• Treffer 5 von 5
Zurück zur Trefferliste

Assessment of welding thermal cycles by boundary element method

  • A numerical framework simulation of the steady-state thermal behaviour in keyhole mode welding has been developed. It is based on the equivalent heat source concept and consists of two parts: computational thermo-fluid dynamics and heat conduction. The solution of the thermo-fluid dynamics problem by the finite element method for a bounded domain results in a weld pool interface geometry being the input data for a subsequent heat conduction problem solved for a workpiece by proposed boundary element method. The main physical phenomena, such as keyhole shape, thermo-capillary and natural convection and temperaturedependent material properties are taken into consideration. The developed technique is applied to complete-penetration keyhole laser beam welding of a 15 mm thick low-alloyed steel plate at a welding speed of 33 mm/s and a laser power of 18 kW. The fluid flow of the molten metal has a strong influence on the weld pool geometry. The thermo-capillary convection is responsible forA numerical framework simulation of the steady-state thermal behaviour in keyhole mode welding has been developed. It is based on the equivalent heat source concept and consists of two parts: computational thermo-fluid dynamics and heat conduction. The solution of the thermo-fluid dynamics problem by the finite element method for a bounded domain results in a weld pool interface geometry being the input data for a subsequent heat conduction problem solved for a workpiece by proposed boundary element method. The main physical phenomena, such as keyhole shape, thermo-capillary and natural convection and temperaturedependent material properties are taken into consideration. The developed technique is applied to complete-penetration keyhole laser beam welding of a 15 mm thick low-alloyed steel plate at a welding speed of 33 mm/s and a laser power of 18 kW. The fluid flow of the molten metal has a strong influence on the weld pool geometry. The thermo-capillary convection is responsible for an increase of the weld pool size near the plate surfaces and a bulge formation near the plate middle plane. The numerical and experimental molten pools, cross-sectional weld dimensions and thermal cycles of the heat affected zone are in close agreement.zeige mehrzeige weniger

Volltext Dateien herunterladen

  • 09_07_19_Artinov_IIW_Bratislava.pdf
    eng

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar Anzahl der Zugriffe auf dieses Dokument
Metadaten
Autor*innen:Antoni ArtinovORCiD
Koautor*innen:Victor Karkhin, P. Khomich, Marcel Bachmann, Michael Rethmeier
Dokumenttyp:Vortrag
Veröffentlichungsform:Präsentation
Sprache:Englisch
Jahr der Erstveröffentlichung:2019
Organisationseinheit der BAM:9 Komponentensicherheit
9 Komponentensicherheit / 9.3 Schweißtechnische Fertigungsverfahren
DDC-Klassifikation:Technik, Medizin, angewandte Wissenschaften / Ingenieurwissenschaften / Ingenieurwissenschaften und zugeordnete Tätigkeiten
Freie Schlagwörter:Boundary element method; Bulging; Keyhole mode welding; Numerical simulation; Themral cycles
Themenfelder/Aktivitätsfelder der BAM:Material
Veranstaltung:72nd IIW Annual Assembly and International Conference
Veranstaltungsort:Bratislava, Slovakia
Beginndatum der Veranstaltung:07.07.2019
Enddatum der Veranstaltung:12.07.2019
Verfügbarkeit des Dokuments:Datei im Netzwerk der BAM verfügbar ("Closed Access")
Datum der Freischaltung:16.07.2019
Referierte Publikation:Nein
Eingeladener Vortrag:Nein
Einverstanden
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.