621 Angewandte Physik
Refine
Document Type
- Article (47)
- Conference Proceeding (40)
- Article in a Periodical of the TH Wildau (15)
- Book (3)
- Preprint (2)
- Part of a Book (1)
- Doctoral Thesis (1)
Year of publication
Institute
Has Fulltext
- yes (109)
Keywords
- nanoindentation (5)
- carbon (3)
- hardness (3)
- photonic integrated circuit (3)
- renewable energy (3)
- water adsorption (3)
- Fabry-Perot sensor (2)
- Simulation (2)
- renewable energy source (2)
- surface plasmon resonance (2)
Micro-Transfer printing (µTP) is a promising technique for hetero-integration of III-V materials into Si-based photonic platforms. To enhance the print yield by increasing the adhesion between the III-V material and Si or SiO2 surface, an adhesion promoter like Benzocyclobutene is typically used as interlayer. In this work, we demonstrate µTP of InP based coupons on SiO2 interlayer without any adhesive interlayer and investigate the mechanism of adhesive free bonding. Source coupons are InP-based coupon stacks on a sacrificial layer that is removed by a chemical wet etch with FeCl3. For the target we fabricated amorphous-Si waveguides on 8” wafer encapsulated by a High Density Plasma SiO2 which was planarized by a chemical mechanical polishing procedure. We used O2 plasma to activate both source and target to increase adhesion between coupon and substrate. To get a better understanding of the bonding mechanism we applied several surface characterization methods. Root mean square roughness of InP and SiO2 was measured by atomic force microscopy before and after plasma activation. The step height of the micro-transfer printed source coupon on the target wafer is estimated by optical step profiler. We used Raman peak position mappings of InP to analyze possible strain and contact angle measurements on SiO2, before and after plasma activation to observe a change in the hydrophilicity of the surface. X-ray Photoelectron Spectroscopy analysis was used to characterize the surface energy states of P2p, In3d, O1s for InP source and Si2p, O1s for SiO2 target. Our results demonstrate direct bonding of InP coupons by means of µTP without the need of a strain-compensation layer. In this way, a promising route towards Complementary Metal-Oxide-Semiconductor compatible use of µTP for the hetero-integration of InP is provided.
The MAC end-station at the ELI Beamlines facility is a multipurpose user's station for atomic, molecular, and optical sciences and coherent diffractive imaging. The technical design of the station, the available instruments, and an overview of the whole beamline have been published in Eur. Phys. J. Spec. Top. 230, 4183 (2021). Here, we address ongoing upgrades of the MAC end-station that will provide users with advanced capabilities for beam manipulation and electron/ion detection. The upgrades include (i) the installation of a beam preparation chamber in front of the MAC chamber, (ii) a magnetic bottle electron spectrometer with high collection and detection efficiency and high energy resolution, and (iii) an event-driven TPX3CAM detector for velocity map imaging spectrometer, which provides both spatial and temporal information for each pixel. We present results from the first commissioning measurements with these instruments, confirming their performance for state-of-the-art experiments in atomic, molecular, and optical sciences.
Heavy wire bonding is one of the most common interconnection technologies in manufacturing of high-power electronics. For industrial applications, the long-term reliability of these connections is crucial. Besides the selection of the wire material and the loop geometry itself, the loop forming process parameters also have an influence on the reliability of the wire bond. In this work, the influence of the backward bond head movement during wire bonding process on the quality of wire bond connections was systematically investigated and qualified by cyclic mechanical lifetime tests, surface roughness measurements of the heel area by laser confocal microscopy and static pull tests. The wire bond loops were fabricated with 300 μm aluminum H11 and H14CR wires with different hardness values. The lifetime at low frequency cycle and high frequency cycle regime was determined by means of two different mechanical cyclic test methods operating at 5 Hz and at 60 kHz respectively. The results have shown, that the surface topology of the heel region caused by the initial plastic deformation during the loop forming process has a significant effect on the wire bond failure due to heel cracking. The number of loading cycles to failure shows an inverse correlation with the degree of surface roughness in a so called wrinkling analysis in the low and high frequency cycle regime. The soft wire exhibits different lifetimes compared to the hard ones depending on the testing conditions, while a significant decrease of the lifetime is observed with >30 % reverse movement during bonding in all cases.
Der technische Fortschritt hat dazu geführt, dass die Kosten für das automatisierte Drucken von Emblemen, Anhängern sowie allgemein gedruckten Prototypen stark gefallen sind. Dies geschah insbesondere auch vor dem Hintergrund eines Wandels der Industrie hin zu einer modernen Industrie 4.0. In dieser Arbeit wird ein neuer Ansatz für das automatische 3D-Drucken eines Logos präsentiert, welches als Pixelgrafik vorliegt. Die vorgeschlagene Prozesskette erzeugt hierbei final den G-code zum Drucken. Dabei sind seitens des Users wenige Eingaben erforderlich.
The rise of Fe magnetic moment, changes in Al electronic structure and a variation of Al magnetic polarization in thin films of transition metal aluminide Fe60Al40 have been probed through the order-disorder phase transition by soft X-ray absorption spectroscopy and X-ray resonant magnetic reflectivity in the extreme ultraviolet regime. In a course of the transition induced by 20 keV Ne+ irradiation with low fluences (1014 ions·cm-2), X-ray magnetic circular dichroism spectra taken at the Fe L2,3 absorption edges at room and low temperatures revealed a pronounced increase of Fe 3d states spin-polarization. X-ray resonant magnetic reflectivity applied to the Al L2,3 and Fe M2,3 edges allowed to detect the magnetic polarization of Al atoms in the films. The changes in Al electronic structure have been seen by alteration of Al K edge X-ray absorption near edge structure. A difference in anisotropy fields for films before and after irradiation has been observed by element-specific hysteresis loops recorded at low temperatures in absorption and reflection geometries at the Fe L2,3 and M2,3 edges, respectively. An attempt to reduce the top oxide layer by an inductively coupled hydrogen plasma has shown a possibility to recover the chemically ordered phase.
Ultrafast electron dynamics drive phenomena such as photochemical reactions, catalysis, and light harvesting. To capture such dynamics in real-time, femtosecond to attosecond light sources are extensively used. However, an exact match between the excitation photon energy and a characteristic resonance is crucial. High-harmonic generation sources are advantageous in terms of pulse duration but limited in spectral tunability in the vacuum ultraviolet range. Here, we present a monochromatic femtosecond source continuously tunable around 21eV photon energy utilizing the second harmonic of an optical parametric chirped pulse amplification laser system to drive high-harmonic generation. The unique tunability of the source is verified in an experiment probing the interatomic Coulombic decay in doped He nanodroplets across the He absorption bands. Moreover, we achieved intensities sufficient for driving collective processes in multiply excited helium nanodroplets, which have been previously observed only at free electron lasers.
Optical fibers in metrology, telecommunications, sensors, manufacturing, and health science have gained massive research interest. The number of applications is increasing at a fast pace. This book aims to present a collection of recent advances in fiber optics, addressing both fundamental and industrial applications. It covers the current progress and latest breakthroughs in emergent applications of fiber optics. The book includes five chapters on recent developments in optical fiber communications and fiber sensors, as well as the design, simulation, and fabrication of novel fiber concepts.
Plasmonics includes the fundamentals of surface plasmon polaritons in metals, and its rapidly increasing applications in biochemistry, nanotechnology, optical communication, sensing, and medicine. Surface plasmon polaritons have become popular because of their ultrasensitive optical measurement capabilities, and in recent years they have also been employed for ultra-high-speed data transfer. This book presents recent advances in the broad field of plasmonics, covering not only current progress and the latest breakthroughs in emergent applications but also geometry optimizations and the fundamentals of physical interactions.
Optical and microwave waveguides have attracted much research interest in both science and industry. The number of potential applications for their use is growing rapidly. This book examines recent advances in the broad field of waveguide technology. It covers current progress and latest breakthroughs in emergent applications in photonics and microwave engineering. The book includes ten contributions on recent developments in waveguide technologies including theory, simulation, and fabrication of novel waveguide concepts as well as reviews on recent advances.
Ellipsometrically obtained spectral dependences of ordinary αxy and extra-ordinary αz extinction/attenuation coefficients within the spectral range λ = 300…980 nm of uniaxially anisotropic polytetrafluoroethylene (PTFE) films were analyzed. We considered the capabilities and specific features of the graphical representation technique for determining the contribution of Rayleigh scattering and Urbach absorption to light attenuation in the spectral range beyond fundamental absorption. It has been shown that the graphical approach enables to estimate these contributions qualitatively, semi-quantitatively or quantitatively, depending on the situation. The conclusions made using the analysis of graphical representation are confirmed by numerical solution of the inverse problem via simulation of the αxy (λ), αz (λ) experimental dependences within the framework of a best-fit procedure. Being based on both of these approaches, we have ascertained that, in the as-prepared PTFE films, the so-called anomalous light scattering (ALS) with the spectral dependence of scattering coefficient αs ≈ as λ–p (p > 4) takes place. Transformation of scattering from ALS to the Rayleigh one with p ≈ 4 due to annealing is accompanied by an increase of Urbach (subband) absorption. Both of these factors cause narrowing the dynamic range of extinction coefficient values. Both scattering and absorption coefficients are higher for the component of light polarized along the normal to the substrate as compared to the component polarized in parallel to it. The relationship between observed behavior of the scattering and absorption coefficients and the film structure has been discussed.