baustoffe (28)
- AKR (16)
- Alkali-Kieselsäure-Reaktion (14)
- UHPC (14)
- Building Materials (13)
- Building materials (13)
- NMR (13)
- Concrete (12)
- Fatigue (12)
- Dauerhaftigkeit (10)
Organisationseinheit der BAM
- 7 Bauwerkssicherheit (304)
- 7.1 Baustoffe (304)
- 8 Zerstörungsfreie Prüfung (50)
- 7.4 Baustofftechnologie (39)
- 8.5 Mikro-ZfP (29)
- 7.2 Ingenieurbau (13)
- 8.2 Zerstörungsfreie Prüfmethoden für das Bauwesen (12)
- 4 Material und Umwelt (10)
- 8.1 Sensorik, mess- und prüftechnische Verfahren (9)
- 7.5 Technische Eigenschaften von Polymerwerkstoffen (8)
Composite Facade Elements with Self-Cleaning Surface made of Ultra-High-Performance Concrete (UHPC)
(2020)
In the framework of the European project H-House various concrete façade elements were developed with the aim to ensure a long service life by combining a very durable material with self-cleaning properties. The façade elements presented are made of a shell of UHPC filled with blocks of aerated autoclaved concrete as insulating material. Self-cleaning properties were realized amongst others by imprinting a microstructure into the surface during casting. The paper focuses on selected technological aspects of the manufacturing process of prototypes which had to be performed in two concreting sections. Furthermore the challenges faced when upscaling the self-cleaning properties are addressed and the strategy to assess the self-cleaning properties by measuring the contact and the roll-off angel is presented. The results show that a successfull upscalaing process requires detailed planning and that the best results can often be achieved with a moderate work effort or material use.
Composite Facade Elements with Self-Cleaning Surface made of Ultra-High-Performance Concrete (UHPC)
(2020)
In the framework of the European project H-House various concrete façade elements were developed with the aim to ensure a long service life by combining a very durable material with self-cleaning properties. The façade elements presented are made of a shell of UHPC filled with blocks of aerated autoclaved concrete as insulating material. Self-cleaning properties were realized amongst others by imprinting a microstructure into the surface during casting. The paper focuses on selected technological aspects of the manufacturing process of prototypes which had to be performed in two concreting sections. Furthermore the challenges faced when upscaling the self-cleaning properties are addressed and the strategy to assess the self-cleaning properties by measuring the contact and the roll-off angel is presented. The results show that a successfull upscalaing process requires detailed planning and that the best results can often be achieved with a moderate work effort or material use.
SENSO JOINT - An innovative sensor system for a sustainable joint design of concrete pavements
(2020)
Inacceptable capability and durability of joint sealing systems but also inadequate traffic performance (noise emission; overrolling comfort) up to traffic safety aspects reflect the still enormous demand for data-based description of concrete pavements performance under heavy loading conditions. Especially the deformation behavior of concrete pavement slabs in the joint region in consideration of new pavement construction types and improved concrete mixtures meanwhile established but also under the steeply rising traffic loads is not sufficiently explored. To create a data basis for advanced design rules, evaluation methods and product standards - and with it to improve quality, durability and finally sustainability of pavements - an innovative 3-D sensor system SENSO JOINT adapted to german roadworking requirements and suitable for heavy-duty operating conditions was developed. The contribution introduced describes the development of an extensive technical solution based on the analysis of decisive loads, interactions and boundary conditions. Based on calibration data, results of laboratory testing and finally field-testing on different concrete pavement construction types the outcome of a multi-level evaluation process shall introduce the potential of the new sensor system.
Since ancient times, marble has been the preferred material for monuments, sculptures, Ornaments and architecture. Though the stone is often a Chosen material, long-term exposure of marble results in cumulative deterioration of the rock fabric. The rate and extent of deterioration depends on the rock fabric and the climatic conditions. Besides the thermal vulnerability of marble, a combination of thermal and hygric fluctuation accelerates the deterioration process. The weathering sensitivity of marbles can be characterised by the irreversible length change of samples after heating under thermohygric conditions as residual strain. This residual strain is a non-reversible deterioration and caused by microcracking induced by a pronounced anisotropy of the thermal dilatation coefficient of calcite.
In brittle materials like marble, cracking and crack growth or friction on crack surfaces are accompanied by release of acoustic waves. The analysis of these acoustic emissions can give a deeper insight into the deterioration mechanism of marble.
In this study, acoustic emissions of thermohygric treated marble were analysed and correlated with ultrasonic velocities, thermal dilatation and residual strains. Therefore, different types of calcitic marble were cyclically heated from 20 °C to 90 °C and after equilibration of the samples cooled down again to 20 °C. While the first cycles were performed under dry conditions, the following were
executed in a humid environment. The analysis of acoustic emissions enables one to determine when cracking occurs during the thermal treatment. It is also possible to differentiate microcracking from internal friction. Furthermore, the evolution of Deterioration can be estimated based on ultrasonic velocities. The combination of acoustic Methods and strain measurement gives an insight into the disintegration mechanism and Supports the development of prevention strategies.
Inacceptable capability and durability of joint sealing systems but also inadequate traffic performance (noise emission; overrolling comfort) up to traffic safety aspects reflect the still enormous demand for data-based description of concrete pavements performance under heavy loading conditions. Especially the deformation behavior of concrete pavement slabs in the joint region in consideration of new pavement construction types and improved concrete mixtures meanwhile established but also under the steeply rising traffic loads is not sufficiently explored. To create a data basis for advanced design rules, evaluation methods and product standards - and with it to improve quality, durability and finally sustainability of pavements - an innovative 3-D sensor system SENSO JOINT adapted to german roadworking requirements and suitable for heavy-duty operating conditions was developed. The contribution introduced describes the development of an extensive technical solution based on the analysis of decisive loads, interactions and boundary conditions. Based on calibration data, results of laboratory testing and finally field-testing on different concrete pavement construction types the outcome of a multi-level evaluation process shall introduce the potential of the new sensor system.
Die geringe Zugfestigkeit von zementgebundenen Materialien kann durch die Zugabe von Fasern maßgeblich verbessert werden. Ziel eines gemeinsamen Verbundprojekts mit einem Industriepartner war die Erhöhung der Leistungsfähigkeit von kurzen Polymer- und Carbonfasern durch eine Verbesserung des Verbundes zwischen Faseroberfläche und Zementsteinmatrix.
Von der IONYS AG wurde dazu eine spezielle Funktionalisierung entwickelt, die über eine Hydrophilisierung der Faseroberfläche eine chemische Anbindung an die Zementsteinmatrix gewährleistet. Aufgabe der BAM war es, die Effizienz der neuen Beschichtung bezüglich der Erhöhung der Nachrissbiegezugfestigkeit und der Reduzierung der Schwindrissbildung während der Erhärtungsphase zu quantifizieren. Die Ergebnisse zeigen, dass die Funktionalisierung die Neigung zur Schwindrissbildung für die Carbonfasern und in noch stärkerem Maße für die Polymerfasern reduziert.
Eine Erhöhung der Nachrissbiegezugfestigkeit konnte dagegen nur für die deutlich steiferen Carbonfasern nachgewiesen werden.
Composite UHPC facade elements with self-cleaning surface: Aspects of technological manufacturing
(2020)
In the framework of the European collaborative project H-House, which was finished in 2017, large façade elements were developed consisting of a box shaped external shell of ultra-high-performance concrete (UHPC) with a functionalized surface and an insulation of autoclaved aerated concrete (AAC). The exposed concrete of the elements was further refined by adding self-cleaning properties to the surface through imprinting a microstructure in combination with chemical agents directly in the casting process. The paper focuses on selected technological aspects of the manufacturing process of large-scale prototypes. Presented are results of the upscaling process of functionalized surfaces from small specimen up to large UHPC composite facade elements produced for the construction of a demonstrator.
The long-term exposure of marble objects leads to a successive deterioration of the rock fabric and may cause severe damage on cultural heritage objects. The magnitude of disintegration depends on the rock fabric as well as on the climatic conditions. Some types of marble show no considerable damage even if they have been exposed in northern Europe for several decades or centuries. In contrast, other marble varieties are showing severe damage after a few years of weathering. The present study shows that marble decay, along with the initial thermal degradation, is mainly influenced by the hygric and thermo-hygric load, respectively.
The influence of the rock fabric on the resistivity against weathering is also documented. The factors causing marble decay were compared to extensive climate data, which were collected during a scientific project that was started with the aim to develop a covering system for marble sculptures in Berlin. Based on the hygrothermal material properties of the marble and on the climatic conditions, the heat and moisture Transport inside the material and hence the hygrothermal load changes were calculated with a high spatial resolution. The calculations showed that the temperature and moisture fluctuations inside the material are mainly controlled by the dimensions and orientation of the sculptural elements.
The current state of preservation was investigated by two-dimensional ultrasonic tomography. The results show a good correlation to the calculated distribution of the hygrothermal load. Based on this finding, requirements on a protective winter shelter system for the sculptures were defined.
The project results show that in addition to protective covers, regular inspection and maintenance combined with regular cleaning ensures an effective and sustainable protection of marble objects in northern Europe.
Die geringe Zugfestigkeit von zementgebundenen Materialien kann durch die Zugabe von Fasern maßgeblich verbessert werden. Ziel eines gemeinsamen Verbundprojekts mit einem Industriepartner war die Erhöhung der Leistungsfähigkeit von kurzen Polymer- und Carbonfasern durch eine Verbesserung des Verbundes zwischen Faseroberfläche und Zementsteinmatrix.
Von der IONYS AG wurde dazu eine spezielle Funktionalisierung entwickelt, die über eine Hydrophilisierung der Faseroberfläche eine chemische Anbindung an die Zementsteinmatrix gewährleistet. Aufgabe der BAM war es, die Effizienz der neuen Beschichtung bezüglich der Erhöhung der Nachrissbiegezugfestigkeit und der Reduzierung der Schwindrissbildung während der Erhärtungsphase zu quantifizieren. Die Ergebnisse zeigen, dass die Funktionalisierung die Neigung zur Schwindrissbildung für die Carbonfasern und in noch stärkerem Maße für die Polymerfasern reduziert.
Eine Erhöhung der Nachrissbiegezugfestigkeit konnte dagegen nur für die deutlich steiferen Carbonfasern nachgewiesen werden.
Durability Assessment of Structural Sealant Glazing Systems applying a Performance Test Method
(2020)
During the service life of a Structural Sealant Glazing (SSG) facade, its silicone bond is exposed to climatic, chemical, and mechanical loads. While current durability assessment methods schedule separate test programmes for accelerated weathering and fatigue, the presented test applies mechanical loading and weather cycling simultaneously to simulate 50 years of use. Specifically designed medium-scale system specimens resemble a common SSG-bond. Displacement-controlled sinusoidal load cycles in two load directions subject these specimens to tensile, compression and shear loads. Weathering comprises temperature and humidity cycles, UV-radiation, and application of water and detergent. During testing, the forces transmitted by the system specimens are continuously measured for performance assessment. The resulting system response reveals mechanical performance characteristics like elastic moduli and dissipated energies which decrease during exposure, indicating stress relaxation and degradation. Two common structural sealants were tested. After testing, sections of the system specimens were subjected to tensile and shear tests for mechanical characterisation. Strengths and moduli are notably reduced by combined loading compared to those of reference and weathered specimens. Hardness and visual inspections of the bond correlate with the performance and bond characteristics. The approach introduced in this article provides a basis for life cycle assessment of SSG-systems.