Influence of the fiber volume fraction and matrix stiffness on ultra-high performance fiber reinforced concrete subjected to direct tensile loading at moderate strain rates

  • The mechanical behavior of normal strength and high-strength concretes under tension can be significantly improved by the incorporation of steel fibers. This improvement comprises not only an enhancement in strength and ductility, but also in energy absorption capacity, which makes steel fiber reinforced high-strength concrete potentially suitable for seismic design applications. Force transfer controlled processes between steel fibers and concrete matrix, i.e. fiber debonding and fiber pull-out during crack opening are the main mechanisms contributing to the high-energy dissipation characteristic of this composite material. In order to gain more information on the material efficiency under tension, a comparative study on different ultra-high performance fiber reinforced concretes (UHPFCs) subjected to direct tensile loading at moderate strain rates is presented. The experimental approach considered three UHPFC mixtures, incorporating two volumetric fractions of high-strength smoothThe mechanical behavior of normal strength and high-strength concretes under tension can be significantly improved by the incorporation of steel fibers. This improvement comprises not only an enhancement in strength and ductility, but also in energy absorption capacity, which makes steel fiber reinforced high-strength concrete potentially suitable for seismic design applications. Force transfer controlled processes between steel fibers and concrete matrix, i.e. fiber debonding and fiber pull-out during crack opening are the main mechanisms contributing to the high-energy dissipation characteristic of this composite material. In order to gain more information on the material efficiency under tension, a comparative study on different ultra-high performance fiber reinforced concretes (UHPFCs) subjected to direct tensile loading at moderate strain rates is presented. The experimental approach considered three UHPFC mixtures, incorporating two volumetric fractions of high-strength smooth steel fibers. The stiffness modification of the concrete matrix was realized by the addition of a copolymer. The direct tensile tests were conducted on small sized dumbbell shaped specimens at nominal strain rates of 0.000025 1/s and 0.01 1/s, representing quasi-static and seismic loading conditions, respectively. For a detailed analysis of crack formation and crack propagation during load application, classical tensile tests were accompanied by non-destructive measuring technique using digital image correlation (DIC). Furthermore, relevant material parameters, such as such as first and post cracking stresses, strain capacity, and energy absorption capacity are determined and discussed.zeige mehrzeige weniger

Volltext Dateien herunterladen

  • 2018_POSTER_Ibausil_Goglin.pdf
    eng

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar Anzahl der Zugriffe auf dieses Dokument
Metadaten
Autor*innen:Veronika Goglin
Koautor*innen:Götz Hüsken, Peter Wossidlo, Ralf Häcker, Hans-Carsten Kühne, H.J.H. Brouwers
Dokumenttyp:Posterpräsentation
Veröffentlichungsform:Präsentation
Sprache:Englisch
Jahr der Erstveröffentlichung:2018
Organisationseinheit der BAM:7 Bauwerkssicherheit
7 Bauwerkssicherheit / 7.4 Baustofftechnologie
9 Komponentensicherheit
9 Komponentensicherheit / 9.6 Additive Fertigung metallischer Komponenten
DDC-Klassifikation:Technik, Medizin, angewandte Wissenschaften / Ingenieurwissenschaften / Ingenieurbau
Freie Schlagwörter:Crack formation and propagation; Energy absorption capacity; Moderate strain rates; Tensile strength; UHPFC
Themenfelder/Aktivitätsfelder der BAM:Infrastruktur
Veranstaltung:20th International Conference, 20. ibausil
Veranstaltungsort:Weimar, Germany
Beginndatum der Veranstaltung:12.09.2018
Enddatum der Veranstaltung:14.09.2018
Verfügbarkeit des Dokuments:Datei im Netzwerk der BAM verfügbar ("Closed Access")
Datum der Freischaltung:23.08.2018
Referierte Publikation:Nein
Einverstanden
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.