• Treffer 2 von 10
Zurück zur Trefferliste

Influence of shielding gas on filler wire mixing at laser hybrid welding of thick high strength steels

  • The laser hybrid welding process offers many advantages during welding oft hick-walled steels, such as the increased penetration depth and, thus, reduced number of layers, reduced heat input and decreased distortion compared to arc-based welding processes. Especially, when welding high-strength steels (HSS), the reduced heat input plays an essential role. However, a major challenge when laser hybrid welding of thick-walled steels is the limited filler wire mixing over the entire seam thickness, which can lead to changed mechanical properties over the depth. To overcome this issue, the add of oxygen into the shielding gas and its influence on the filler wire mixing and finally to the mechanical properties were investigated within this work. Therefore, 20 mm thick S690QL steels were laser hybrid welded in a single-pass. A contactless electromagnetic backing was used to avoid sagging. The admixture of oxygen was performed by a gas mixer, where the oxygen content was varied between 0 % andThe laser hybrid welding process offers many advantages during welding oft hick-walled steels, such as the increased penetration depth and, thus, reduced number of layers, reduced heat input and decreased distortion compared to arc-based welding processes. Especially, when welding high-strength steels (HSS), the reduced heat input plays an essential role. However, a major challenge when laser hybrid welding of thick-walled steels is the limited filler wire mixing over the entire seam thickness, which can lead to changed mechanical properties over the depth. To overcome this issue, the add of oxygen into the shielding gas and its influence on the filler wire mixing and finally to the mechanical properties were investigated within this work. Therefore, 20 mm thick S690QL steels were laser hybrid welded in a single-pass. A contactless electromagnetic backing was used to avoid sagging. The admixture of oxygen was performed by a gas mixer, where the oxygen content was varied between 0 % and 7.2 %. The experiments were also accompanied by laser beam welding tests in steel/glass configuration, where the melt pool geometry as well as the melt flow characteristics were captured by a high-speed camera. It can be concluded, that adding of 2 % to 4 % oxygen into the shielding gas had a positive effect on the filler wire mixing, were up to a depth of 18 mm elements of the filler wire could be observed.zeige mehrzeige weniger

Volltext Dateien herunterladen

  • Uestuendag_ID33.pdf
    eng

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar Anzahl der Zugriffe auf dieses Dokument
Metadaten
Autor*innen:Ömer Üstündag
Koautor*innen:D. Kampffmeyer, M. Wolters, Nasim Bakir, Andrey Gumenyuk, Michael Rethmeier
Dokumenttyp:Vortrag
Veröffentlichungsform:Präsentation
Sprache:Englisch
Jahr der Erstveröffentlichung:2023
Organisationseinheit der BAM:9 Komponentensicherheit
9 Komponentensicherheit / 9.3 Schweißtechnische Fertigungsverfahren
DDC-Klassifikation:Technik, Medizin, angewandte Wissenschaften / Ingenieurwissenschaften / Ingenieurwissenschaften und zugeordnete Tätigkeiten
Freie Schlagwörter:Charpy impact toughness; Electromagnetic backing; Filler wire mixing; Laser hybrid welding; Shielding gas; Thick-plate welding
Themenfelder/Aktivitätsfelder der BAM:Material
Veranstaltung:19th Nordic Laser Material Processing Conference
Veranstaltungsort:Turku, Finland
Beginndatum der Veranstaltung:22.08.2023
Enddatum der Veranstaltung:24.08.2023
Verfügbarkeit des Dokuments:Datei im Netzwerk der BAM verfügbar ("Closed Access")
Datum der Freischaltung:19.10.2023
Referierte Publikation:Nein
Eingeladener Vortrag:Nein
Einverstanden
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.