BAM Dissertationsreihe
Filtern
Erscheinungsjahr
Dokumenttyp
- Dissertation (173)
Referierte Publikation
- nein (173)
Schlagworte
- Zerstörungsfreie Prüfung (7)
- Beton (6)
- Schweißen (5)
- Brandschutz (4)
- CFD (4)
- Ermüdung (4)
- Finite-Elemente-Methode (4)
- Holz (4)
- Simulation (4)
- Ultraschall (4)
Organisationseinheit der BAM
- 9 Komponentensicherheit (5)
- 7 Bauwerkssicherheit (4)
- 9.4 Integrität von Schweißverbindungen (4)
- 5 Werkstofftechnik (3)
- 5.3 Polymere Verbundwerkstoffe (3)
- 7.2 Ingenieurbau (2)
- 7.3 Brandingenieurwesen (2)
- 8 Zerstörungsfreie Prüfung (2)
- 3 Gefahrgutumschließungen; Energiespeicher (1)
- 3.1 Sicherheit von Gefahrgutverpackungen und Batterien (1)
173
Additive manufacturing processes offer extensive advantages for the design freedom of structures through layer-by-layer production. This enables high weight savings as well as the integration of functions such as cooling channels. This technology thus offers great potential to contribute to a sustainable future. The pioneer among these manufacturing processes is the powder bed fusion of metals with laser beams (PBF-LB/M). This process is characterised by high laser scanning speeds and highly localised heat input, which have a strong effect on the microstructure and thus also on the mechanical properties. For example, the austenitic steel 316L exhibits a cellular structure at the subgrain level. This microstructure feature leads to higher yield strengths and comparable ductility to conventionally processed 316L. In addition to the traditional applications of 316L steel in the petrochemical and nuclear industries, this enables new applications such as medical stents or bipolar plates for fuel cells with proton exchange membranes. However, the layer-by-layer production with high scanning speeds and localised heat input induces cooling rates in the order of 106 K.s-1. The large temperature gradients and the shrinkage restraints of each weld bead and layer lead to the development of complex residual stress fields. These reduce the material performance and can even lead to premature failure. Thus, the fatigue properties are severely affected by rapid crack growth or prematurely developing cracks. Furthermore, specimens may warp during PBF-LB/M or immediately when the components are separated from the build plate. Therefore, residual stress is one of the main disadvantages of PBF-LB/M, making it difficult for this technology to be more widely accepted in the industry. Based on the current state of the literature, the procedure for determining residual stress employing diffraction methods, the influence of the component geometry, as well as the inter-layertime (ILT) on residual stress and, lastly, suitable heat treatment strategies for relaxing residual stress in PBF-LB/M/316L, were identified as insufficiently researched areas.
Determining residual stress is a major challenge. X-ray and neutron diffraction are particularly suitable for filigree structures, which can preferably be produced using PBF-LB/M. Here, the microscopic strain of the lattice planes is used to calculate the macroscopic residual stress. These methods are nondestructive and allow the spatial resolution of the bi-axial and tri-axial residual stress. In the present work, in-situ neutron diffraction tensile tests were performed to analyse the micromechanical behaviour of PBF-LB/M/316L. The suitability of the lattice planes for calculating the macroscopic residual stress was investigated. The (311) lattice plane was found to be the best option for determining the macroscopic residual stress in PBF-LB/M/316L. Furthermore, it was shown that the Kröner model can be used to calculate the X-ray diffraction constants despite the texture. Currently, both aspects are common practices in the determination of residual stress. The results presented here support the validity of this approach and increase the confidence in the experimentally determined residual stress, which has a positive effect on the assessment of quality concerning the safety of a component manufactured by PBF-LB/M.
The geometry of a structure manufactured by PBF-LB/M determines the component stiffness and influences the thermal gradients during manufacture and ultimately the residual stress. The effect of smaller or larger dimensions (larger than 10 mm) on the residual stress is rarely considered. To investigate this aspect, representative test specimens with different thicknesses and lengths were produced. Hence, the influence of the geometry i.e., component stiffness on the residual stress was evaluated. The residual stress was determined using X-ray and neutron diffraction. The analysis of the residual stress showed that an increase in thickness leads to overall higher residual stress. In addition, it was shown that increasing the sample dimension leads to smaller residual stress gradients. Above a threshold value of a few millimetres, no significant change in the residual stress was observed.
The ILT is inherent in every PBF-LB/M construction job and influences the thermal gradients during production and thus the residual stress. A change in wall thickness in a geometrically complex structure or a variation in the number of specimens in the construction process leads directly to a change in the ILT. To simulate this, specimens with different ILT were produced. The residual stress was determined by X-ray and neutron diffraction. The use of a short ILT resulted in higher surface residual stress, but lower volume residual stress. Here, the surface residual stress and the residual stress in the volume showed contrary behaviour. This was attributed to the complex heat conduction during the process, as shown by the thermographic measurements.
To avoid distortion of the specimens or real components upon separation from the build plate or during post-processing steps, stress relief annealing is usually performed after the PBF-LB/M process. Based on standards for heat treatment of welded austenitic steels, heat treatments were performed at low (450 °C for four hours) and high (800 °C and 900 °C for one hour) temperatures. The results show that the heat treatment at 450 °C relaxed the residual stress by only 5 %. This low relaxation is due to the stability of the cell structures. The high-temperature heat treatment showed that 900 °C is required to dissolve the cell structure and achieve a relaxation of about 85 %. This result is in good agreement with the standards for stress relief annealing of welded austenitic steels.
172
Der Stahlbedarf in Deutschland wird maßgeblich neben dem Automobilsektor vom Maschinenbau und allgemeinen Bauwesen geprägt. In diesen Segmenten werden qualitativ hochwertige Stähle mit höchsten Ansprüchen an Festigkeit, Verformungsfähigkeit, schweißtechnische Verarbeitung und sicherheitsrelevante Aspekte gestellt. Wichtige Vertreter, welche diesen Ansprüchen gerecht werden, sind die heutigen modernen höherfesten FKB. Aus der Entwicklung dieser Stähle kristallisierten sich in den letzten Jahrzehnten verschiedene Legierungskonzepte und Herstellungsrouten heraus. Dem liegt neben essentiellen Eigenschaften, z.B. Streck- und Zugfestigkeit, noch weitere Anforderungen, bspw. Kaltumformbarkeit, Kerbschlagzähigkeit und Verschleißfestigkeit, zugrunde. Zunehmend werden im genormten Bereich mit Streckgrenzen bis 700 MPa neben den vergüteten Stählen (Q) auch thermomechanische Stähle (M) eingesetzt. Ein immerwährender paralleler Begleiter während der Stahlherstellung und -verarbeitung ist Wasserstoff.
Wasserstoff wird in den nächsten Jahren als Schlüsselelement für eine nachhaltige Energiewirtschaft angesehen. Aus heutiger Sicht ist Wasserstoff ein Hoffnungsträger für eine klimafreundliche Energiewirtschaft und zukunftsfähige Industrie. Forschung und Industrie arbeiten intensiv an der Erschließung und Weiterentwicklung des enormen Potentials, um eine höhere Nutzbarkeit zu erreichen. Die Gründe liegen zum einen darin, dass Wasserstoff als Brennstoff unproblematisch (Umweltverträglichkeit und Verfügbarkeit) ist und zum anderen ein hervorragender Energieträger ist.
Wasserstoff ist durch seine gebundene Form erst nach dem Lösen aus chemischen Verbindungen zugänglich. Dies geschieht für eine Nutzbarmachung in einer zukunftsfähigen Energiewirtschaft gezielt. Demgegenüber stehen Prozesse, wodurch Wasserstoff aus seiner chemischen Verbindung gelöst wird und aufgrund seiner Größe bzw. geringsten Atommasse von Werkstoffen aufgenommen wird. Damit verbunden interagiert der aufgenommene Wasserstoff mit dem Gefüge und kann zu einer negativen Beeinflussung der Eigenschaften des Werkstoffs führen.
Wasserstoff kann Degradationsprozesse in Stählen verursachen, die sich insbesondere auf die mechanischen Eigenschaften auswirken. Diese Mechanismen können wasserstoffunterstützte Risse in höherfesten Stählen während der Herstellung oder im industriellen Einsatz verursachen.
Elektrochemisch beladene Zugproben zeigen ein unterschiedliches Degradationsverhalten in ihren Eigenschaften. Die vorliegende Arbeit beschreibt die Wechselwirkungen zwischen Wasserstoff und Gitterdefekten in unterschiedlichen mikrolegierten Systemen und wärmebeeinflussten Zonen in den schweißbaren Feinkornbaustählen. Die Ergebnisse zeigen eine klare Abhängigkeit zwischen Mikrolegierung und Herstellungsprozess dieser Stahlsorten, respektive ihrer simulierten wärmebeeinflussten Bereiche.
171
Zur Prüfung der Erstarrungsrissanfälligkeit von Werkstoffen existiert eine Vielzahl von Prüfverfahren, die jedoch oft nur in ihren Grundzügen standardisiert sind. Ein Beispiel ist der an der Bundesanstalt für Materialforschung und -prüfung entwickelte und angewendete Modifizierte Varestraint-/Transvarestraint-Test (MVT), der eine von vielen Umsetzungen des Varestraint-Verfahrensprinzips darstellt. Hierbei werden durch Biegung während des Schweißens gezielt Erstarrungsrisse erzeugt und anschließend lichtmikroskopisch vermessen. Die Ergebnisse von Varestraint-Prüfungen charakterisieren jedoch nicht allein das Werkstoffverhalten, sondern sind in hohem Maße von der Konstruktion der jeweiligen Prüfmaschine sowie den verwendeten Prüfparametern abhängig. Dies erschwert die Vergleichbarkeit von Ergebnissen, welche nicht unter exakt identischen Bedingungen ermittelt wurden, und kann darüber hinaus zu einer ungenauen oder unvollständigen Bewertung des Werkstoffverhaltens führen.
Die vorliegende Arbeit widmet sich zunächst der detaillierten Ausgestaltung der geometrischen Zusammenhänge rund um die Ausbreitung von Erstarrungsrissen während der Varestraint-Prüfung. Mit Blick auf Prokhorovs Technological Strength Theory und die sich daraus ergebenden erstarrungsrisskritischen Temperaturen wird anschließend eruiert, wie aus den Anfangs- und Endkoordinaten der entstandenen Risse auf das charakteristische Erstarrungsrissverhalten geschlossen werden kann. Die daraus entwickelte Bewertung der Rissanfälligkeit
ist weitestgehend von den Prüfparametern und weiteren verfahrensspezifischen Einflüssen entkoppelt, wodurch eine deutlich bessere Übertragbarkeit der Ergebnisse gewährleistet ist. Zur Erprobung der neu entwickelten Bewertungsansätze wurden zunächst MVT-Prüfungen an mehreren hochlegierten, martensitischen Schweißzusatzwerkstoffen, sowie am Nickelbasiswerkstoff Alloy 602 CA durchgeführt. So konnten einerseits verschiedene Legierungen hinsichtlich ihres Erstarrungsrissverhaltens charakterisiert und Empfehlungen für die schweißtechnische Fertigung generiert werden. Zum anderen dienten die Proben zur vollständigen Konzipierung, Entwicklung und Validierung einer digitalen Auswertemethodik.
Die eigens programmierte Software ermöglicht die schnelle und praxisgerechte Auswertung von MVT-Proben, und implementiert dabei zusätzlich die zuvor entwickelten, prozessunabhängigen Bewertungsansätze. Als Ergebnis konnten kritische Dehnraten identifiziert werden,ab deren Überschreitung die betrachteten Werkstoffe unter den verwendeten Prüfbedingungen gesteigerte Erstarrungsrissanfälligkeiten aufweisen. So ergibt sich ein direkter Zusammenhang zwischen MVT-Prüfergebnissen und der Technological Strength Theory
von Prokhorov. Die Bewertung des Werkstoffverhaltens anhand der kritischen Dehnraten erwies sich gegenüber den üblicherweise betrachteten Gesamtrisslängen als deutlich zuverlässiger.
Zusammenfassend konnte gezeigt werden, dass die digitale Auswertung eine sinnvolle Verbesserung der analogen Standardauswertung darstellt.
170
Rotorblätter von Windenergieanlagen (WEA) weisen häufig nach wenigen Jahren, lange vor dem Erreichen der prognostizierten Lebensdauer von 20 bis 30 Jahren Risse in der Blattschale auf. Die Folge sind aufwendige Reparaturen am installierten und schwer zugänglichen Rotorblatt und der kostenintensive Nutzungsausfall durch den Stillstand der WEA.
Als mögliche Initiatoren für die Schäden in der Blattschale der Rotorblätter gelten fertigungsbedingte Imperfektionen. Für die Untersuchung des Einflusses dieser Imperfektionen auf das Ermüdungsverhalten der Rotorblätter wurde an der BAM (Bundesanstalt für Mate-rialforschung und -prüfung) ein Prüfstand für statische und zyklische Versuche von Schalensegmenten im intermediate scale entwickelt und betrieben. Die untersuchten Schalensegmente in Sandwichbauweise sind der Rotorblattschale von WEA im Hinblick auf die Strukturmechanik, die eingesetzten Halbzeuge, den Laminataufbau und dem eingesetzten Fertigungsverfahren ähnlich. Als Imperfektionen wurden verschiedenen Variationen von Lagenstößen in die Hautlagen und Schaumstöße mit Breitenvariation in den Stützkern reproduzierbar eingebracht. Die Überwachung des Schädigungszustandes während der Schwingversuche unter realistischen Lastszenarien erfolgt über eine kombinierte in situ Schädigungsüberwachung mittels passiver Thermografie und Felddehnungsmessung.
Mit den durchgeführten Schwingversuchen und der begleitenden Überwachung des Schädigungszustandes ließen sich die Schadensinitiation und die signifikante Herabsetzung der Lebensdauer durch die eingebrachten Imperfektionen zweifelsfrei nachweisen und entsprechende Konstruktionshinweise für die betriebssichere Auslegung von Sandwichstrukturen ableiten.
169
Die Werkstoffgruppe der Faser-Kunststoff-Verbunde (FKV) hat sich aufgrund ihrer hervorragenden Leichtbaueigenschaften unter anderem im Sportgerätebau, in der Luft- und Raumfahrt und in der Windenergieindustrie etabliert. Die so hergestellten Strukturen sind in der Regel nicht nur mechanischen Belastungen, sondern auch thermischen Lasten in einem breiten Temperaturspektrum ausgesetzt. Dennoch ist die Auswirkung des Temperatureinflusses bei einer Kombination von thermischer und mechanischer Last auf die Lebensdauer von Strukturen aus FKV bisher nur wenig untersucht.
Im Rahmen dieser Arbeit wird der Einfluss von Temperaturen zwischen 213 K und 343 K auf einen Glasfaser-Epoxidharz-Verbund experimentell untersucht. Das Material wird in diesem Temperaturbereich eingehend charakterisiert: Es werden sowohl die thermomechanischen Eigenschaften von Faser- und Matrixwerkstoff als auch die des Verbundes ermittelt. In einem weiteren Schritt wird dann der Einfluss der Temperatur auf die Schädigungsentwicklung im quasi-statischen Lastfall sowie unter schwingender Ermüdungsbeanspruchung bei verschiedenen FKV-Mehrschichtverbunden analysiert.
Basierend auf den experimentellen Daten wird ein Zusammenhang zwischen der Schädigung und der Anstrengung der Matrix innerhalb der Einzelschicht demonstriert. Die Matrixanstrengung wird mithilfe eines mikromechanischen Modells unter Berücksichtigung der thermomechanischen Eigenspannungen analytisch berechnet. Bei Querzugbeanspruchung kann gezeigt werden, dass eine Vorhersage der Schädigung in Abhängigkeit der Volumenänderungsenergie innerhalb der Matrix getroffen werden kann.
Mithilfe des Konzepts der Matrixanstrengung ist eine Vorhersage der Lebensdauer des Werkstoffs unter schwingender Ermüdungsbeanspruchung in Abhängigkeit der Einsatztemperatur möglich.
168
The current practice of operating and maintaining deteriorating structural systems ensures acceptable levels of structural reliability, but it is not clear how efficient it is. Changing the current prescriptive approach to a risk-based approach has great potential to enable a more efficient management of such systems. Risk-based optimization of operation and maintenance strategies identifies the strategy that optimally balances the cost for controlling deterioration in a structural system with the achieved risk reduction. Inspections and monitoring are essential parts of operation and maintenance strategies. They are typically performed to reduce the uncertainty in the structural condition and inform decisions on future operation and maintenance actions. In risk-based optimization of operation and maintenance strategies, Bayesian updating is used to include information contained in inspection and monitoring data in the prediction of the structural reliability. All computations need to be repeated many times for different potential inspection and monitoring outcomes. This motivates the development of robust and efficient approaches to this computationally challenging task.
The reliability of deteriorating structural systems is time-variant because the loads on them and their capacities change with time. In most practical applications, the reliability analysis of deteriorating structural systems can be approached by dividing their lifetime into discrete time intervals. The time-variant reliability problem can then be represented by a series of time-invariant reliability problems. Using this methodology as a starting point, this thesis proposes a novel approach to compute the time-variant reliability of deteriorating structural systems for which inspection and monitoring data are available. The problem is formulated in a nested way in which the prediction of the structural condition is separated from the computation of the structural reliability conditional on the structural condition. Information on the structural condition provided by inspections and monitoring is included in the reliability assessment through Bayesian updating of the system deterioration model employed to predict the structural condition. The updated system reliability is obtained by coupling the updated deterioration model with a probabilistic structural model utilized to calculate the failure probability conditional on the structural condition. This approach is the first main outcome of this thesis and termed nested reliability analysis (NRA) approach. It is demonstrated in two numerical examples considering inspected and monitored steel structures subject to high-cycle fatigue.
An alternative – recently developed – approach, which also follows the strategy of discretizing time, describes deteriorating structural systems with hierarchical dynamic Bayesian networks (DBN). DBN combined with approximate or exact inference algorithms also enable the computation of the time-variant reliability of deteriorating structural systems conditional on information provided by inspection and monitoring data. In this thesis – as a proof of concept – a software prototype is developed based on the DBN approach, which can be used to assess the reliability of a corroding concrete box girder for which half-cell potential measurements are available. This is the second main outcome of this thesis.
Both approaches presented in this thesis enable an integral reliability analysis of inspected and monitored structures that accounts for system effects arising from (a) the correlation among deterioration states of different structural elements, (b) the interaction between element deterioration and system failure, and (c) the indirect information gained on the condition of all unobserved structural elements from inspecting or monitoring the condition of some structural elements. Thus, both approaches enable a systemwide risk-based optimization of operation and maintenance strategies for deteriorating structural systems.
The NRA approach can be implemented relatively easily with subset simulation, which is a sequential Monte Carlo method suitable for estimating rare event probabilities. Subset simulation is robust and considerably more efficient than crude Monte Carlo simulation. It is, however, still sampling-based and its efficiency is thus a function of the number of inspection and monitoring outcomes, as well as the value of the simulated event probabilities. The current implementation of the NRA approach performs separate subset simulation runs to estimate the reliability at different points in time. The efficiency of the NRA approach with subset simulation can be significantly improved by exploiting the fact that failure events in different years are nested. The lifetime reliability of deteriorating structural systems can thus be computed in reverse chronological order in a single subset simulation run.
The implementation of the DBN approach is much more demanding than the implementation of the NRA approach but it has two main advantages. Firstly, the graphical format of the DBN facilitates the presentation of the model and the underlying assumptions to stakeholders who are not experts in reliability analysis. Secondly, it can be combined with exact inference algorithms. In this case, its efficiency neither depends on the number of inspection and monitoring outcomes, nor on the value of the event probabilities to be calculated. However, in contrast to the NRA approach with subset simulation, the DBN approach with exact inference imposes restrictions on the number of random variables and the dependence structure that can be implemented in the model.
167
Kontinuumsmechanische Werkstoffmodelle zur numerischen Simulation von Stahlbauteilen im Brandfall
(2020)
Das nichtlineare und geschwindigkeitsabhängige1 Materialverhalten von Stahl wird besonders bei hohen Temperaturen sichtbar. Für Finite-Elemente-Simulationen von Stahlkonstruktionen im Brandfall sollte aus diesem Grund plastisches und geschwindigkeitsabhängiges Materialverhalten beschrieben werden. Die vorliegende Arbeit betrachtet unter diesem Aspekt bisherige Materialuntersuchungen und macht Vorschläge für dreidimensionale Materialmodelle mit entsprechenden Eigenschaften.
Es werden zunächst die phänomenologischen Eigenschaften von Baustahl anhand einer Literaturrecherche analysiert, wobei verstärkt auf Untersuchungen des Materialverhaltens bei Belastungen und Aufheizprozessen, wie sie im Brandfall zu erwarten sind, geachtet wird. Die für die Bemessung von Stahlkonstruktionen gebräuchliche Spannungsbeschreibung des EC 3-1-2 wird untersucht. Es werden ihre Stärken, aber auch die zur Entwicklung einer kontinuumsmechanischen Materialformulierung fehlenden Eigenschaften, aufgezeigt.
Ein nichtlinear-elastisches kontinuumsmechanisches Materialmodell der Deformationstheorie der Plastizität wird so angepasst, dass es die Spannungs-Dehnungslinien gemäß EC 3-1-2 im einachsigen Spannungszustand beschreibt.
Es wird des Weiteren ein thermoelastisch-viskoplastisches Modell vorgestellt, das in der Lage ist, Kriechen und Relaxation bei Aufheiz- und Abkühlprozessen zu beschreiben. Die Struktur dieses Materialmodells wird so gewählt, dass die Parameter an hierfür geeigneten Messergebnissen leicht identifiziert werden können. Der deviatorische Anteil des Modells besteht aus einem geschwindigkeitsunabhängigen, plastischen Anteil und einem geschwindigkeitsabhängigen, viskoelastischen Anteil. Der geschwindigkeitsunabhängige, plastische Anteil wurde als Differentialgleichung auf Grundlage der so genannten endochronen Plastizitätstheorie formuliert.
Die Parameter der Materialmodelle werden auf Grundlage der Messergebnisse stationärer Warmzugversuche an Baustahlproben identifiziert.
Sowohl das nichtlinear-elastische EC 3-1-2-Materialmodell als auch das thermoelastisch-viskoplastische Materialmodell mit den an Baustahl angepassten Materialparametern wird numerisch für die Verwendung mit Finite-Elemente-Programmen aufbereitet und als UMAT-Subroutine für ABAQUS in der Programmiersprache FORTRAN implementiert. Hierbei wird insbesondere auf die Bereitstellung der konsistenten Tangentenoperatoren Wert gelegt, um eine effiziente numerische Berechnung bei Verwendung der Materialmodelle zu ermöglichen.
Abschließend werden erste Simulationsrechnungen vorgestellt, um beispielhaft die Möglichkeiten der Anwendung der entwickelten und implementierten Materialmodelle für Simulationen von Stahlkonstruktionen im Brandfall aufzuzeigen.
Stichworte: Brandschutz, Stahl, Brandverhalten, Finite-Elemente-Methode, Materialmodell, Eurocode 3-1-2, UMAT
1Ist das Materialverhalten abhängig von der Prozessgeschwindigkeit, wird es als geschwindigkeitsabhängig bezeichnet. Prozesse können sowohl dehnungs- als auch spannungs- oder temperaturgesteuert sein. Die Begriffe zeitabhängig und zeitunabhängig werden hier vermieden, da diese in der Materialwissenschaft mit Alterungsprozessen (’aging’) in Verbindung gebracht werden.
166
The present work is intended to make a contribution to the monitoring of civil engineering structures. The detection of damage to structures is based on the evaluation of spatially and temporally distributed hybrid measurements. The acquired data can be evaluated purely geometrically or physically. It is preferable to do the latter, since the cause of damage can be determined by means of geometrical-physical laws in order to be able to intervene in time and ensure the further use of the structures. For this reason, the continuum mechanical field equations in conjunction with the finite element method and hybrid measurements are combined into a single evaluation method by the adjustment calculation. This results in two challenges.
The first task deals with the relationship between the finite element method and the method of least squares. The finite element method solves certain problem classes, which are described by a system of elliptical partial differential equations. Whereas the method of least squares solves another class of problems, which is formulated as an overdetermined system of equations. The striking similarity between both methods is known since many decades. However, it remains unresolved why this resemblance exists. The contribution is to clarify this by examining the variational calculus, especially with regard to its methodological procedure. Although the well-known Gauss-Markov model within the method of least squares and the finite element method solve inherently different problem classes, it is shown that both methods can be derived by following the same methodological steps of the variational calculus. From a methodical viewpoint, this implies that both methods are not only similar, but actually the same. In addition, it is pointed out where a possible cross-connection to other methods exists.
The second task introduces a Measurement- and Model-based Structural Analysis (MeMoS) by integrating the finite element method into the adjustment calculation. It is shown in numerical examinations how this integrated analysis can be used for parameter identification of simple as well as arbitrarily shaped structural components. Based on this, it is examined with which observation types, with which precision and at which location of the structure these measurements must be carried out in order to determine the material parameters as precisely as possible. This serves to determine an optimal and economic measurement set-up. With this integrated analysis, a substitute model of a geometrically complex structure can also be determined. The issue of the detection and localisation of damage within a structure is studied by means of this structural analysis. The Measurement and Model-based Structural Analysis is validated using two different test setups, an aluminum model bridge and a bending beam.
165
Diese Arbeit beschäftigt sich mit den Eigenschaften der photonenzählenden und spektralauflösenden Detektortechnik und möglichen Anwendungsgebieten in der zerstörungsfreien Prüfung. Dabei wurden konventionelle und photonenzählende Detektortechniken hinsichtlich der Bildqualität und Anwendbarkeit bei unterschiedlichen Prüfaufgaben verglichen und untersucht, inwiefern sich die Energieschwellwertsetzung auf die erreichbare Bildqualität und eine Materialdiskriminierbarkeit bei verschiedenen radiographischen Verfahren auswirkt.
Anhand von Anwendungsbeispielen wurden diese Eigenschaften und deren Auswirkung auf das Messergebnis analysiert. Neben der Radiographie wurden auch dreidimensionale Verfahren wie CT und Laminographie berücksichtigt.
Als eine der wichtigsten Eigenschaften der photonenzählenden Detektortechnik wurden zunächst die Energieauflösung des photonenzählenden Detektors und die Homogenität der Energieantwort über größere Detektorbereiche bestimmt. Dabei stellte sich heraus, dass die Energieauflösung eines abgegrenzten Detektorbereichs ca. 32 % bei 60 keV beträgt und die Streuung in der Energieantwort der einzelnen Detektorbereiche ca. 12 % ausmacht, woraus sich eine Gesamtunsicherheit in der spektralen Detektorantwort von ca. 44 % ergibt. Die geringe Energieauflösung und das stark heterogene Verhalten der Detektorbereiche ergeben sich vor allem aus der Detektorelektronik, welche nur eine globale Energieschwellwertsetzung zulässt.
Trotz dieser Einschränkungen konnte demonstriert werden, dass auch konventionelle radiographische Verfahren, wie Radiographie oder CT, vom Einsatz der photonenzählenden Technik profitieren. So ist es mit dieser Technik möglich, bei sehr geringen Dosisleistungen (z.B. aufgrund der Durchstrahlung großer Wandstärken von dichten Materialien) noch sehr gute Bildqualitäten zu erreichen. Die hohe Dynamik und Kontrastempfindlichkeit dieser Technik begünstigen die Inspektion von Leichtbauwerkstoffen wie Faserverbunde, was anhand von Vergleichen mit herkömmlicher Detektortechnik und anderen ZfP-Verfahren gezeigt werden konnte. Daneben konnte durch den Einsatz der Energieschwellwertsetzung der Einfluss von nicht bildzeichnender Streustrahlung im Röntgenbild um bis zu 20 % reduziert werden. Die Auswirkungen von Aufhärtungseffekten in der CT konnten sogar um bis zu Faktor 1 000 (in der mittleren quadratischen Abweichung), im Vergleich zu herkömmlicher Detektortechnik, reduziert werden.
Der Einsatz von photonenzählender Detektortechnik mit Röntgenblitzröhren ist hingegen nicht sinnvoll, da aufgrund der hohen Photonendichte pro Puls und einer endlichen Totzeit des Detektors in der Größenordnung der Pulsbreite eines Blitzes nur ein geringes Signal detektiert werden kann.
Im Hinblick auf eine Materialdiskriminierbarkeit konnte demonstriert werden, dass im Fall einer Radiographie anhand der Energieschwellwertsetzung im Detektor eine materialstärkenunabhängige Diskriminierung zwischen zwei Materialien (hier: Al und Fe) erzielt werden kann. Unter Einsatz mehrerer Energiefenster und eines Verfahrens der explorativen und multivariaten Datenanalyse konnte eine materialaufgelöste CT eines Multi-Material-Phantoms erreicht werden, wobei die Schwächungskoeffizienten der enthaltenen Materialien im relevanten Energieberiech teilweise sehr dicht beieinander lagen.
Neben Radiographie und CT wurde auch die Möglichkeit einer materialaufgelösten Laminographie am Beispiel eines glasfaserverstärkten Rotorblatts untersucht. Anhand der Energieschwellwertsetzung war nicht nur eine eindeutige Trennung der Glasfasern von der Epoxidharzmatrix möglich, sondern auch eine signifikante Reduzierung der durch die Laminographie entstandenen Artefakte. Der damit verbundene Gewinn an Information führt zu einer verbesserten Aussagefähigkeit des Untersuchungsergebnisses, was letztendlich eine gesteigerte Betriebssicherheit zur Folge hat.
164
Zur Bedarfsplanung von Feuerwehren in Städten in der Bundesrepublik Deutschland wurden im Jahr 1998 die Qualitätskriterien Hilfsfrist, Funktionsstärke und Erreichungsgrad für ein standardisiertes Schadensereignis erarbeitet. Das standardisierte Schadensereignis basiert auf Ergebnissen der O.R.B.I.T.-Studie aus dem Jahr 1978. Der dort dargestellte Rauchgas-temperaturverlauf für einen standardisierten Wohnungsbrand stellt Ergebnisse von Brandversuchen in einer Wohnung aus dem Jahr 1939 dar. Die zur Untersuchung herangezogenen Einrichtungsgegenstände bestanden dabei überwiegend aus cellulosehaltigen Materialien wie Holz und Papier. Die zunehmende Verwendung von Werkstoffen auf der Basis von Holz und Polymeren führt jedoch zu einer veränderten stofflichen Zusammensetzung von Einrichtungsgegenständen in Wohnungen. Im Rahmen der vorliegenden Dissertation wurde der Einfluss dieser veränderten stofflichen Zusammensetzung von gegenwärtigen Einrichtungsgegenständen auf den Verlauf von Raumbränden sowie auf die damit verbundene Stoff- und Energiefreisetzung während der Brandentstehungs- und Brandausbreitungsphase untersucht. Im Fokus der Untersuchung stand der Raum der Brandentstehung sowie ein angrenzender Raum.
Die Ergebnisse zeigen, dass gegenwärtige Einrichtungsgegenstände sowohl im Raum der Brandentstehung als auch in dem angrenzenden Raum zu höheren Rauchgastemperaturen und -konzentrationen führen. Grund hierfür sind neben den höheren Wärmefreisetzungsraten auch die höheren Stoffausbeuten der in den gegenwärtige Einrichtungsgegenständen verwendeten Materialzusammensetzungen. Vor diesem Hintergrund zeigt sich, dass sich die auf Basis der O.R.B.I.T.-Studie definierten Standards nicht mehr als Grundlage zur Bedarfsplanung von Feuerwehren eignen. Diese können mit Hilfe der vorliegenden Ergebnisse einer Prüfung unterzogen werden, um den veränderten Brandverläufen im Rahmen einer zukünftigen Bedarfsplanung gerecht zu werden.