## 90-XX OPERATIONS RESEARCH, MATHEMATICAL PROGRAMMING

### Refine

#### Year of publication

#### Document Type

- ZIB-Report (95)
- Master's Thesis (2)
- Article (1)
- Bachelor's Thesis (1)
- Doctoral Thesis (1)

#### Keywords

- Cost Projection Methods for the Shortest Path Problem with Crossing Costs (2017)
- Real world routing problems, e.g., in the airline industry or in public and rail transit, can feature complex non-linear cost functions. An important case are costs for crossing regions, such as countries or fare zones. We introduce the shortest path problem with crossing costs (SPPCC) to address such situations; it generalizes the classical shortest path problem and variants such as the resource constrained shortest path problem and the minimum label path problem. Motivated by an application in flight trajectory optimization with overflight costs, we focus on the case in which the crossing costs of a region depend only on the nodes used to enter or exit it. We propose an exact Two-Layer-Dijkstra Algorithm as well as a novel cost-projection linearization technique that approximates crossing costs by shadow costs on individual arcs, thus reducing the SPPCC to a standard shortest path problem. We evaluate all algorithms’ performance on real-world flight trajectory optimization instances, obtaining very good à posteriori error bounds.

- Strong Relaxations for the Train Timetabling Problem using Connected Configurations (2017)
- The task of the train timetabling problem or track allocation problem is to find conflict free schedules for a set of trains with predefined routes in a railway network. Especially for non-periodic instances models based on time expanded networks are often used. Unfortunately, the linear programming relaxation of these models is often extremely weak because these models do not describe combinatorial relations like overtaking possibilities very well. In this paper we extend the model by so called connected configuration subproblems. These subproblems perfectly describe feasible schedules of a small subset of trains (2-3) on consecutive track segments. In a Lagrangian relaxation approach we solve several of these subproblems together in order to produce solutions which consist of combinatorially compatible schedules along the track segments. The computational results on a mostly single track corridor taken from the INFORMS RAS Problem Solving Competition 2012 data indicate that our new solution approach is rather strong. Indeed, for this instance the solution of the Lagrangian relaxation is already integral.

- Exploring the Numerics of Branch-and-Cut for Mixed Integer Linear Optimization (2017)
- We investigate how the numerical properties of the LP relaxations evolve throughout the solution procedure in a solver employing the branch-and-cut algorithm. The long-term goal of this work is to determine whether the effect on the numerical conditioning of the LP relaxations resulting from the branching and cutting operations can be effectively predicted and whether such predictions can be used to make better algorithmic choices. In a first step towards this goal, we discuss here the numerical behavior of an existing solver in order to determine whether our intuitive understanding of this behavior is correct.

- Demand-Driven Line Planning with Selfish Routing (2017)
- Bus rapid transit systems in developing and newly industrialized countries are often operated at the limits of passenger capacity. In particular, demand during morning and afternoon peaks is hardly or even not covered with available line plans. In order to develop demand-driven line plans, we use two mathematical models in the form of integer programming problem formulations. While the actual demand data is specified with origin-destination pairs, the arc-based model considers the demand over the arcs derived from the origin-destination demand. In order to test the accuracy of the models in terms of demand satisfaction, we simulate the optimal solutions and compare number of transfers and travel times. We also question the effect of a selfish route choice behavior which in theory results in a Braess-like paradox by increasing the number of transfers when system capacity is increased with additional lines.

- A Propagation Approach to Acyclic Rolling Stock Rotation Optimization (2017)
- The rolling stock, i.e., railway vehicles, are one of the key ingredients of a running railway system. As it is well known, the offer of a railway company to their customers, i.e., the railway timetable, changes from time to time. Typical reasons for that are different timetables associated with different seasons, maintenance periods or holidays. Therefore, the regular lifetime of a timetable is split into (more or less) irregular periods where parts of the timetable are changed. In order to operate a railway timetable most railway companies set up sequences that define the operation of timetabled trips by a single physical railway vehicle called (rolling stock) rotations. Not surprisingly, the individual parts of a timetable also affect the rotations. More precisely, each of the parts brings up an acyclic rolling stock rotation problem with start and end conditions associated with the beginning and ending of the corresponding period. In this paper, we propose a propagation approach to deal with large planning horizons that are composed of many timetables with shorter individual lifetimes. The approach is based on an integer linear programming formulation that propagates rolling stock rotations through the irregular parts of the timetable while taking a large variety of operational requirements into account. This approach is implemented within the rolling stock rotation optimization framework ROTOR used by DB Fernverkehr AG, one of the leading railway operators in Europe. Computational results for real world scenarios are presented to evaluate the approach.

- Conflict-Free Railway Track Assignment at Depots (2017)
- Managing rolling stock with no passengers aboard is a critical component of railway operations. In particular, one problem is to park the rolling stock on a given set of tracks at the end of a day or service. Depending on the parking assignment, shunting may be required in order for a parked train to depart or for an incoming train to park. Given a collection of tracks M and a collection of trains T with fixed arrival-departure timetable, the train assignment problem (TAP) is to determine the maximum number of trains from T that can be parked on M according to the timetable and without the use of shunting. Hence, efficiently solving the TAP allows to quickly compute feasible parking schedules that do not require further shunting adjustments. In this paper, we present two integer programming models for solving the TAP. To our knowledge, this is the first integrated approach that considers track lengths along with the three most common types of parking tracks. We compare these models on a theoretical level. We also prove that a decision version of the TAP is NP-complete, justifying the use of integer programming techniques. Using stochastic and robust modelling techniques, both models produce parking assignments that are optimized and robust according to random train delays. We conclude with computational results for both models, observing that they perform well on real timetables.

- Pattern Detection For Large-Scale Railway Timetables (2017)
- We consider railway timetables of our industrial partner DB Fernverkehr AG that operates the ICE high speed trains in the long-distance passenger railway network of Germany. Such a timetable covers a whole year with 364 days and, typically, includes more than 45,000 trips. A rolling stock rotation plan is not created for the whole timetable at once. Instead the timetable is divided into regular invariant sections and irregular deviations (e.g. for public holidays). A separate rotation plan with a weekly period can then be provided for each of the different sections of the timetable. We present an algorithmic approach to automatically recognize these sections. Together with the supplementing visualisation of the timetable this method has shown to be very relevant for our industrial partner.

- A System to Evaluate Gas Network Capacities: Concepts and Implementation (2017)
- Since 2005, the gas market in the European Union is liberalized and the trading of natural gas is decoupled from its transport. The transport is done by so-called transmissions system operators or TSOs. The market model established by the European Union views the gas transmission network as a black box, providing shippers (gas traders and consumers) the opportunity to transport gas from any entry to any exit. TSOs are required to offer maximum independent capacities at each entry and exit such that the resulting gas flows can be realized by the network without compromising security of supply. Therefore, evaluating the available transport capacities is extremely important to the TSOs. This paper gives an overview of the toolset for evaluating gas network capacities that has been developed within the ForNe project, a joint research project of seven research partners initiated by Open Grid Europe, Germany's biggest TSO. While most of the relevant mathematics is described in the book "Evaluating Gas Network Capacities", this article sketches the system as a whole, describes some developments that have taken place recently, and gives some details about the current implementation.

- The Three Phases of MIP Solving (2016)
- Modern MIP solvers employ dozens of auxiliary algorithmic components to support the branch-and-bound search in finding and improving primal solutions and in strengthening the dual bound. Typically, all components are tuned to minimize the average running time to prove optimality. In this article, we take a different look at the run of a MIP solver. We argue that the solution process consists of three different phases, namely achieving feasibility, improving the incumbent solution, and proving optimality. We first show that the entire solving process can be improved by adapting the search strategy with respect to the phase-specific aims using different control tunings. Afterwards, we provide criteria to predict the transition between the individual phases and evaluate the performance impact of altering the algorithmic behavior of the MIP solver SCIP at the predicted phase transition points.

- Optimal Looping of Pipelines in Gas Networks (2016)
- In this paper, we compare several approaches for the problem of gas network expansions using loops, that is, to build new pipelines in parallel to existing ones. We present different model formulations for the problem of continuous loop expansions as well as discrete loop expansions. We then analyze problem properties, such as the structure and convexity of the underlying feasible regions. The paper concludes with a computational study comparing the continuous and the discrete formulations.