## 90-02 Research exposition (monographs, survey articles)

### Refine

#### Year of publication

#### Document Type

- ZIB-Report (8)
- Doctoral Thesis (3)
- Habilitation (2)

#### Is part of the Bibliography

- no (13)

#### Keywords

#### Institute

We present a new label-setting algorithm for the Multiobjective Shortest Path (MOSP) problem that computes the minimal complete set of efficient paths for a given instance. The size of the priority queue used in the algorithm is bounded by the number of nodes in the input graph and extracted labels are guaranteed to be efficient. These properties allow us to give a tight output-sensitive running time bound for the new algorithm that can almost be expressed in terms of the running time of Dijkstra's algorithm for the Shortest Path problem. Hence, we suggest to call the algorithm \emph{Multiobjective Dijkstra Algorithm} (MDA). The simplified label management in the MDA allows us to parallelize some subroutines. In our computational experiments, we compare the MDA and the classical label-setting MOSP algorithm by Martins', which we improved using new data structures and pruning techniques. On average, the MDA is $\times2$ to $\times9$ times faster on all used graph types. On some instances the speedup reaches an order of magnitude.

Exploiting structure in non-convex quadratic optimization and gas network planning under uncertainty
(2017)

The amazing success of computational mathematical optimization over
the last decades has been driven more by insights into mathematical
structures than by the advance of computing technology. In this vein,
we address applications, where nonconvexity in the model and
uncertainty in the data pose principal difficulties.
The first part of the thesis deals with non-convex quadratic programs.
Branch&Bound methods for this problem class depend on tight
relaxations. We contribute in several ways: First, we establish a new
way to handle missing linearization variables in the well-known
Reformulation-Linearization-Technique (RLT). This is implemented
into the commercial software CPLEX. Second, we study the optimization
of a quadratic objective over the standard simplex or a knapsack
constraint. These basic structures appear as part of many complex
models. Exploiting connections to the maximum clique problem and RLT,
we derive new valid inequalities. Using exact and heuristic separation
methods, we demonstrate the impact of the new inequalities on the
relaxation and the global optimization of these problems. Third, we
strengthen the state-of-the-art relaxation for the pooling problem, a
well-known non-convex quadratic problem, which is, for example,
relevant in the petrochemical industry. We propose a novel relaxation
that captures the essential non-convex structure of the problem but is
small enough for an in-depth study. We provide a complete inner
description in terms of the extreme points as well as an outer
description in terms of inequalities defining its convex hull (which
is not a polyhedron). We show that the resulting valid convex
inequalities significantly strengthen the standard relaxation of the
pooling problem.
The second part of this thesis focuses on a common challenge in real
world applications, namely, the uncertainty entailed in the input
data.
We study the extension of a gas transport network, e.g., from our
project partner Open Grid Europe GmbH.
For a single scenario this maps to a challenging non-convex MINLP.
As the future transport patterns are highly uncertain, we propose a
robust model to best prepare the network operator for an array of
scenarios.
We develop a custom decomposition approach that makes use of the
hierarchical structure of network extensions and the loose coupling
between the scenarios.
The algorithm used the single-scenario problem as black-box subproblem
allowing the generalization of our approach to problems with the same
structure.
The scenario-expanded version of this problem is out of reach for
today's general-purpose MINLP solvers.
Yet our approach provides primal and dual bounds for instances with up
to 256 scenarios and solves many of them to optimality.
Extensive computational studies show the impact of our work.

Mathematik im Verkehr
(2014)

Nach einem kurzen Abriss über die Bedeutung des Verkehrssektors als eine wichtige Schlüsseltechnologie im gesamten Verlauf der Menschheitsgeschichte skizzieren wir die Rolle der Mathematik für Verkehr und Transport. Wir spekulieren dann über zukünftige Entwicklungen, insbesondere im Bereich des öffentlichen Personenverkehrs, und begründen, dass die in diesem Bereich anstehenden Herausforderungen nur mit dem Einsatz mathematischer Methoden angemessen bewältigt werden können. Die demographischen Prozesse, die in verschiedenen Teilen der Welt unterschiedlich verlaufen, wie z.B. Überalterung in Europa oder dynamische Trends zu Megastädten in Entwicklungsländern, sich ändernde Lebens- und Produktionsverhältnisse, stark wachsender Bedarf nach Mobilität und enormes Anwachsen der Komplexität der Verkehrsplanung und -durchführung, machen einen verstärkten Zugriff auf mathematische Modellierung, Simulation und Optimierung notwendig. Diese Entwicklung stellt sowohl große Herausforderungen an die Mathematik, wo vielfach noch keine geeigneten Methoden vorhanden sind, als auch an die Praktiker im Bereich von Verkehr und Transport, die sich mit neuen Planungs- und Steuerungstechnologien befassen und diese effizient einsetzen müssen. Hier wird intensive Kooperation zwischen vielen beteiligten Akteuren gefragt sein.

This cumulative thesis collects the following six papers for obtaining the
habilitation at the Technische Universität Berlin, Fakultät II – Mathematik
und Naturwissenschaften:
(1) Set packing relaxations of some integer programs.
(2) Combinatorial packing problems.
(3) Decomposing matrices into blocks.
(4) A bundle method for integrated multi-depot vehicle and duty scheduling
in public transit.
(5) Models for railway track allocation.
(6) A column-generation approach to line planning in public transport.
Some changes were made to the papers compared to the published versions.
These pertain to layout unifications, i.e., common numbering, figure, table,
and chapter head layout. There were no changes with respect to notation or
symbols, but some typos have been eliminated, references updated, and some
links and an index was added. The mathematical content is identical.
The papers are about the optimization of public transportation systems,
i.e.,
bus networks, railways, and airlines, and its mathematical foundations,
i.e.,
the theory of packing problems. The papers discuss mathematical models,
theoretical analyses, algorithmic approaches, and computational aspects of
and to problems in this area.
Papers 1, 2, and 3 are theoretical. They aim at establishing a theory of
packing problems as a general framework that can be used to study traffic
optimization problems. Indeed, traffic optimization problems can often be
modelled as path packing, partitioning, or covering problems, which lead
directly to set packing, partitioning, and covering models. Such models are
used in papers 4, 5, and 6 to study a variety of problems concerning the
planning
of line systems, buses, trains, and crews. The common aim is always
to exploit as many degrees of freedom as possible, both at the level of the
individual problems by using large-scale integer programming techniques, as
well as on a higher level by integrating hitherto separate steps in the
planning
process.

This thesis describes the algorithm IS-OPT that integrates scheduling of vehicles and duties in public bus transit. IS-OPT is the first algorithm which solves integrated vehicle and duty scheduling problems arising in medium sized carriers such that its solutions can be used in daily operations without further adaptions. This thesis is structured as follows: The first chapter highlights mathematical models of the planning process of public transit companies and examines their potential for integrating them with other planning steps. It also introduces descriptions of the vehicle and the duty scheduling problem. Chapter 2 motivates why it can be useful to integrate vehicle and duty scheduling, explains approaches of the literature, and gives an outline of our algorithm IS-OPT. The following chapters go into the details of the most important techniques and methods of IS-OPT: In Chapter 3 we describe how we use Lagrangean relaxation in a column generation framework. Next, in Chapter 4, we describe a variant of the proximal bundle method (PBM) that is used to approximate linear programs occurring in the solution process. We introduce here a new variant of the PBM which is able to utilize inexact function evaluation and the use of epsilon-subgradients. We also show the convergence of this method under certain assumptions. Chapter 5 treats the generation of duties for the duty scheduling problem. This problem is modeled as a resourceconstraint- shortest-path-problem with non-linear side constraints and nearly linear objective function. It is solved in a two-stage approach. At first we calculate lower bounds on the reduced costs of duties using certain nodes by a new inexact label-setting algorithm. Then we use these bounds to speed up a depth-first-search algorithm that finds feasible duties. In Chapter 6 we present the primal heuristic of IS-OPT that solves the integrated problem to integrality. We introduce a new branch-and-bound based heuristic which we call rapid branching. Rapid branching uses the proximal bundle method to compute lower bounds, it introduces a heuristic node selection scheme, and it utilizes a new branching rule that fixes sets of many variables at once. The common approach to solve the problems occurring in IS-OPT is to trade inexactness of the solutions for speed of the algorithms. This enables, as we show in Chapter 7, to solve large real world integrated problems by IS-OPT. The scheduled produced by IS-OPT save up to 5% of the vehicle and duty cost of existing schedules of regional and urban public transport companies.

This article describes the main concepts and techniques that have been developed during the last year at ZIB to solve dimensioning and routing optimization problems for IP networks. We discuss the problem of deciding if a given path set corresponds to an unsplittable shortest path routing, the fundamental properties of such path sets, and the computational complexity of some basic network planning problems for this routing type. Then we describe an integer-linear programming approach to solve such problems in practice. This approach has been used successfully in the planning of the German national education and research network for several years.

This thesis is concerned with dimensioning and routing optimization problems for communication networks that employ a shortest path routing protocol such as OSPF, IS-IS, or RIP. These protocols are widely used in the Internet. With these routing protocols, all end-to-end data streams are routed along shortest paths with respect to a metric of link lengths. The network administrator can configure the routing only by modifying this metric. In this thesis we consider the unsplittable shortest path routing variant, where each communication demand must be sent unsplit through the network. This requires that all shortest paths are uniquely determined. The major difficulties in planning such networks are that the routing can be controlled only indirectly via the routing metric and that all routing paths depend on the same routing metric. This leads to rather complicated and subtle interdependencies among the paths that comprise a valid routing. In contrast to most other routing schemes, the paths for different communication demands cannot be configured independent of each other. Part I of the thesis is dedicated to the relation between path sets and routing metrics and to the combinatorial properties of those path sets that comprise a valid unsplittable shortest path routing. Besides reviewing known approaches to find a compatible metric for a given path set (or to prove that none exists) and discussing some properties of valid path sets, we show that the problem of finding a compatible metric with integer lengths as small as possible and the problem of finding a smallest possible conflict in the given path set are both NP-hard to approximate within a constant factor. In Part II of the thesis we discuss the relation between unsplittable shortest path routing and several other routing schemes and we analyze the computational complexity of three basic unsplittable shortest path routing problems. We show that the lowest congestion that can be obtained with unsplittable shortest path routing may significantly exceed that achievable with other routing paradigms and we prove several non-approximability results for unsplittable shortest path routing problems that are stronger than those for the corresponding unsplittable flow problems. In addition, we derive various polynomial time approximation algorithms for general and special cases of these problems. In Part III of the thesis we finally develop an integer linear programming approach to solve these and more realistic unsplittable shortest path routing problems to optimality. We present alternative formulations for these problems, discuss their strength and computational complexity, and show how to derive strong valid inequalities. Eventually, we describe our implementation of this solution approach and report on the numerical results obtained for real-world problems that came up in the planning the German National Research and Education Networks G-WiN and X-WiN and for several benchmark instances.

Frequenzplanung im Mobilfunk
(2002)

Telekommunikation ist seit Jahren \glqq in\grqq. Zunächst gab es einen enormen Aufschwung; neue Technologien und Dienste haben eine überwältigende, nicht vorhersehbare Akzeptanz gefunden. Derzeit ist -- ausgelöst durch die UMTS-Lizenzversteigerungen, Rezessions- und Sättigungstendenzen -- eine Krise zu verzeichnen. Viele (auch wir) sind davon überzeugt, dass technischer Fortschritt und nützliche Dienste demnächst die Stimmung wieder ändern werden. Wenigen ist allerdings bewusst, welche Rolle Mathematik bei der Entwicklung und dem effizienten Einsatz vieler der neuen Kommunikationstechnologien spielt. In diesem Artikel soll kein Überblick über diesen umfangreichen Themenkreis gegeben werden. Wir zeigen lediglich an einem konkreten Beispiel aus dem Mobilfunk, der Frequenzplanung in GSM-Funknetzen, was man durch geeignete Modellierung der praktischen Fragestellung und den Einsatz problemadäquater Algorithmen erreichen kann.

{\begin{rawhtml} <a href="http://dx.doi.org/10.1007/s10479-007-0178-0"> Revised Version unter http://dx.doi.org/10.1007/s10479-007-0178-0</a> \end{rawhtml}} Wireless communication is used in many different situations such as mobile telephony, radio and TV broadcasting, satellite communication, and military operations. In each of these situations a frequency assignment problem arises with application specific characteristics. Researchers have developed different modelling ideas for each of the features of the problem, such as the handling of interference among radio signals, the availability of frequencies, and the optimization criterion. This survey gives an overview of the models and methods that the literature provides on the topic. We present a broad description of the practical settings in which frequency assignment is applied. We also present a classification of the different models and formulations described in the literature, such that the common features of the models are emphasized. The solution methods are divided in two parts. Optimization and lower bounding techniques on the one hand, and heuristic search techniques on the other hand. The literature is classified according to the used methods. Again, we emphasize the common features, used in the different papers. The quality of the solution methods is compared, whenever possible, on publicly available benchmark instances.