## 90-XX OPERATIONS RESEARCH, MATHEMATICAL PROGRAMMING

State-of-the-art solvers for mixed integer programs (MIP) govern a variety of algorithmic components. Ideally, the solver adaptively learns to concentrate its computational budget on those components that perform well on a particular problem, especially if they are time consuming.
We focus on three such algorithms, namely the classes of large neighborhood search and diving heuristics as well as Simplex pricing strategies.
For each class we propose a selection strategy that is updated based on the observed runtime behavior, aiming to ultimately select only the best algorithms for a given instance.
We review several common strategies for such a selection scenario under uncertainty, also known as Multi Armed Bandit Problem.
In order to apply those bandit strategies, we carefully design reward functions to rank and compare each individual heuristic or pricing algorithm within its respective class.
Finally, we discuss the computational benefits of using the proposed adaptive selection within the \scip Optimization Suite on publicly available MIP instances.

The SCIP Optimization Suite provides a collection of software packages for mathematical optimization centered around the constraint integer programming framework SCIP. This paper discusses enhancements and extensions contained in version 6.0 of the SCIP Optimization Suite. Besides performance improvements of the MIP and MINLP core achieved by new primal heuristics and a new selection criterion for cutting planes, one focus of this release are decomposition algorithms. Both SCIP and the automatic decomposition solver GCG now include advanced functionality for performing Benders’ decomposition in a generic framework. GCG’s detection loop for structured matrices and the coordination of pricing routines for Dantzig-Wolfe decomposition has been significantly revised for greater flexibility. Two SCIP extensions have been added
to solve the recursive circle packing problem by a problem-specific column generation scheme and to demonstrate the use of the new Benders’ framework for stochastic capacitated facility location. Last, not least, the report presents updates and additions to the other components and extensions of the SCIP Optimization Suite: the LP solver SoPlex, the modeling language Zimpl, the parallelization framework UG, the Steiner tree solver SCIP-Jack, and the mixed-integer semidefinite programming solver SCIP-SDP.

This article describes new features and enhanced algorithms made available in version 5.0 of the SCIP Optimization Suite. In its central component, the constraint integer programming solver SCIP, remarkable performance improvements have been achieved for solving mixed-integer linear and nonlinear programs. On MIPs, SCIP 5.0 is about 41 % faster than SCIP 4.0 and over twice as fast on instances that take at least 100 seconds to solve. For MINLP, SCIP 5.0 is about 17 % faster overall and 23 % faster on instances that take at least 100 seconds to solve. This boost is due to algorithmic advances in several parts of the solver such as cutting plane generation and management, a new adaptive coordination of large neighborhood search heuristics, symmetry handling, and strengthened McCormick relaxations for bilinear terms in MINLPs. Besides discussing the theoretical background and the implementational aspects of these developments, the report describes recent additions for the other software packages connected to SCIP, in particular for the LP solver SoPlex, the Steiner tree solver SCIP-Jack, the MISDP solver SCIP-SDP, and the parallelization framework UG.

The analysis of infeasibility plays an important role in solving satisfiability problems (SAT) and mixed integer programs (MIPs). In mixed integer programming, this procedure is called conflict analysis. So far, modern MIP solvers use conflict analysis only for propagation and improving the dual bound, i.e., fathoming nodes that cannot contain feasible solutions. In this short paper, we present a new approach which uses conflict information to improve the primal bound during a MIP solve. To derive new improving primal solutions we use a conflict driven diving heuristic called conflict diving that uses the information obtained by conflict analysis. Conflict diving pursues a twofold strategy. By using conflict information the new diving approach is guided into parts of the search space that are usually not explored by other diving heuristics. At the same time, conflict diving has a fail-fast-strategy to reduce the time spent if it cannot find a new primal solution. As a byproduct, additional valid conflict constraints can be derived, from which a MIP solver can gain benefit to improve the dual bound as well. To show the added-value of conflict diving within a MIP solver, conflict diving has been implemented within the non-commercial MIP solver SCIP. Experiments are carried out on general MIP instances from standard public test sets, like MIPLIB2010 or Cor@l.

The analysis of infeasible subproblems plays an import role in solving mixed integer programs (MIPs) and is implemented in most major MIP solvers. There are two fundamentally different concepts to generate valid global constraints from infeasible subproblems. The first is to analyze the sequence of implications obtained by domain propagation that led to infeasibility. The result of the analysis is one or more sets of contradicting variable bounds from which so-called conflict constraints can be generated. This concept has its origin in solving satisfiability problems and is similarly used in constraint programming. The second concept is to analyze infeasible linear programming (LP) relaxations. The dual LP solution provides a set of multipliers that can be used to generate a single new globally valid linear constraint. The main contribution of this short paper is an empirical evaluation of two ways to combine both approaches. Experiments are carried out on general MIP instances from standard public test sets such as Miplib2010; the presented algorithms have been implemented within the non-commercial MIP solver SCIP. Moreover, we present a pool-based approach to manage conflicts which addresses the way a MIP solver traverses the search tree better than aging strategies known from SAT solving.

In this paper, we present a new, optimization-based method to exhibit cyclic behavior in non-reversible stochastic processes. While our method is general, it is strongly motivated by discrete simulations of ordinary differential equations representing non-reversible biological processes, in particular molecular simulations. Here, the discrete time steps of the simulation are often very small compared to the time scale of interest, i.e., of the whole process. In this setting, the detection of a global cyclic behavior of the process becomes difficult because transitions between individual states may appear almost reversible on the small time scale of the simulation. We address this difficulty using a mixed-integer programming model that allows us to compute a cycle of clusters with maximum net flow, i.e., large forward and small backward probability. For a synthetic genetic regulatory network consisting of a ring-oscillator with three genes, we show that this approach can detect the most productive overall cycle, outperforming classical spectral analysis methods. Our method applies to general non-equilibrium steady state systems such as catalytic reactions, for which the objective value computes the effectiveness of the catalyst.

Recently, there have been many successful applications of optimization algorithms that solve a sequence of quite similar mixed-integer programs (MIPs) as subproblems. Traditionally, each problem in the sequence is solved from scratch. In this paper we consider reoptimization techniques that try to benefit from information obtained by solving previous problems of the sequence. We focus on the case that subsequent MIPs differ only in the objective function or that the feasible region is reduced. We propose extensions of the very complex branch-and-bound algorithms employed by general MIP solvers based on the idea to ``warmstart'' using the final search frontier of the preceding solver run. We extend the academic MIP solver SCIP by these techniques to obtain a reoptimizing branch-and-bound solver and report computational results which show the effectiveness of the approach.

We consider reoptimization (i.e. the solution of a problem based on information available from solving a similar problem) for branch-and-bound algorithms and propose a generic framework to construct a reoptimizing branch-and-bound algorithm.
We apply this to an elevator scheduling algorithm solving similar subproblems to generate columns using branch-and-bound. Our results indicate that reoptimization techniques can substantially reduce the running times of the overall algorithm.