• Treffer 7 von 179
Zurück zur Trefferliste

Reinforcing steel in sulfide-containing concretes – corroding or not corroding?

  • Blast furnace cements (CEM III) and alkali-activated slags are binders for concretes with several advantageous engineering properties, and their increased adoption in construction industry could contribute to reducing the CO2 emissions associated with cement production and use. However, the current knowledge about how these cements protect steel reinforcement in concretes against corrosion is very incomplete, which impedes their large-scale application. This knowledge gap is mainly due to the fact that these cements release sulfide and other reduced sulfur species into the concrete pore solution, the consequences of which for the state of the reinforcement and electrochemical measurements are not fully understood. The present contribution first describes peculiarities of electrochemical measurements of steel in sulfide-containing cementitious materials and related solutions as reported in the literature and a recent report by EFC Working Party 11. It is demonstrated that the highBlast furnace cements (CEM III) and alkali-activated slags are binders for concretes with several advantageous engineering properties, and their increased adoption in construction industry could contribute to reducing the CO2 emissions associated with cement production and use. However, the current knowledge about how these cements protect steel reinforcement in concretes against corrosion is very incomplete, which impedes their large-scale application. This knowledge gap is mainly due to the fact that these cements release sulfide and other reduced sulfur species into the concrete pore solution, the consequences of which for the state of the reinforcement and electrochemical measurements are not fully understood. The present contribution first describes peculiarities of electrochemical measurements of steel in sulfide-containing cementitious materials and related solutions as reported in the literature and a recent report by EFC Working Party 11. It is demonstrated that the high sulfide concentrations in these systems lead to low open circuit potentials and low polarisation resistances, which may be incorrectly interpreted as indicating active corrosion of the steel. Second, preliminary results of an ongoing project [funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – 458297195] related to the passivation and corrosion initiation of steel in sulfide-containing solutions and mortars are presented. Eight mortars based on one alkali-activated blast furnace slag (BFS), three alkali-activated BFS/fly ash blends, one sodium sulfate-activated CEM III/C (‘hybrid cement’), one CEM III/C, one CEM III/B, and one CEM I (ordinary Portland cement, OPC) were produced, and their pore solutions expressed and analysed after 7, 14, 28, and 56 days of curing. The pH values of the solutions differed systematically, with the highest pH values recorded for the CEM I and the alkali-activated BFS/fly ash blends with a high proportion of fly ash, and the lowest pH recorded for the CEM III/B. The redox potentials of the solutions were between −500 mV and −340 mV vs. Ag/AgCl for the alkali-activated binders, approx. +10 mV vs. Ag/AgCl for the CEM I, and in between for the CEM III/B and the CEM III/C. As expected, the electrical conductivity was highest for the alkali-activated binders. These results are explained by the chemical compositions of the pore solutions of the mortars. Finally, a test set-up to investigate the behaviour of steel in sulfide-containing solutions and the changes on subsequent oxygen and/or chloride addition is introduced. Preliminary electrochemical measurements of steel in sulfide-containing solutions are presented and discussed in the context of the above-mentioned data from the literature and the compositions of the pore solutions of the studied mortars.zeige mehrzeige weniger

Volltext Dateien herunterladen

  • SCSD 2023_Gluth_v3_print.pdf
    eng

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar Anzahl der Zugriffe auf dieses Dokument
Metadaten
Autor*innen:Gregor GluthORCiD
Koautor*innen:Ali Nikoonasab, M. Licht, Thoralf Müller, R. Achenbach, M. Raupach
Dokumenttyp:Vortrag
Veröffentlichungsform:Präsentation
Sprache:Englisch
Jahr der Erstveröffentlichung:2023
Organisationseinheit der BAM:7 Bauwerkssicherheit
7 Bauwerkssicherheit / 7.4 Baustofftechnologie
7 Bauwerkssicherheit / 7.6 Korrosion und Korrosionsschutz
DDC-Klassifikation:Technik, Medizin, angewandte Wissenschaften / Ingenieurwissenschaften / Ingenieurbau
Freie Schlagwörter:Concrete; Corrosion; Ground granulated blast furnace slag; Reinforcing steel; Sulfide
Themenfelder/Aktivitätsfelder der BAM:Infrastruktur
Veranstaltung:7th Swiss Corrosion Science Day 2023
Veranstaltungsort:Zurich, Switzerland
Beginndatum der Veranstaltung:24.04.2023
Verfügbarkeit des Dokuments:Datei im Netzwerk der BAM verfügbar ("Closed Access")
Datum der Freischaltung:27.04.2023
Referierte Publikation:Nein
Eingeladener Vortrag:Nein
Einverstanden
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.