Zitieren Sie bitte immer diese URN: urn:nbn:de:kobv:b43-388723

Zuverlässigkeitsanalyse von digitalen Radiographie-Systemen bei der Prüfung von realen Materialdefekten

  • Die zerstörungsfreie Prüfung (ZfP) ist aus solchen Bereichen unseres Lebens nicht mehr wegzudenken, in denen Schäden mit hohen Folgekosten oder Gefährdungen von Menschenleben entstehen können (Beispiele: Transportwesen, Energieerzeugung, Chemieindustrie). In der Praxis kann ein Prüfsystem an seine Grenzen geraten, z.B. bei kleinen Defekten. Defekte mit kritischer Größe werden möglicherweise nicht detektiert. Daher müssen probabilistische Bewertungsverfahren das Prüfsystem beschreiben. Es wird eine objektive Qualitätskennzahl gesucht, auf deren Basis die Anwendbarkeit der Prüfmethode definiert werden soll. Die Auffindwahrscheinlichkeit (engl. probability of detection - POD) erfüllt diese Anforderung. Die POD zeigt auf Basis des Zusammenhangs und der Streuung der Daten, ob das Verfahren für die Prüftätigkeit akzeptiert werden kann oder noch verbessert werden muss. Das ursprüngliche POD-Verfahren wurde für quasi eindimensionale Defekte in dünnen LuftfahrtbauteilenDie zerstörungsfreie Prüfung (ZfP) ist aus solchen Bereichen unseres Lebens nicht mehr wegzudenken, in denen Schäden mit hohen Folgekosten oder Gefährdungen von Menschenleben entstehen können (Beispiele: Transportwesen, Energieerzeugung, Chemieindustrie). In der Praxis kann ein Prüfsystem an seine Grenzen geraten, z.B. bei kleinen Defekten. Defekte mit kritischer Größe werden möglicherweise nicht detektiert. Daher müssen probabilistische Bewertungsverfahren das Prüfsystem beschreiben. Es wird eine objektive Qualitätskennzahl gesucht, auf deren Basis die Anwendbarkeit der Prüfmethode definiert werden soll. Die Auffindwahrscheinlichkeit (engl. probability of detection - POD) erfüllt diese Anforderung. Die POD zeigt auf Basis des Zusammenhangs und der Streuung der Daten, ob das Verfahren für die Prüftätigkeit akzeptiert werden kann oder noch verbessert werden muss. Das ursprüngliche POD-Verfahren wurde für quasi eindimensionale Defekte in dünnen Luftfahrtbauteilen entwickelt. In der industriellen Realität ist diese Bewertung ein Balanceakt zwischen Statistik und Durchführbarkeit: Die Prüfung soll mit realen Defektdaten für die spätere Produktion des Bauteils (bzw. wiederkehrende Wartungsprüfung) bewertet werden. Doch die notwendige Gegenüberstellung zwischen Schliffdaten, für die Erfassung der wahren Defektgröße von räumlich ausgeprägten Defekten und dem Signal eines ZfP-Systems stellt sich als herausfordernde und kostenintensive Aufgabe heraus. Sowohl die Aufstellung eines gemeinsamen Koordiantensystems als auch die Beschreibung und Angleichung der Daten stellen eine notwendige Vorarbeit dar. In dieser Arbeit wird ein mögliches Vorgehen entwickelt, dass im Weiteren eingesetzt werden kann. Während in der Literatur zum Thema POD häufig die Begrenzung des Einsatzes einer eindimensionalen POD (POD mit einem Defektparameter) für reale Defekte bereits erkannt wurde, soll außerdem in dieser Arbeit das Verfahren auf der Signalseite umfassender erweitert werden, um die Einbeziehung realer Defekte in die POD-Bewertung zu ermöglichen. Hierfür werden mit Hilfe dieser Arbeit zwei wesentliche Neuerungen in der POD-Bewertung eingeführt: 1. Die Anzeigenfläche wird als wichtiges Indiz zur Detektion in die Bewertung eingeführt. Dabei zeigt der Ansatz einer Observer-POD, bei dem der Detektierbarkeit eines Defekts beschrieben wird, eine Möglichkeit in die Bewertung zu erweitern. Jedoch wird die notwendige Datenanzahl die für eine Observer-POD selten mit Experimenten erreicht. Daher schlagen wir die Einführung eines Glättungsalgorithmus vor, um auch auf der Basis von wenigen Daten die Flächenabhängigkeit zu erfassen. Der Algorithmus wird hierbei durch simulierte Daten auf seine Funktionsfähigkeit überprüft, bevor er auf reale Defekte angewendet wird. Gleichzeitig helfen die simulierten Daten einen Vergleich zu den vorhergegangenen Ansätzen zu ermöglichen. 2. Darüber hinaus reichen die Daten der realen Defekte häufig nicht aus, um die statistische Forderung zu gewährleisten, so dass es notwendig, wird künstliche Defekte mit einzubeziehen. Deshalb sollen die vorhanden künstlichen Defekte in Form von Referenzdefekten mit einbezogen werden, um die statistische Grundlage zu erhöhen. Für die Prüfung von Referenzdefekten sind jedoch wichtige Einflussgrößen (z.B. Oberflächenrauhigkeit) nicht vorhanden. Wegen der unterschiedlichen Aussagekraft der Daten und zur Vermeidung einer zu optimistischen Abschätzung, ist eine einfache Mischung der Daten ausgeschlossen. Um realen Defekten eine Möglichkeit dafür zu schaffen, dass die Eigenschaften der realen Defekte angemessen auf das Ergebnis der Bewertung des Verfahrens Einfluss nehmen können, wird eine gewichtete Kombination der Defektdaten für die Bewertung vorgestellt. Das Vorgehen wird am Beispiel der radiographischen Prüfung einer elektronenstrahlgeschweißten Naht durchgeführt. Die Schweißnaht verbindet den Deckel zur Außenwand eines Kupferbehältern, der für die spätere Endlagerung von verbrauchten Brennstäben aus Kernkraftwerken entwickelt wurde. Die Messergebnisse stammen aus von der Firma Posiva Oy, dem zuständigen Unternehmen für die Endlagerung von verbrauchten Brennstäben aus Kernkraftwerken in Finnland. Hierbei stellt die POD-Bewertung ein wichtiges Element in der Gesamtrisikobewertung für das Endlagersystem dar.zeige mehrzeige weniger

Volltext Dateien herunterladen

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar
Metadaten
Autoren/innen:Daniel Kanzler
Dokumenttyp:Dissertation
Veröffentlichungsform:Eigenverlag BAM
Schriftenreihe (Bandnummer):BAM-Dissertationsreihe (153)
Sprache:Deutsch
Jahr der Erstveröffentlichung:2016
Organisationseinheit der BAM:8 Zerstörungsfreie Prüfung
Veröffentlichende Institution:Bundesanstalt für Materialforschung und -prüfung (BAM)
Titel verleihende Institution:Universität Rostock, Fakultät fürInformatik und Elektrotechnik
Gutachter/innen:Hartmut Ewald, Christian Gehlen, Larissa Müller
Datum der Abschlussprüfung:02.06.2016
Verlag:Bundesanstalt für Materialforschung und -prüfung (BAM)
Verlagsort:Berlin
Jahrgang/Band:153
Erste Seite:iii
Letzte Seite:134
DDC-Klassifikation:Naturwissenschaften und Mathematik / Chemie / Analytische Chemie
Technik, Medizin, angewandte Wissenschaften / Ingenieurwissenschaften / Ingenieurwissenschaften und zugeordnete Tätigkeiten
Technik, Medizin, angewandte Wissenschaften / Ingenieurwissenschaften / Angewandte Physik
Technik, Medizin, angewandte Wissenschaften / Ingenieurwissenschaften / Sanitär- und Kommunaltechnik; Umwelttechnik
Freie Schlagwörter:POD; Probabilistische Bewertung; Radiographie; Zerstörungsfreie Prüfung (ZfP); Zuverlässigkeit
Themenfelder/Aktivitätsfelder der BAM:Energie
Umwelt
Material
Analytical Sciences
URN:urn:nbn:de:kobv:b43-388723
ISSN:1613-4249
ISBN:978-3-9818270-1-9
Verfügbarkeit des Volltexts:Volltext-PDF für die Öffentlichkeit verfügbar ("Open Access")
Lizenz (Deutsch):License LogoCreative Commons - Namensnennung-Nicht kommerziell-Keine Bearbeitung
Datum der Freischaltung:03.01.2017
Referierte Publikation:Nein