Controlling the transport phenomena of filler wire in laser beam welding by magnetohydrodynamics: a theoretical and experimental study

  • The deep penetration laser beam welding (LBW) has developed to one of the most promising metal joining methods in the modern manufacturing industry. It has well-known advantages of good penetration capacity, low heat input, high reachable welding speed and low welding distortion in comparison to conventional arc welding techniques. However, there are still challenges in LBW making the realization of the advantages difficult, such as porosity or inhomogeneous element distribution when using filler material. The magnetohydrodynamics technique is a promising way to solve these issues by introducing a suitable electromagnetic field, and correspondingly Lorentz force, to control the Transport phenomena in the weld pool. The underlying physics in wire feed laser beam welding with electromagnetic stirring were investigated numerically and experimentally. A three-dimensional transient heat transfer and fluid flow model coupled with dynamic keyhole, magnetic induction and element transport wasThe deep penetration laser beam welding (LBW) has developed to one of the most promising metal joining methods in the modern manufacturing industry. It has well-known advantages of good penetration capacity, low heat input, high reachable welding speed and low welding distortion in comparison to conventional arc welding techniques. However, there are still challenges in LBW making the realization of the advantages difficult, such as porosity or inhomogeneous element distribution when using filler material. The magnetohydrodynamics technique is a promising way to solve these issues by introducing a suitable electromagnetic field, and correspondingly Lorentz force, to control the Transport phenomena in the weld pool. The underlying physics in wire feed laser beam welding with electromagnetic stirring were investigated numerically and experimentally. A three-dimensional transient heat transfer and fluid flow model coupled with dynamic keyhole, magnetic induction and element transport was developed for the first time. The electromagnetic behaviour as well as the temperature and velocity profiles, solidification parameters, keyhole evolution and element transport are calculated. The model is well tested against the experimental results. The beneficial effects from electromagnetic stirring (element homogenization and grain refinement) are explained quantitatively using the numerical data and the results from high-speed imaging, OM, EDX and EBSD.zeige mehrzeige weniger

Volltext Dateien herunterladen

  • Adolf-Martens-Fellowship-Colloquium.pdf
    eng

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar Anzahl der Zugriffe auf dieses Dokument
Metadaten
Autor*innen:Xiangmeng MengORCiD
Koautor*innen:Michael Rethmeier, Marcel Bachmann
Dokumenttyp:Vortrag
Veröffentlichungsform:Präsentation
Sprache:Englisch
Jahr der Erstveröffentlichung:2019
Organisationseinheit der BAM:9 Komponentensicherheit
9 Komponentensicherheit / 9.3 Schweißtechnische Fertigungsverfahren
DDC-Klassifikation:Technik, Medizin, angewandte Wissenschaften / Ingenieurwissenschaften / Ingenieurwissenschaften und zugeordnete Tätigkeiten
Freie Schlagwörter:Laser beam welding; MHD
Themenfelder/Aktivitätsfelder der BAM:Material
Veranstaltung:Adolf Martens Fellowship Colloquium
Veranstaltungsort:Berlin, Germany
Beginndatum der Veranstaltung:12.12.2019
Verfügbarkeit des Dokuments:Datei im Netzwerk der BAM verfügbar ("Closed Access")
Datum der Freischaltung:19.12.2019
Referierte Publikation:Nein
Eingeladener Vortrag:Nein
Einverstanden
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.