### Refine

#### Year of publication

#### Document Type

- Article (45)
- ZIB-Report (41)
- In Proceedings (22)
- Book chapter (6)
- Book (2)
- Doctoral Thesis (1)
- Habilitation (1)
- In Collection (1)

#### Is part of the Bibliography

- no (119)

#### Keywords

- Integer Programming (3)
- Mixed Integer Programming (3)
- Steiner tree (3)
- Branch-and-Bound (2)
- Optimization (2)
- Polyhedral Combinatorics (2)
- Steiner tree packing (2)
- UMTS (2)
- cutting planes (2)
- Branching Rules (1)

#### Institute

- Mathematical Optimization (57)
- ZIB Allgemein (36)
- Visual Data Analysis (6)
- Mathematical Optimization Methods (4)
- Distributed Algorithms and Supercomputing (3)
- Mathematical Algorithmic Intelligence (2)
- Therapy Planning (2)
- Visual and Data-centric Computing (2)
- AI in Society, Science, and Technology (1)
- Applied Algorithmic Intelligence Methods (1)

Vertebral labelling and segmentation are two fundamental tasks in an automated spine processing pipeline. Reliable and accurate processing of spine images is expected to benefit clinical decision support systems for diagnosis, surgery planning, and population-based analysis of spine and bone health. However, designing automated algorithms for spine processing is challenging predominantly due to considerable variations in anatomy and acquisition protocols and due to a severe shortage of publicly available data. Addressing these limitations, the Large Scale Vertebrae Segmentation Challenge (VerSe) was organised in conjunction with the International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI) in 2019 and 2020, with a call for algorithms tackling the labelling and segmentation of vertebrae. Two datasets containing a total of 374 multi-detector CT scans from 355 patients were prepared and 4505 vertebrae have individually been annotated at voxel level by a human-machine hybrid algorithm (https://osf.io/nqjyw/, https://osf.io/t98fz/). A total of 25 algorithms were benchmarked on these datasets. In this work, we present the results of this evaluation and further investigate the performance variation at the vertebra level, scan level, and different fields of view. We also evaluate the generalisability of the approaches to an implicit domain shift in data by evaluating the top-performing algorithms of one challenge iteration on data from the other iteration. The principal takeaway from VerSe: the performance of an algorithm in labelling and segmenting a spine scan hinges on its ability to correctly identify vertebrae in cases of rare anatomical variations. The VerSe content and code can be accessed at: https://github.com/anjany/verse.

We show that, given a wheel with nonnegative edge lengths and pairs of terminals located on the wheel's outer cycle such that the terminal pairs are in consecutive order, then a path packing, i.~e., a collection of edge disjoint paths connecting the given terminal pairs, of minimum length can be found in strongly polynomial time. Moreover, we exhibit for this case a system of linear inequalities that provides a complete and nonredundant description of the path packing polytope, which is the convex hull of all incidence vectors of path packings and their supersets.

In this paper we describe several versions of the routing problem arising in VLSI design and indicate how the Steiner tree packing problem can be used to model these problems mathematically. We focus on switchbox routing problems and provide integer programming formulations for routing in the knock-knee and in the Manhattan model. We give a brief sketch of cutting plane algorithms that we developed and implemented for these two models. We report on computational experiments using standard test instances. Our codes are able to determine optimum solutions in most cases, and in particular, we can show that some of the instances have no feasible solution if Manhattan routing is used instead of knock-knee routing.

We show that, given a wheel with nonnegative edge lengths and pairs of terminals located on the wheel's outer cycle such that no two terminal pairs cross, then a path packing, i.~e.,a collection of edge disjoint paths connecting the given terminal pairs, of minimum length can be found in strongly polynomial time. Moreover, we exhibit for this case a system of linear inequalities that provides a complete and nonredundant description of the path packing polytope, which is the convex hull of all incidence vectors of path packings and their supersets.

Let $G=(V,E)$ be a graph and $T\subseteq V$ be a node set. We call an edge set $S$ a Steiner tree with respect to $T$ if $S$ connects all pairs of nodes in $T$. In this paper we address the following problem, which we call the weighted Steiner tree packing problem. Given a graph $G=(V,E)$ with edge weights $w_e$, edge capacities $c_e, e \in E,$ and node sets $T_1,\ldots,T_N$, find edge sets $S_1,\ldots,S_N$ such that each $S_k$ is a Steiner tree with respect to $T_k$, at most $c_e$ of these edge sets use edge $e$ for each $e\in E$, and such that the sum of the weights of the edge sets is minimal. Our motivation for studying this problem arises from the routing problem in VLSI-design, where given sets of points have to be connected by wires. We consider the Steiner tree packing Problem from a polyhedral point of view and define an appropriate polyhedron, called the Steiner tree packing polyhedron. The goal of this paper is to (partially) describe this polyhedron by means of inequalities. It turns out that, under mild assumptions, each inequality that defines a facet for the (single) Steiner tree polyhedron can be lifted to a facet-defining inequality for the Steiner tree packing polyhedron. The main emphasis of this paper lies on the presentation of so-called joint inequalities that are valid and facet-defining for this polyhedron. Inequalities of this kind involve at least two Steiner trees. The classes of inequalities we have found form the basis of a branch & cut algorithm. This algorithm is described in our companion paper SC 92-09.

In this paper we describe a cutting plane algorithm for the Steiner tree packing problem. We use our algorithm to solve some switchbox routing problems of VLSI-design and report on our computational experience. This includes a brief discussion of separation algorithms, a new LP-based primal heuristic and implementation details. The paper is based on the polyhedral theory for the Steiner tree packing polyhedron developed in our companion paper SC 92-8 and meant to turn this theory into an algorithmic tool for the solution of practical problems.