BAM Dissertationsreihe
Filtern
Erscheinungsjahr
Dokumenttyp
- Dissertation (168)
Referierte Publikation
- nein (168)
Schlagworte
- Zerstörungsfreie Prüfung (7)
- Beton (5)
- Brandschutz (4)
- CFD (4)
- Finite-Elemente-Methode (4)
- Holz (4)
- Schweißen (4)
- Simulation (4)
- Ultraschall (4)
- Brandverhalten (3)
Organisationseinheit der BAM
- 7 Bauwerkssicherheit (13)
- 6 Materialchemie (8)
- 9 Komponentensicherheit (8)
- 8 Zerstörungsfreie Prüfung (6)
- 5 Werkstofftechnik (5)
- 6.5 Synthese und Streuverfahren nanostrukturierter Materialien (4)
- 1 Analytische Chemie; Referenzmaterialien (3)
- 7.0 Abteilungsleitung und andere (3)
- 7.2 Ingenieurbau (3)
- 7.3 Brandingenieurwesen (3)
168
The current practice of operating and maintaining deteriorating structural systems ensures acceptable levels of structural reliability, but it is not clear how efficient it is. Changing the current prescriptive approach to a risk-based approach has great potential to enable a more efficient management of such systems. Risk-based optimization of operation and maintenance strategies identifies the strategy that optimally balances the cost for controlling deterioration in a structural system with the achieved risk reduction. Inspections and monitoring are essential parts of operation and maintenance strategies. They are typically performed to reduce the uncertainty in the structural condition and inform decisions on future operation and maintenance actions. In risk-based optimization of operation and maintenance strategies, Bayesian updating is used to include information contained in inspection and monitoring data in the prediction of the structural reliability. All computations need to be repeated many times for different potential inspection and monitoring outcomes. This motivates the development of robust and efficient approaches to this computationally challenging task.
The reliability of deteriorating structural systems is time-variant because the loads on them and their capacities change with time. In most practical applications, the reliability analysis of deteriorating structural systems can be approached by dividing their lifetime into discrete time intervals. The time-variant reliability problem can then be represented by a series of time-invariant reliability problems. Using this methodology as a starting point, this thesis proposes a novel approach to compute the time-variant reliability of deteriorating structural systems for which inspection and monitoring data are available. The problem is formulated in a nested way in which the prediction of the structural condition is separated from the computation of the structural reliability conditional on the structural condition. Information on the structural condition provided by inspections and monitoring is included in the reliability assessment through Bayesian updating of the system deterioration model employed to predict the structural condition. The updated system reliability is obtained by coupling the updated deterioration model with a probabilistic structural model utilized to calculate the failure probability conditional on the structural condition. This approach is the first main outcome of this thesis and termed nested reliability analysis (NRA) approach. It is demonstrated in two numerical examples considering inspected and monitored steel structures subject to high-cycle fatigue.
An alternative – recently developed – approach, which also follows the strategy of discretizing time, describes deteriorating structural systems with hierarchical dynamic Bayesian networks (DBN). DBN combined with approximate or exact inference algorithms also enable the computation of the time-variant reliability of deteriorating structural systems conditional on information provided by inspection and monitoring data. In this thesis – as a proof of concept – a software prototype is developed based on the DBN approach, which can be used to assess the reliability of a corroding concrete box girder for which half-cell potential measurements are available. This is the second main outcome of this thesis.
Both approaches presented in this thesis enable an integral reliability analysis of inspected and monitored structures that accounts for system effects arising from (a) the correlation among deterioration states of different structural elements, (b) the interaction between element deterioration and system failure, and (c) the indirect information gained on the condition of all unobserved structural elements from inspecting or monitoring the condition of some structural elements. Thus, both approaches enable a systemwide risk-based optimization of operation and maintenance strategies for deteriorating structural systems.
The NRA approach can be implemented relatively easily with subset simulation, which is a sequential Monte Carlo method suitable for estimating rare event probabilities. Subset simulation is robust and considerably more efficient than crude Monte Carlo simulation. It is, however, still sampling-based and its efficiency is thus a function of the number of inspection and monitoring outcomes, as well as the value of the simulated event probabilities. The current implementation of the NRA approach performs separate subset simulation runs to estimate the reliability at different points in time. The efficiency of the NRA approach with subset simulation can be significantly improved by exploiting the fact that failure events in different years are nested. The lifetime reliability of deteriorating structural systems can thus be computed in reverse chronological order in a single subset simulation run.
The implementation of the DBN approach is much more demanding than the implementation of the NRA approach but it has two main advantages. Firstly, the graphical format of the DBN facilitates the presentation of the model and the underlying assumptions to stakeholders who are not experts in reliability analysis. Secondly, it can be combined with exact inference algorithms. In this case, its efficiency neither depends on the number of inspection and monitoring outcomes, nor on the value of the event probabilities to be calculated. However, in contrast to the NRA approach with subset simulation, the DBN approach with exact inference imposes restrictions on the number of random variables and the dependence structure that can be implemented in the model.
167
Kontinuumsmechanische Werkstoffmodelle zur numerischen Simulation von Stahlbauteilen im Brandfall
(2020)
Das nichtlineare und geschwindigkeitsabhängige1 Materialverhalten von Stahl wird besonders bei hohen Temperaturen sichtbar. Für Finite-Elemente-Simulationen von Stahlkonstruktionen im Brandfall sollte aus diesem Grund plastisches und geschwindigkeitsabhängiges Materialverhalten beschrieben werden. Die vorliegende Arbeit betrachtet unter diesem Aspekt bisherige Materialuntersuchungen und macht Vorschläge für dreidimensionale Materialmodelle mit entsprechenden Eigenschaften.
Es werden zunächst die phänomenologischen Eigenschaften von Baustahl anhand einer Literaturrecherche analysiert, wobei verstärkt auf Untersuchungen des Materialverhaltens bei Belastungen und Aufheizprozessen, wie sie im Brandfall zu erwarten sind, geachtet wird. Die für die Bemessung von Stahlkonstruktionen gebräuchliche Spannungsbeschreibung des EC 3-1-2 wird untersucht. Es werden ihre Stärken, aber auch die zur Entwicklung einer kontinuumsmechanischen Materialformulierung fehlenden Eigenschaften, aufgezeigt.
Ein nichtlinear-elastisches kontinuumsmechanisches Materialmodell der Deformationstheorie der Plastizität wird so angepasst, dass es die Spannungs-Dehnungslinien gemäß EC 3-1-2 im einachsigen Spannungszustand beschreibt.
Es wird des Weiteren ein thermoelastisch-viskoplastisches Modell vorgestellt, das in der Lage ist, Kriechen und Relaxation bei Aufheiz- und Abkühlprozessen zu beschreiben. Die Struktur dieses Materialmodells wird so gewählt, dass die Parameter an hierfür geeigneten Messergebnissen leicht identifiziert werden können. Der deviatorische Anteil des Modells besteht aus einem geschwindigkeitsunabhängigen, plastischen Anteil und einem geschwindigkeitsabhängigen, viskoelastischen Anteil. Der geschwindigkeitsunabhängige, plastische Anteil wurde als Differentialgleichung auf Grundlage der so genannten endochronen Plastizitätstheorie formuliert.
Die Parameter der Materialmodelle werden auf Grundlage der Messergebnisse stationärer Warmzugversuche an Baustahlproben identifiziert.
Sowohl das nichtlinear-elastische EC 3-1-2-Materialmodell als auch das thermoelastisch-viskoplastische Materialmodell mit den an Baustahl angepassten Materialparametern wird numerisch für die Verwendung mit Finite-Elemente-Programmen aufbereitet und als UMAT-Subroutine für ABAQUS in der Programmiersprache FORTRAN implementiert. Hierbei wird insbesondere auf die Bereitstellung der konsistenten Tangentenoperatoren Wert gelegt, um eine effiziente numerische Berechnung bei Verwendung der Materialmodelle zu ermöglichen.
Abschließend werden erste Simulationsrechnungen vorgestellt, um beispielhaft die Möglichkeiten der Anwendung der entwickelten und implementierten Materialmodelle für Simulationen von Stahlkonstruktionen im Brandfall aufzuzeigen.
Stichworte: Brandschutz, Stahl, Brandverhalten, Finite-Elemente-Methode, Materialmodell, Eurocode 3-1-2, UMAT
1Ist das Materialverhalten abhängig von der Prozessgeschwindigkeit, wird es als geschwindigkeitsabhängig bezeichnet. Prozesse können sowohl dehnungs- als auch spannungs- oder temperaturgesteuert sein. Die Begriffe zeitabhängig und zeitunabhängig werden hier vermieden, da diese in der Materialwissenschaft mit Alterungsprozessen (’aging’) in Verbindung gebracht werden.
166
The present work is intended to make a contribution to the monitoring of civil engineering structures. The detection of damage to structures is based on the evaluation of spatially and temporally distributed hybrid measurements. The acquired data can be evaluated purely geometrically or physically. It is preferable to do the latter, since the cause of damage can be determined by means of geometrical-physical laws in order to be able to intervene in time and ensure the further use of the structures. For this reason, the continuum mechanical field equations in conjunction with the finite element method and hybrid measurements are combined into a single evaluation method by the adjustment calculation. This results in two challenges.
The first task deals with the relationship between the finite element method and the method of least squares. The finite element method solves certain problem classes, which are described by a system of elliptical partial differential equations. Whereas the method of least squares solves another class of problems, which is formulated as an overdetermined system of equations. The striking similarity between both methods is known since many decades. However, it remains unresolved why this resemblance exists. The contribution is to clarify this by examining the variational calculus, especially with regard to its methodological procedure. Although the well-known Gauss-Markov model within the method of least squares and the finite element method solve inherently different problem classes, it is shown that both methods can be derived by following the same methodological steps of the variational calculus. From a methodical viewpoint, this implies that both methods are not only similar, but actually the same. In addition, it is pointed out where a possible cross-connection to other methods exists.
The second task introduces a Measurement- and Model-based Structural Analysis (MeMoS) by integrating the finite element method into the adjustment calculation. It is shown in numerical examinations how this integrated analysis can be used for parameter identification of simple as well as arbitrarily shaped structural components. Based on this, it is examined with which observation types, with which precision and at which location of the structure these measurements must be carried out in order to determine the material parameters as precisely as possible. This serves to determine an optimal and economic measurement set-up. With this integrated analysis, a substitute model of a geometrically complex structure can also be determined. The issue of the detection and localisation of damage within a structure is studied by means of this structural analysis. The Measurement and Model-based Structural Analysis is validated using two different test setups, an aluminum model bridge and a bending beam.
165
Diese Arbeit beschäftigt sich mit den Eigenschaften der photonenzählenden und spektralauflösenden Detektortechnik und möglichen Anwendungsgebieten in der zerstörungsfreien Prüfung. Dabei wurden konventionelle und photonenzählende Detektortechniken hinsichtlich der Bildqualität und Anwendbarkeit bei unterschiedlichen Prüfaufgaben verglichen und untersucht, inwiefern sich die Energieschwellwertsetzung auf die erreichbare Bildqualität und eine Materialdiskriminierbarkeit bei verschiedenen radiographischen Verfahren auswirkt.
Anhand von Anwendungsbeispielen wurden diese Eigenschaften und deren Auswirkung auf das Messergebnis analysiert. Neben der Radiographie wurden auch dreidimensionale Verfahren wie CT und Laminographie berücksichtigt.
Als eine der wichtigsten Eigenschaften der photonenzählenden Detektortechnik wurden zunächst die Energieauflösung des photonenzählenden Detektors und die Homogenität der Energieantwort über größere Detektorbereiche bestimmt. Dabei stellte sich heraus, dass die Energieauflösung eines abgegrenzten Detektorbereichs ca. 32 % bei 60 keV beträgt und die Streuung in der Energieantwort der einzelnen Detektorbereiche ca. 12 % ausmacht, woraus sich eine Gesamtunsicherheit in der spektralen Detektorantwort von ca. 44 % ergibt. Die geringe Energieauflösung und das stark heterogene Verhalten der Detektorbereiche ergeben sich vor allem aus der Detektorelektronik, welche nur eine globale Energieschwellwertsetzung zulässt.
Trotz dieser Einschränkungen konnte demonstriert werden, dass auch konventionelle radiographische Verfahren, wie Radiographie oder CT, vom Einsatz der photonenzählenden Technik profitieren. So ist es mit dieser Technik möglich, bei sehr geringen Dosisleistungen (z.B. aufgrund der Durchstrahlung großer Wandstärken von dichten Materialien) noch sehr gute Bildqualitäten zu erreichen. Die hohe Dynamik und Kontrastempfindlichkeit dieser Technik begünstigen die Inspektion von Leichtbauwerkstoffen wie Faserverbunde, was anhand von Vergleichen mit herkömmlicher Detektortechnik und anderen ZfP-Verfahren gezeigt werden konnte. Daneben konnte durch den Einsatz der Energieschwellwertsetzung der Einfluss von nicht bildzeichnender Streustrahlung im Röntgenbild um bis zu 20 % reduziert werden. Die Auswirkungen von Aufhärtungseffekten in der CT konnten sogar um bis zu Faktor 1 000 (in der mittleren quadratischen Abweichung), im Vergleich zu herkömmlicher Detektortechnik, reduziert werden.
Der Einsatz von photonenzählender Detektortechnik mit Röntgenblitzröhren ist hingegen nicht sinnvoll, da aufgrund der hohen Photonendichte pro Puls und einer endlichen Totzeit des Detektors in der Größenordnung der Pulsbreite eines Blitzes nur ein geringes Signal detektiert werden kann.
Im Hinblick auf eine Materialdiskriminierbarkeit konnte demonstriert werden, dass im Fall einer Radiographie anhand der Energieschwellwertsetzung im Detektor eine materialstärkenunabhängige Diskriminierung zwischen zwei Materialien (hier: Al und Fe) erzielt werden kann. Unter Einsatz mehrerer Energiefenster und eines Verfahrens der explorativen und multivariaten Datenanalyse konnte eine materialaufgelöste CT eines Multi-Material-Phantoms erreicht werden, wobei die Schwächungskoeffizienten der enthaltenen Materialien im relevanten Energieberiech teilweise sehr dicht beieinander lagen.
Neben Radiographie und CT wurde auch die Möglichkeit einer materialaufgelösten Laminographie am Beispiel eines glasfaserverstärkten Rotorblatts untersucht. Anhand der Energieschwellwertsetzung war nicht nur eine eindeutige Trennung der Glasfasern von der Epoxidharzmatrix möglich, sondern auch eine signifikante Reduzierung der durch die Laminographie entstandenen Artefakte. Der damit verbundene Gewinn an Information führt zu einer verbesserten Aussagefähigkeit des Untersuchungsergebnisses, was letztendlich eine gesteigerte Betriebssicherheit zur Folge hat.
164
Zur Bedarfsplanung von Feuerwehren in Städten in der Bundesrepublik Deutschland wurden im Jahr 1998 die Qualitätskriterien Hilfsfrist, Funktionsstärke und Erreichungsgrad für ein standardisiertes Schadensereignis erarbeitet. Das standardisierte Schadensereignis basiert auf Ergebnissen der O.R.B.I.T.-Studie aus dem Jahr 1978. Der dort dargestellte Rauchgas-temperaturverlauf für einen standardisierten Wohnungsbrand stellt Ergebnisse von Brandversuchen in einer Wohnung aus dem Jahr 1939 dar. Die zur Untersuchung herangezogenen Einrichtungsgegenstände bestanden dabei überwiegend aus cellulosehaltigen Materialien wie Holz und Papier. Die zunehmende Verwendung von Werkstoffen auf der Basis von Holz und Polymeren führt jedoch zu einer veränderten stofflichen Zusammensetzung von Einrichtungsgegenständen in Wohnungen. Im Rahmen der vorliegenden Dissertation wurde der Einfluss dieser veränderten stofflichen Zusammensetzung von gegenwärtigen Einrichtungsgegenständen auf den Verlauf von Raumbränden sowie auf die damit verbundene Stoff- und Energiefreisetzung während der Brandentstehungs- und Brandausbreitungsphase untersucht. Im Fokus der Untersuchung stand der Raum der Brandentstehung sowie ein angrenzender Raum.
Die Ergebnisse zeigen, dass gegenwärtige Einrichtungsgegenstände sowohl im Raum der Brandentstehung als auch in dem angrenzenden Raum zu höheren Rauchgastemperaturen und -konzentrationen führen. Grund hierfür sind neben den höheren Wärmefreisetzungsraten auch die höheren Stoffausbeuten der in den gegenwärtige Einrichtungsgegenständen verwendeten Materialzusammensetzungen. Vor diesem Hintergrund zeigt sich, dass sich die auf Basis der O.R.B.I.T.-Studie definierten Standards nicht mehr als Grundlage zur Bedarfsplanung von Feuerwehren eignen. Diese können mit Hilfe der vorliegenden Ergebnisse einer Prüfung unterzogen werden, um den veränderten Brandverläufen im Rahmen einer zukünftigen Bedarfsplanung gerecht zu werden.
163
Bestrebungen zum Leichtbau sowie höhere Anforderungen an das ertragbare Lastkollektiv führen in der Auslegung von Schweißkonstruktionen zunehmend zum Einsatz hochfester Feinkornbaustähle. Ohne Anwendung kostenintensiver Nachbehandlungsverfahren ist die Lebensdauer hochfester Schweißverbindungen unter wechselnder zyklischer Beanspruchung jedoch limitiert. Neben der geometrischen Kerbe sind schweißbedingte Gefügeveränderungen und die Höhe und die Verteilung von Schweißeigenspannungen für die Eigenschaften von Schweißverbindungen von erheblicher Bedeutung. Sogenannte LTT-Zusatzwerkstoffe bieten eine äußerst lukrative Möglichkeit, die resultierenden Schweißeigenspannungen bereits während des Schweißens zu adaptieren. Durch die gezielte Ausnutzung der mit der martensitischen Phasenumwandlung verbundenen Volumenausdehnung können bei hinreichend niedriger Umwandlungstemperatur Druck oder niedrige Zugeigenspannungen induziert werden. Bisherige Untersuchungen konzentrieren sich vorrangig auf die Entwicklung von LTT-Legierungskonzepten sowie dem Nachweis von Druckeigenspannungen, bieten jedoch nur wenige Erkenntnisse zum Einfluss der Wärmeführung, vor allem der Zwischenlagentemperatur, oder der Schrumpfbehinderung auf die Beanspruchung von LTT- Mehrlagenschweißverbindungen unter realitätsnahen Fertigungsbedingungen.
Die Interaktion zwischen der martensitischen Phasenumwandlung und den thermischen bzw. den mechanischen Einflussfaktoren auf die Schweißeigenspannungen wurde einleitend durch elementare Schweißversuche analysiert. Mit Hilfe des Temperaturgradienten wurde der Einfluss der behinderten thermischen Schrumpfung auf den Eigenspannungszustand in LTT-Schweißverbindungen erstmalig richtungsabhängig verstanden. Unter der Vorlage eines hohen Einspanngrades wurden Druckspannungen bevorzugt aufgebaut, wenn der Temperaturgradient während der Phasenumwandlung nur schwach ausgeprägt war. Dabei durchgeführte In-situ-Beugungsexperimente haben gezeigt, dass der Einspanngrad nur in Zusammenhang mit der richtungsabhängig vorliegenden behinderten thermischen Schrumpfung zu betrachten ist, um die Beanspruchung einer Schweißverbindung unter konstruktiver Schrumpfbehinderung bauteilübergreifend bewerten zu können.
Anschließend wurden Mehrlagenschweißversuche unter freier Schrumpfung sowie in einer speziellen Prüfanlage unter konstruktiver Schrumpfbehinderung und realistischen Fertigungsbedingungen durchgeführt. Es gelang der Nachweis, dass durch die Verwendung von LTT-Legierungen das Reaktionsmoment Mx gegenüber einer konventionellen Schweißverbindung unabhängig von der Zwischenlagentemperatur reduziert wird. Dennoch nimmt die Reaktionsspannung σ_total mit zunehmender Zwischenlagentemperatur zu. Mit Hilfe des Temperaturgradienten wurde der Einfluss der behinderten thermischen Schrumpfung auf die lokale und die globale Beanspruchung der untersuchten Schweißverbindungen interpretiert. Unabhängig von der genutzten Zwischenlagentemperatur lag für die LTT-Stumpfstoßverbindungen vor allem in Longitudinalrichtung nur eine geringe Schrumpfbehinderung während der martensitischen Phasenumwandlung vor. Dadurch wurden während der Abkühlung vor allem im Volumen Druckspannungen in Longitudinalrichtung aufgebaut. Der Eigenspannungszustand von LTT-Verbindungen wird darüber hinaus durch inhomogene Phasenumwandlung der Schweißnaht infolge von Konzentrationsunterschieden verschiedener Elemente im Schweißgut bestimmt.
161
Derzeit existieren für Gefahrgutverpackungen in den internationalen Gefahrgutvorschriften keine
Festlegungen für quantitative Grenzleckageraten, die sich an Sicherheitsbetrachtungen während der Beförderung orientieren. Für die Dichtheitsprüfung im Rahmen der Bauartzulassung von Gefahrgutverpackungen für flüssige Füllgüter ist das Standardprüfverfahren das Eintauchverfahren in Wasser („Bubble Test“). Hierbei handelt es sich um ein lokalisierendes Prüfverfahren. Seine Anwendung lässt keine quantitative Aussage darüber zu, ob unter Beförderungsbedingungen aufgrund von strömungsbedingter Stofffreisetzung durch Leckstellen der Gefahrgutverpackungen die Gefahr der Bildung einer explosionsfähigen Atmosphäre besteht. Zentrales Ziel der vorliegenden Arbeit ist daher, zunächst quantitative Dichtheitsanforderungen an Gefahrgutverpackungen im Hinblick auf die Entstehung explosionsfähiger Dampf-Luft-Gemische während des Transports zu entwickeln. Im Anschluss werden strömungsbedingte Leckageraten der Verschlüsse verschiedener Bauarten von Gefahrgutverpackungen gemessen. Der Vergleich der Messwerte mit den berechneten Grenzwerten ermöglicht die Einschätzung hinsichtlich der Bildung einer explosionsfähigen Atmosphäre. Dieser quantitative Ansatz zur Beurteilung der Dichtheit ist für Gefahrgutverpackungen derzeit noch nicht etabliert. Die Grenzleckageraten werden für das Szenario des interkontinentalen Transports von Gefahrgutverpackungen in einem 20-Fuß-Frachtcontainer im Hinblick auf die untere Explosionsgrenze abgeleitet. Dies geschieht unter Annahme einer Worst-Case-Betrachtung für Beförderungsdauer, Beladung und Luftwechselrate. Als mittlere Beförderungstemperatur wird 30 °C angesetzt. Eine vollständige Durchmischung im freien Luftraum des Containers wird angenommen. Es werden drei repräsentative Baugrößen von Gefahrgutverpackungen gewählt, mit einem Volumen von ca. 6 L, ca. 60 L und ca. 220 L. Als Füllgüter werden die 23 meistbeförderten flüssigen Gefahrgüter betrachtet. Die treibende Kraft für die Strömung durch Leckstellen ist der sich in der Verpackung ausbildende Überdruck. Die Berechnung des Überdrucks erfolgt durch analytische Modellgleichungen in Abhängigkeit der spezifischen Stoffdaten, Füllgrad, Befülltemperatur, Transporttemperatur und Nachgiebigkeit der Verpackungsbauart. Die quantitative Leckageratenmessung der Gefahrgutverpackungen wird mit dem Überdruckverfahren mit Ansammlung (Akkumulationsverfahren) unter Verwendung von Helium als Prüfgas vorgenommen. Zusätzlich erfolgt die Detektion weiterer potentieller Leckstellen außerhalb des Verschlussbereiches mit dem Schnüffelverfahren. Bei allen untersuchten Bauarten, mit Ausnahme des 6 L-Feinstblechkanisters, ist der Verschluss die einzige systematische Leckstelle der Verpackung. Die Messung der Helium-Leckageraten und der anschließende Vergleich mit den berechneten Helium-Grenzleckageraten zeigt, dass folgende Bauarten hinsichtlich des Erreichens der unteren Explosionsgrenze (UEG) durch eine Leckageströmung als kritisch einzuschätzen sind: Kunststoffverpackungen mit Schraubverschlüssen mit Flachdichtung, wenn bei diesen bestimmte Schädigungsmuster im Verschlussbereich vorliegen; Feinstblechkanister, da bei ihnen nicht nur der Verschlussbereich eine Leckstelle darstellt; Kunststoffverpackungen mit Schraubverschlüssen mit Flachdichtung, wenn diese auch für Füllgüter der Verpackungsgruppe I zugelassen sind. Als Konsequenz sollten bei diesen kritischen Bauarten entweder Modifikationen in Bezug auf die Verpackung selbst oder auf die Transportbedingungen im Frachtcontainer vorgenommen werden. Bei Kunststoffverpackungen ist auch die Füllgutpermeation als Freisetzungsmechanismus relevant. Es wird der prinzipielle Rechenweg zur Berücksichtigung dieses Quellterms exemplarisch gezeigt. Diese Arbeit leistet einen grundlegenden Beitrag für die Etablierung einer systematischen quantitativen Dichtheitsbetrachtung von Gefahrgutverpackungen mit dem Ziel der Verbesserung der Sicherheit beim interkontinentalen Gefahrguttransport im Frachtcontainer.
162
In der vorliegenden Arbeit wurden verschiedene Epoxidharzsysteme charakterisiert. Zwei Systeme mit großen bruchmechanischen Unterschieden wurden zur Fertigung äquivalenter GFK- und CFK-Laminate mit Faserausrichtungen in 0/90° und ±45° ausgewählt. In quasi-statischen Zugversuchen und Einstufenschwingversuchen mit einem Beanspruchungsverhältnis von R= 0,1 wurden diese Laminate hinsichtlich ihres Schädigungsbeginns und ihrer Schädigungsentwicklung untersucht. Die Detektion der Schädigungen sowie die Dokumentation der Schädigungsentwicklung wurde anhand der Lichtabsorptionsanalyse an GFK-Laminaten und anhand der Röntgenrefraktionsanalyse an CFK-Laminaten umgesetzt. Auf diese Weise konnten Einflüsse der bruchmechanischen Eigenschaften der Matrix auf die Schädigungsentwicklung im Verbund aufgezeigt werden. Zudem wurden für die untersuchten Laminate die Schädigungsgrenzen bei schwingender Beanspruchung ermittelt. Anhand durchgeführter Schwingversuche an CFK-Laminaten im Very High Cycle Fatigue-(VHCF)-Lastwechselbereich bis 108 konnten Rückschlüsse vom Schädigungsverhalten im High Cycle Fatigue-(HCF)-Lastwechselbereich bis 106 auf die Dauerfestigkeit im VHCF-Bereich gezogen werden und damit VHCF-Dauerfestigkeitsgrenzen bestimmt werden. Mit dem Ziel die Ermüdung der Laminate auf die Beanspruchung der Matrix zurückzuführen, wurden die Erweiterte Inverse Laminattheorie, mikromechanikbasierte Mischungsregeln sowie eine Vergleichsspannungshypothese auf die untersuchten Laminate angewendet. Die Schädigungsgrenzen konnten damit in Form der Matrixbeanspruchung wiedergegeben werden. Die Abbildung der Ermüdung verschiedener Laminate anhand einer matrixspezifischen normierten Masterschädigungslinie ist für die behandelten CFK- und GFK-Laminate gelungen.
160
For almost 150 years it is known that hydrogen has a deleterious effect on the mechanical properties of metallic components. Nowadays, the problem of hydrogen assisted degradation is highly relevant in energy related fields due to the massive use of steel as a structural component in these applications and its sensitivity to hydrogen. Since the discovery of hydrogen assisted cracking (HAC), researchers studied intensively and suggested possible explanations and mechanisms in order to define how hydrogen is affecting the material. In general, it is considered that hydrogen changes the mechanical properties more in terms of ductility (deformation capacities) than in strength (load capacities). Hydrogen concentration is one of three crucial factors in the degradation process, together with the microstructure of the material and the internal/external mechanical load. The relatively high concentration of hydrogen resulting in this loss of ductility can originate during production or before service (e.g. welding processes) and during service (i.e. catholically protected systems to eliminate corrosion processes in sour environments).
In parallel to the theoretical work, tremendous efforts were, and are still, invested in searching for a proper method to elucidate, map and quantify the hydrogen in the microstructure, which is the basis for this work. For steels, the focus is mainly on the observations of diffusion processes and the interaction of hydrogen with the microstructure
in regions with high local stresses/strains (for example around evolving cracks). The challenge for reaching this goal arises from the fact that accurate indication of hydrogen by means of position, unlike heavier atoms, can be made only by mass spectrometry or by interaction with another element (e.g. silver decoration, special coating and resonant nuclear reaction by nitrogen). In addition to this, the difficulty recording the hydrogen behavior while it rapidly diffuses through the material, leaving only the unpredicted failure, should be taken into account.
Although using powerful characterization methods, models and computational simulations, the key to defining the mechanisms behind HAC is still under debate and not fully understood. The relationship between material and hydrogen is determined by three factors, i.e., the material structure and microstructure – determining the physical properties, the mechanical load applied on the material and the hydrogen concentration. It is well known that in order to have a complete definition of HAC these three factors must be examined locally with the minimal scale and the maximal resolution reachable. The major gap is the lack in such a characterization method or a technique by which one has the ability to detect and observe the hydrogen in the metallic microstructure. The commonly used techniques nowadays are capable of characterization of the microstructure without the ability to observe the hydrogen distribution. Global hydrogen concentration and localized hydrogen observation are possible by some techniques which are incapable of indicating a change in the structure or microstructure therefore a comprehensive overview can be gained only by combining several methods.
In the presented research, secondary ion mass spectrometry (SIMS) was adopted as the main tool to detect and locally map the hydrogen distribution in two types of duplex stainless steel grades: EN 1.4462 (standard 2205 duplex stainless steel) and EN 1.4162 (2101 lean duplex stainless steel). The term duplex stainless steel (DSS) refers to the austenitic-ferritic microstructure of the steel where the combination of physical and mechanical properties of the two phases is achieved. The DSS was selected as a case study for this work due to the wide use of this grade in many energy and the lack of knowledge on hydrogen behavior in two-phase containing microstructures. ToFSIMS was exploited in-situ and ex-situ in three experimental approaches during or following
an electrochemical charging procedure. This type of hydrogen charging was selected as it simulated a procedure of cathodic protection of most sub-water oil and gas extraction and delivery systems. The experimental procedures were:
1. Ex-situ charging followed by ToF-SIMS imaging for basic understanding of hydrogen distribution.
2. Ex-situ charging followed by in-situ mechanical loading to obtain information on hydrogen behavior around a propagating crack.
3. In-situ permeation of hydrogen through a steel membrane inside the ToF-SIMS to obtain information on diffusion behavior of hydrogen in a two-phase microstructure.
The comprehensive view of the effect of hydrogen on steel was gained by using supplementary methods, such as high resolution scanning electron microscopy (HR-SEM), focused ion beam (FIB) and electron back-scattered diffraction (EBSD). The state of the art in this work lies in applying both: in-situ experimental approaches and data treatment of the ToF-SIMS raw data. The data treatment includes the combination of data from several sources (data fusion).
The results for the ex-situ charging followed by static sample imaging and data fusion showed that when the analyzed surface is directly exposed to the electrolyte the degradation is pronounced differently in the ferrite, austenite and interface. The degradation mechanisms in the ferrite and austenite were reflected by the formation of cracks on the surface of both, where a high concentration of hydrogen was obtained. This result supports the assumption that hydrogen is attracted to highly deformed regions. The advantage of using in-situ charging/permeation in comparison to ex-situ charging is that the effect of hydrogen on the ferrite and austenite phases when the hydrogen is evolving from within the microstructure is realized, in comparison to when the analyzed surface is initially exposed directly to the electrolyte. In both experiments the ferrite was observed as a fast diffusion path for the hydrogen. The faster diffusion of hydrogen through the ferrite is expected due to the higher diffusion coefficient, however, a direct proof for the diffusion sequence in this scale was never shown. Most significant results were achieved by the ‘core’ experiments of this research. These experiments included the design of a novel dynamic mechanical loading device to apply an external load during SIMS imaging of a hydrogen precharged-notched sample. For the first time it was shown that plastic deformation induced by applying a mechanical load is resulting in a redistribution of hydrogen locally around the notch.
159
Safety evaluation of truss structures depends upon the determination of the axial forces and corresponding stresses in axially loaded members. Due to presence of damages, change in intended use, increase in service loads or accidental actions, structural assessment of existing truss structures is necessary. This applies particularly to iron and steel trusses that are still in use, including historic and heritage monuments. Precise identification of the stresses plays a crucial role for the preservation of historic trusses. The assessment measures require non–destructiveness, minimum intervention and practical applicability.
The axial forces in truss structures can be estimated by static calculations using the method of joints, method of sections or finite element method, if accurate information about parameters such as external loads, geometrical characteristics, mechanical properties, boundary conditions and joint connections are known. However, precise information about these parameters is difficult to be obtained in practice. Especially in the cases of historic constructions, reasonable assumptions about the uncertain parameters may not be acquired.
Motivated by the preservation of existing truss−type constructions composed of axially loaded slender members, the present work aims to develop a non–destructive methodology to identify the axial forces or corresponding stress states in iron and steel truss structures. The approach is based on vibration measurements and the finite element method combined with optimization techniques.
After a state of the art review, numerical and experimental studies were carried out on three partial systems of truss–type structures. The investigated systems included single bars, a two–bar truss−like system and a five–bar truss. They were developed step–by–step as built–up truss−type constructions that are constituted of individual members connecting at joints. The examined aspects included the effects of structural loading on the dynamic performance of truss structures, modelling of joint connections, mode pairing criteria, selection of updating parameters and definition of an objective function, as well as the use of different optimization techniques.
Concerning the axial force effects on the structural dynamic responses, the effects of the stress stiffening become more complicated for multiple–member truss systems with increasing complexity. The coexistence of both compressive and tensile forces in trusses has counteracting effects on the modal parameters. These effects cause variation of natural frequencies and interchange of modes when the loads or corresponding member forces are changed. To examine the axial force effects on the structures at different stress states, in the numerical study and laboratory experiments, loads were applied progressively to the investigated truss−like systems.
Regarding the modelling of joints for truss–type structures, the joint flexibility affects the structural dynamic responses. Therefore, the numerical models of truss−type structures include joint models with variable rotational springs to represent semi–rigid connections.
Considering the mode pairing criterion, the mode pairing is performed by adapting an enhanced modal assurance criterion with the calculation of the modal strain energy. The criterion allows the selection of desired clusters of degrees of freedom related to specific modes. With respect to the model updating strategies, the selection of updating parameters and the choice of an appropriate objective function are identified to be significantly important. In addition, three different optimization techniques were applied to compare their suitability for the inverse axial force identification and estimation of joint flexibility of truss structures. The results of the numerical study and laboratory tests show that nature–inspired optimization methods are considered as promising techniques.
A methodology consisted of a two–stage model updating procedure using optimization techniques was proposed for the determination of multiple member axial forces and estimation of the joint flexibility of truss–type structures. In the first stage optimization, the validation criterion is based on the experimentally identified global natural frequencies and mode shapes of the truss. Additionally, the axial forces in selected individual members of the truss are used. They are estimated from the natural frequencies and five amplitudes of the corresponding local mode shapes of the members using an analytically−based algorithm. Based on the results of the identified axial forces in the first stage, a second optimization procedure for the joint stiffnesses is performed. In this stage, the modal parameters of the global natural frequencies and mode shapes are used as validation criterion.
From the results of the laboratory experiments, the identified axial forces by the proposed methodology agree well with the experimentally measured axial forces of the investigated systems at different stress states. Moreover, based on the numerical verification, the identified joint stiffnesses indicate reasonably the joint flexibility in relation to the pinned or rigid conditions.
To assess the relevance of the proposed methodology on existing structures in real−life conditions, an in–situ experiment was carried out on a historic Wiegmann–Polonceau truss in the city of Potsdam. The in–situ experiment shows that uncertainties relating the mechanical and geometrical properties of historic trusses as well as the experimental sensor setup can influence the accuracy of the axial force identification. In the present work, recommendations are given for the development of a guideline of measuring concepts and assessment strategies applied to existing truss structures. The intention is to integrate the proposed methodology as part of the Structural Health Monitoring for historic truss–type constructions.