## 90-08 Computational methods

### Refine

#### Year of publication

#### Document Type

- ZIB-Report (17)

#### Language

- English (17)

#### Has Fulltext

- yes (17)

#### Is part of the Bibliography

- no (17)

#### Keywords

- branch-and-bound (5)
- mixed integer programming (4)
- mixed-integer programming (3)
- Branch-and-Bound (2)
- Mixed Integer Programming (2)
- branching rule (2)
- exact computation (2)
- strong branching (2)
- Branching Rules (1)
- CP (1)

It has been shown that any 9 by 9 Sudoku puzzle must contain at least 17 clues to have a unique solution. This paper investigates the more specific question: given a particular completed Sudoku grid, what is the minimum number of clues in any puzzle whose unique solution is the given grid? We call this problem the Minimum Sudoku Clue Problem (MSCP). We formulate MSCP as a binary bilevel linear program, present a class of globally valid inequalities, and provide a computational study on 50 MSCP instances of 9 by 9 Sudoku grids. Using a general bilevel solver, we solve 95\% of instances to optimality, and show that the solution process benefits from the addition of a moderate amount of inequalities. Finally, we extend the proposed model to other combinatorial problems in which uniqueness of the solution is of interest.

Certificates of polynomial nonnegativity can be used to obtain tight dual bounds for polynomial optimization problems. We consider Sums of Nonnegative Circuit (SONC) polynomials certificates, which are well suited for sparse problems since the computational cost depends only on the number of terms in the polynomials and does not depend on the degrees of the polynomials. This work is a first step to integrating SONC-based relaxations of polynomial problems into a branch-and-bound algorithm. To this end, the SONC relaxation for constrained optimization problems is extended in order to better utilize variable bounds, since this property is key for the success of a relaxation in the context of branch-and-bound. Computational experiments show that the proposed extension is crucial for making the SONC relaxations applicable to most constrained polynomial optimization problems and for integrating the two approaches.

The benefits of cutting planes based on the perspective function are well known for many specific classes of mixed-integer nonlinear programs with on/off structures. However, we are not aware of any empirical studies that evaluate their applicability and computational impact over large, heterogeneous test sets in general-purpose solvers. This paper provides a detailed computational study of perspective cuts within a linear programming based branch-and-cut solver for general mixed-integer nonlinear programs. Within this study, we extend the applicability of perspective cuts from convex to nonconvex nonlinearities. This generalization is achieved by applying a perspective strengthening to valid linear inequalities which separate solutions of linear relaxations. The resulting method can be applied to any constraint where all variables appearing in nonlinear terms are semi-continuous and depend on at least one common indicator variable. Our computational experiments show that adding perspective cuts for convex constraints yields a consistent improvement of performance, and adding perspective cuts for nonconvex constraints reduces branch-and-bound tree sizes and strengthens the root node relaxation, but has no significant impact on the overall mean time.

Branching rules are an integral component of the branch-and-bound algorithm typically used to solve mixed-integer programs and subject to intense research. Different approaches for branching are typically compared based on the solving time as well as the size of the branch-and-bound tree needed to prove optimality. The latter, however, has some flaws when it comes to sophisticated branching rules that do not only try to take a good branching decision, but have additional side-effects. We propose a new measure for the quality of a branching rule that distinguishes tree size reductions obtained by better branching decisions from those obtained by such side-effects. It is evaluated for common branching rules providing new insights in the importance of strong branching.

Presolving attempts to eliminate redundant information from the problem formulation and simultaneously tries to strengthen the formulation. It can be very effective and is often essential for solving instances. Especially for mixed integer programming problems, fast and effective presolving algorithms are very important. In this paper, we report on three new presolving techniques. The first method searches for singleton continuous columns and tries to fix the corresponding variables. Then we present a presolving technique which exploits a partial order of the variables to induce fixings. Finally, we show an approach based on connected components in graphs. Our computational results confirm the profitable use of the algorithms in practice.

One of the essential components of a branch-and-bound based mixed-integer linear programming (MIP) solver is the branching rule. Strong branching is a method used by many state-of-the-art branching rules to select the variable to branch on. It precomputes the dual bounds of potential child nodes by solving auxiliary linear programs (LPs) and thereby helps to take good branching decisions that lead to a small search tree. In this paper, we describe how these dual bound predictions can be improved by including domain propagation into strong branching. Domain propagation is a technique usually used at every node of the branch-and-bound tree to tighten the local domains of variables. Computational experiments on standard MIP instances indicate that our improved strong branching method significantly improves the quality of the predictions and causes almost no additional effort. For a full strong branching rule, we are able to obtain substantial reductions of the branch-and-bound tree size as well as the solving time. Moreover, also the state-of-the-art hybrid branching rule can be improved this way.
This paper extends previous work by the author published in the proceedings of the CPAIOR 2013.

In this article we investigate methods to solve a fundamental task in gas transportation, namely the validation of nomination problem: Given a gas transmission network consisting of passive pipelines and active, controllable elements and given an amount of gas at every entry and exit point of the network, find operational settings for all active elements such that there exists a network state meeting all physical, technical, and legal constraints.
We describe a two-stage approach to solve the resulting complex and numerically difficult mixed-integer non-convex nonlinear feasibility problem. The first phase consists of four distinct algorithms facilitating mixed-integer linear, mixed-integer nonlinear, reduced nonlinear, and complementarity constrained methods to compute possible settings for the discrete decisions. The second phase employs a precise continuous nonlinear programming model of the gas network. Using this setup, we are able to compute high quality solutions to real-world industrial instances whose size is significantly larger than networks that have appeared in the literature previously.

Fast computation of valid linear programming (LP) bounds serves as an
important subroutine for solving mixed-integer programming problems
exactly. We introduce a new method for computing valid LP bounds designed
for this application. The algorithm corrects approximate LP dual solutions
to be exactly feasible, giving a valid bound. Solutions are repaired by
performing a projection and a shift to ensure all constraints are
satisfied; bound computations are accelerated by reusing structural
information through the branch-and-bound tree. We demonstrate this method
to be widely applicable and faster than solving a sequence of exact LPs.
Several variations of the algorithm are described and computationally
evaluated in an exact branch-and-bound algorithm within the mixed-integer
programming framework SCIP.

We present an exact rational solver for mixed-integer linear programming
that avoids the numerical inaccuracies inherent in the floating-point
computations used by existing software. This allows the solver to be used
for establishing theoretical results and in applications where correct
solutions are critical due to legal and financial consequences. Our solver
is a hybrid symbolic/numeric implementation of LP-based branch-and-bound,
using numerically-safe methods for all binding computations in the search
tree. Computing provably accurate solutions by dynamically choosing the
fastest of several safe dual bounding methods depending on the structure of
the instance, our exact solver is only moderately slower than an inexact
floating-point branch-and-bound solver. The software is incorporated into
the SCIP optimization framework, using the exact LP solver QSopt_ex and the
GMP arithmetic library. Computational results are presented for a suite of
test instances taken from the MIPLIB and Mittelmann collections.

We address the property checking problem for SoC design verification at the register transfer level (RTL) by integrating techniques from integer programming, constraint programming, and SAT solving. Specialized domain propagation and preprocessing algorithms for individual RTL operations extend a general constraint integer programming framework. Conflict clauses are learned by analyzing infeasible LPs and deductions, and by employing reverse propagation. Experimental results show that our approach outperforms SAT techniques for proving the validity of properties on circuits containing arithmetics.