## 90-XX OPERATIONS RESEARCH, MATHEMATICAL PROGRAMMING

### Refine

#### Year of publication

#### Document Type

- ZIB-Report (119)
- Master's Thesis (4)
- Doctoral Thesis (3)
- Article (1)
- Bachelor's Thesis (1)

#### Keywords

- Mixed-Integer Nonlinear Programming (5)
- branch-and-bound (5)
- Mixed Integer Programming (4)
- Mixed-Integer Programming (4)
- Network Design (4)
- mixed integer programming (4)
- mixed-integer programming (4)
- MINLP (3)
- Markov State Models (3)
- NESS (3)

Calculation of clinch and elimination numbers for sports leagues with multiple tiebreaking criteria
(2018)

The clinch (elimination) number is a minimal number of future wins (losses) needed to clinch (to be eliminated from) a specified place in a sports league. Several optimization models and computational results are shown in this paper for calculating clinch and elimination numbers in the presence of predefined multiple tiebreaking criteria. The main subject of this paper is to provide a general algorithmic framework based on integer programming with utilizing possibly multilayered upper and lower bounds.

We establish a general computational framework for Chvátal’s conjecture based on exact rational integer programming. As a result we prove Chvátal’s conjecture holds for all downsets whose union of sets contains seven elements or less. The computational proof relies on an exact branch-and-bound certificate that allows for elementary verification and is independent of the integer programming solver used.

During the past years hospitals saw themselves confronted with increasing economical pressure (WB06, p. V). Therefore, optimizing the general operational procedures has gained in importance. The revenue of a hospital depends on the kinds and quantity of treatments performed and on the effcient use and utilization of the corresponding resources. About 25 − 50% of the treatment costs of a patient needing surgery incurs in the operating rooms (WB06, p. 58). Hence skillful management of the operating rooms can have a large impact on the overall revenue of a hospital. Belien and Demeulemeester (BD07) describe the planning of operating room (OR) schedules as a multi-stage process. In the first stage OR time is allocated to the hospitals specialties and capacities and resources are adjusted. In the second stage a master surgery schedule (MSS) is developed, that is a timetable for D days that specifies the amount of OR time assigned to the specialties on every individual day. After D days this schedule will be repeated without any changes. Hence, developing an MSS is a long-term problem. Finally, specialties will schedule specific surgeries within their assigned OR time. In this work we will focus on the development of the MSS that maximizes the revenue of the hospital. Our main focus will be to ensure that the capacities of the downstream resources, i.e. the bed capacities in the ICU and ward, will not be exceeded. Additionally, we hope that our formulation of the problem will lead to a leveled bed demand without significant peaks. We will incorporate the uncertainty of patient demand and case mix in our model. There have been several approaches on this subject, for example in (Fü15) and (BD07) and this work is in part inuenced by these advances.

All feasible flows in potential-driven networks
induce an orientation on the undirected graph underlying the network.
Clearly, these orientations must satisfy two conditions: they are acyclic and there are no "dead ends" in the network, i.e. each source requires outgoing flows, each sink requires incoming flows, and each transhipment vertex requires both an incoming and an outgoing flow. In this paper we will call orientations that satisfy these conditions acyclic source-transhipment-sink orientations (ASTS-orientation) and study their structure. In particular, we characterize graphs that allow for such an orientation, describe a way to enumerate all possible ASTS-orientations of a given graph, present an algorithm to simplify and decompose a graph before such an enumeration and shed light on the role of zero flows in the context of ASTS-orientations.

Improving relaxations for potential-driven network flow problems via acyclic flow orientations
(2018)

The class of potential-driven network flow problems provides important models for a range of infrastructure networks. For real-world applications, they need to be combined with integer
models for switching certain network elements, giving rise to hard-to-solve MINLPs. We observe that on large-scale real-world meshed networks the usually employed relaxations are rather weak due to cycles in the network.
We propose acyclic flow orientations as a combinatorial relaxation of feasible solutions of potential-driven flow problems and show how they can be used to strengthen existing relaxations. First computational results indicate that the strengthend model is much tighter than the original relaxation, thus promising a computational advantage.

Cycle inequalities play an important role in the polyhedral study of the periodic
timetabling problem. We give the first pseudo-polynomial time separation algo-
rithm for cycle inequalities, and we give a rigorous proof for the pseudo-polynomial
time separability of the change-cycle inequalities. Moreover, we provide several
NP-completeness results, indicating that pseudo-polynomial time is best possible.
The efficiency of these cutting planes is demonstrated on real-world instances of the
periodic timetabling problem.

In commodity transport networks such as natural gas, hydrogen and water networks, flows arise from nonlinear potential differences between the nodes, which can be represented by so-called "potential-driven" network models. When operators of these networks face increasing demand or the need to handle more diverse transport situations, they regularly seek to expand the capacity of their network by building new pipelines parallel to existing ones ("looping").
The paper introduces a new mixed-integer non-linear programming (MINLP) model and a new non-linear programming (NLP) model and compares these with existing models for the looping problem and related problems in the literature, both theoretically and experimentally.
On this basis, we give recommendations about the circumstances under which a certain model should be used. In particular, it turns out that one of our novel models outperforms the existing models.
Moreover, the paper is the first to include the practically relevant option that a particular pipeline may be looped several times.

A Simple Way to Compute the Number of Vehicles That Are Required to Operate a Periodic Timetable
(2018)

We consider the following planning problem in public transportation: Given a
periodic timetable, how many vehicles are required to operate it?
In [9], for this sequential approach, it is proposed to first expand the periodic
timetable over time, and then answer the above question by solving a flow-based
aperiodic optimization problem.
In this contribution we propose to keep the compact periodic representation of
the timetable and simply solve a particular perfect matching problem. For practical
networks, it is very much likely that the matching problem decomposes into several
connected components. Our key observation is that there is no need to change any
turnaround decision for the vehicles of a line during the day, as long as the timetable
stays exactly the same.

State-of-the-art solvers for mixed integer programs (MIP) govern a variety of algorithmic components. Ideally, the solver adaptively learns to concentrate its computational budget on those components that perform well on a particular problem, especially if they are time consuming.
We focus on three such algorithms, namely the classes of large neighborhood search and diving heuristics as well as Simplex pricing strategies.
For each class we propose a selection strategy that is updated based on the observed runtime behavior, aiming to ultimately select only the best algorithms for a given instance.
We review several common strategies for such a selection scenario under uncertainty, also known as Multi Armed Bandit Problem.
In order to apply those bandit strategies, we carefully design reward functions to rank and compare each individual heuristic or pricing algorithm within its respective class.
Finally, we discuss the computational benefits of using the proposed adaptive selection within the \scip Optimization Suite on publicly available MIP instances.