### Refine

#### Year of publication

#### Document Type

- ZIB-Report (24)
- Article (10)
- In Proceedings (9)
- Bachelor's Thesis (1)
- Book chapter (1)
- Doctoral Thesis (1)
- Master's Thesis (1)

#### Is part of the Bibliography

- no (47)

#### Keywords

Borne out of a surprising variety of practical applications, the maximum-weight connected subgraph problem has attracted considerable interest during the past years. This interest has not only led to notable research on theoretical properties, but has also brought about several (exact) solvers-with steadily increasing performance. Continuing along this path, the following article introduces several new algorithms such as reduction techniques and heuristics and describes their integration into an exact solver.
The new methods are evaluated with respect to both their theoretical and practical properties. Notably, the new exact framework allows to solve common problem instances from the literature faster than all previous approaches. Moreover, one large-scale benchmark instance from the 11th DIMACS Challenge can be solved for the first time to optimality and the primal-dual gap for two other ones can be significantly reduced.

Generalized preprocessing techniques for Steiner tree and maximum-weight connected subgraph problems
(2017)

This article introduces new preprocessing techniques for the Steiner tree problem in graphs and one of its most popular relatives, the maximum-weight connected subgraph problem. Several of the techniques generalize previous results from the literature. The correctness of the new methods is shown, but also their NP-hardness is demonstrated. Despite this pessimistic worst-case complexity, several relaxations are discussed that are expected to allow for a strong practical efficiency of these techniques in strengthening both exact and heuristic solving approaches.

The SCIP Optimization Suite is a software toolbox for generating and solving various classes of mathematical optimization problems. Its major components are the modeling language ZIMPL, the linear programming solver SoPlex, the constraint integer programming framework and mixed-integer linear and nonlinear programming solver SCIP, the UG framework for parallelization of branch-and-bound-based solvers, and the generic branch-cut-and-price solver GCG. It has been used in many applications from both academia and industry and is one of the leading non-commercial solvers.
This paper highlights the new features of version 3.2 of the SCIP Optimization Suite. Version 3.2 was released in July 2015. This release comes with new presolving steps, primal heuristics, and branching rules within SCIP. In addition, version 3.2 includes a reoptimization feature and improved handling of quadratic constraints and special ordered sets. SoPlex can now solve LPs exactly over the rational number and performance improvements have been achieved by exploiting sparsity in more situations. UG has been tested successfully on 80,000 cores. A major new feature of UG is the functionality to parallelize a customized SCIP solver. GCG has been enhanced with a new separator, new primal heuristics, and improved column management. Finally, new and improved extensions of SCIP are presented, namely solvers for multi-criteria optimization, Steiner tree problems, and mixed-integer semidefinite programs.

Spawned by practical applications, numerous variations of the classical Steiner tree problem in graphs have been studied during the last decades. Despite the strong relationship between the different variants, solution approaches employed so far have been prevalently problem-specific.
In contrast, we pursue a general-purpose strategy resulting in a solver able to solve both the classical Steiner tree problem and ten of its variants without modification. These variants include well-known problems such as the prize-collecting Steiner tree problem, the maximum-weight connected subgraph problem or the rectilinear minimum Steiner tree problem. Bolstered by a variety of new methods, most notably reduction techniques, our solver is not only of unprecedented versatility, but furthermore competitive or even superior to specialized state-of-the-art programs for several Steiner problem variants.

The concept of reduction has frequently distinguished itself as a pivotal ingredient of exact solving approaches for the Steiner tree problem in graphs. In this paper we broaden the focus and consider reduction techniques for three Steiner problem variants that have been extensively discussed in the literature and entail various practical applications: The prize-collecting Steiner tree problem, the rooted prize-collecting Steiner tree problem and the maximum-weight connected subgraph problem.
By introducing and subsequently deploying numerous new reduction methods, we are able to drastically decrease the size of a large number of benchmark instances, already solving more than 90 percent of them to optimality. Furthermore, we demonstrate the impact of these techniques on exact solving, using the example of the state-of-the-art Steiner problem solver SCIP-Jack.

SCIP is a solver for a wide variety of mathematical optimization problems. It is written in C and extendable due to its plug-in based design. However, dealing with all C specifics when extending SCIP can be detrimental to development and testing of new ideas. This paper attempts to provide a remedy by introducing PySCIPOpt, a Python interface to SCIP that enables users to write new SCIP code entirely in Python. We demonstrate how to intuitively model mixed-integer linear and quadratic optimization problems and moreover provide examples on how new Python plug-ins can be added to SCIP.

The Steiner tree problem in graphs is a classical problem that commonly arises in practical applications as one of many variants. While often a strong relationship between different
Steiner tree problem variants can be observed, solution approaches employed so far have been
prevalently problem-specific. In contrast, this paper introduces a general-purpose solver that
can be used to solve both the classical Steiner tree problem and many of its variants without
modification. This versatility is achieved by transforming various problem variants into a
general form and solving them by using a state-of-the-art MIP-framework. The result is
a high-performance solver that can be employed in massively parallel environments and is
capable of solving previously unsolved instances.

Transformations of Steiner tree problem variants have been frequently discussed in the literature. Besides allowing to easily transfer complexity results, they constitute a central pillar of exact state-of-the-art solvers for well-known variants such as the Steiner tree problem in graphs. In this paper transformations for both the prize-collecting Steiner tree problem and the maximum-weight connected subgraph problem to the Steiner arborescence problem are introduced for the first time. Furthermore, we demonstrate the considerable implications for practical solving approaches, including the computation of strong upper and lower bounds.