## 90Bxx Operations research and management science

### Refine

#### Document Type

- ZIB-Report (4)

#### Language

- English (4)

#### Has Fulltext

- yes (4)

#### Is part of the Bibliography

- no (4)

#### Keywords

#### Institute

In this paper, we introduce the Maximum Diversity Assortment Selection Problem (MADASS), which is a generalization of the 2-dimensional Cutting Stock Problem (2CSP). Given a set of rectangles and a rectangular container, the goal of 2CSP is to determine a subset of rectangles that can be placed in the container without overlapping, i.e., a feasible assortment, such that a maximum area is covered. In MADASS, we need to determine a set of feasible assortments, each of them covering a certain minimum threshold of the container, such that the diversity among them is maximized. Thereby, diversity is defined as minimum or average normalized Hamming-Distance of all assortment pairs. The MADASS Problem was used in the 11th AIMMS-MOPTA Competition in 2019. The methods we describe in this article and the computational results won the contest.
In the following, we give a definition of the problem, introduce a mathematical model and solution approaches, determine upper bounds on the diversity, and conclude with computational experiments conducted on test instances derived from the 2CSP literature.

Today's gas markets demand more flexibility from the network operators which in turn have to invest into their network infrastructure. As these investments are very cost-intensive and long-living, network extensions should not only focus on one bottleneck scenario, but should increase the flexibility to fulfill different demand scenarios. We formulate a model for the network extension problem for multiple demand scenarios and propose a scenario decomposition. We solve MINLP single-scenario sub-problems and obtain valid bounds even without solving them to optimality. Heuristics prove capable of improving the initial solutions substantially. Results of computational experiments are presented.

Traffic in communication networks fluctuates heavily over time.
Thus, to avoid capacity bottlenecks, operators highly overestimate
the traffic volume during network planning. In this paper we
consider telecommunication network design under traffic uncertainty,
adapting the robust optimization approach of Bertsimas and Sim [2004]. We
present three different mathematical formulations for this problem,
provide valid inequalities, study the computational implications,
and evaluate the realized robustness.
To enhance the performance of the mixed-integer programming solver
we derive robust cutset inequalities generalizing their
deterministic counterparts. Instead of a single cutset inequality
for every network cut, we derive multiple valid
inequalities by exploiting the extra variables available in the
robust formulations. We show that these inequalities define facets
under certain conditions and that they completely describe a projection
of the robust cutset polyhedron if the cutset consists of a single edge.
For realistic networks and live traffic measurements we compare the
formulations and report on the speed up by the valid inequalities.
We study the "price of robustness" and evaluate the
approach by analyzing the real network load. The results show that
the robust optimization approach has the potential to support
network planners better than present methods.

In this paper, we present a novel approach to the congestion control and resource allocation problem of elastic and real-time traffic in telecommunication networks. With the concept of utility functions, where each source uses a utility function to evaluate the benefit from achieving a transmission rate, we interpret the resource allocation problem as a global optimization problem. The solution to this problem is characterized by a new fairness criterion, \e{utility proportional fairness}. We argue that it is an application level performance measure, i.e. the utility that should be shared fairly among users. As a result of our analysis, we obtain congestion control laws at links and sources that are globally stable and provide a utility proportional fair resource allocation in equilibrium. We show that a utility proportional fair resource allocation also ensures utility max-min fairness for all users sharing a single path in the network. As a special case of our framework, we incorporate utility max-min fairness for the entire network. To implement our approach, neither per-flow state at the routers nor explicit feedback beside ECN (Explicit Congestion Notification) from the routers to the end-systems is required.