• Treffer 5 von 41
Zurück zur Trefferliste

DNA origami-based Förster resonance energy-transfer nanoarrays and their application as ratiometric sensors

  • DNA origami nanostructures provide a platform where dye molecules can be arranged with nanoscale accuracy allowing to assemble multiple fluorophores without dye−dye aggregation. Aiming to develop a bright and sensitive ratiometric sensor system, we systematically studied the optical properties of nanoarrays of dyes built on DNA Origami platforms using a DNA template that provides a high versatility of label choice at minimum cost. The dyes are arranged at distances, at which they efficiently interact by Förster resonance energy transfer (FRET). To optimize array brightness, the FRET efficiencies between the donor fluorescein (FAM) and the acceptor cyanine 3 were determined for different sizes of the array and for different arrangements of the dye molecules within the array. By utilizing nanoarrays providing optimum FRET efficiency and brightness, we subsequently designed a ratiometric pH nanosensor using coumarin 343 as a pH-inert FRET donor and FAM as a pHresponsive acceptor. OurDNA origami nanostructures provide a platform where dye molecules can be arranged with nanoscale accuracy allowing to assemble multiple fluorophores without dye−dye aggregation. Aiming to develop a bright and sensitive ratiometric sensor system, we systematically studied the optical properties of nanoarrays of dyes built on DNA Origami platforms using a DNA template that provides a high versatility of label choice at minimum cost. The dyes are arranged at distances, at which they efficiently interact by Förster resonance energy transfer (FRET). To optimize array brightness, the FRET efficiencies between the donor fluorescein (FAM) and the acceptor cyanine 3 were determined for different sizes of the array and for different arrangements of the dye molecules within the array. By utilizing nanoarrays providing optimum FRET efficiency and brightness, we subsequently designed a ratiometric pH nanosensor using coumarin 343 as a pH-inert FRET donor and FAM as a pHresponsive acceptor. Our results indicate that the sensitivity of a ratiometric sensor can be improved simply by arranging the dyes into a well-defined array. The dyes used here can be easily replaced by other analyte-responsive dyes, demonstrating the huge potential of DNA nanotechnology for light harvesting, signal enhancement, and sensing schemes in life sciences.zeige mehrzeige weniger

Volltext Dateien herunterladen

  • Choi_acsami_2018_DNA Origami-Based Forster Resonance Energy-Transfer Nanoarrays and Their Application as Ratiometric Sensors.pdf
    eng

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar Anzahl der Zugriffe auf dieses Dokument
Metadaten
Autor*innen:Youngeun Choi
Persönliche Herausgeber*innen:Youngeun Choi, L. Kotthoff, L. Olejko, Ute Resch-Genger, Ilko Bald
Dokumenttyp:Zeitschriftenartikel
Veröffentlichungsform:Verlagsliteratur
Sprache:Englisch
Titel des übergeordneten Werkes (Englisch):ACS applied materials and interfaces
Jahr der Erstveröffentlichung:2018
Organisationseinheit der BAM:1 Analytische Chemie; Referenzmaterialien
1 Analytische Chemie; Referenzmaterialien / 1.2 Biophotonik
Verlag:American Chemical Society
Verlagsort:Washington, DC
Jahrgang/Band:10
Ausgabe/Heft:27
Erste Seite:23295
Letzte Seite:23302
DDC-Klassifikation:Naturwissenschaften und Mathematik / Chemie / Analytische Chemie
Freie Schlagwörter:Array; DNA; DNA Origami; Dye; FRET; Fluorescence; Nanoparticle; Nanosensor; pH
Themenfelder/Aktivitätsfelder der BAM:Chemie und Prozesstechnik
DOI:10.1021/acsami.8b03585
ISSN:1944-8244
ISSN:1944-8252
Verfügbarkeit des Dokuments:Datei im Netzwerk der BAM verfügbar ("Closed Access")
Datum der Freischaltung:28.08.2018
Referierte Publikation:Ja
Datum der Eintragung als referierte Publikation:28.08.2018
Einverstanden
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.