• Treffer 3 von 7
Zurück zur Trefferliste

HR-CS-GFMAS a versatile screening tool for PFASs in various environmental samples

  • Per- and polyfluoroalkyl substances (PFASs) are a group of anthropogenic contaminates associated with persistent, bioaccumulative and toxic properties. Mostly, target-based approaches (e.g., LC-MS/MS) are utilized for the analysis of PFASs in the environment. Target approaches are limited to a few selected PFASs and therefore underestimate the total PFAS burden. Analytical approaches based on total fluorine for PFAS sum parameter analysis become increasingly important to indicate realistic PFAS pollution levels. Recently high resolution-continuum source-graphite furnace molecular absorption spectrometry (HR-CS-GFMAS) turned out to be a sensitive and highly selective tool for fluorine determination. The method is based on the in situ formation of diatomic gallium-mono fluoride (GaF) in a graphite furnace at a temperature of 1550°C. The molecular absorption of GaF can be detected at its most sensitive wavelength at 211.248 nm providing limits of quantification in the low µg F/L range.Per- and polyfluoroalkyl substances (PFASs) are a group of anthropogenic contaminates associated with persistent, bioaccumulative and toxic properties. Mostly, target-based approaches (e.g., LC-MS/MS) are utilized for the analysis of PFASs in the environment. Target approaches are limited to a few selected PFASs and therefore underestimate the total PFAS burden. Analytical approaches based on total fluorine for PFAS sum parameter analysis become increasingly important to indicate realistic PFAS pollution levels. Recently high resolution-continuum source-graphite furnace molecular absorption spectrometry (HR-CS-GFMAS) turned out to be a sensitive and highly selective tool for fluorine determination. The method is based on the in situ formation of diatomic gallium-mono fluoride (GaF) in a graphite furnace at a temperature of 1550°C. The molecular absorption of GaF can be detected at its most sensitive wavelength at 211.248 nm providing limits of quantification in the low µg F/L range. HR-CS-GFMAS analysis can be combined with the extractable organically bound fluorine (EOF) approach whereas PFASs are extracted from liquid or solid samples using organic solvents and/or solid phase extraction (SPE). In this presentation the applicability of HR-CS-GFMAS for organic fluorine analysis in various environmental sample including (1) water samples, (2) soil samples and (3) plant samples is demonstrated. (1) We investigated EOF concentrations in water bodies in Berlin, Germany and used additional PFAS target analysis for a PFAS mass balance approach. EOF concentrations were in the expected range for an urban river system. However, downstream of an effluent discharge, the EOF increased by one order of magnitude from 40 to 574 ng F/L. Target analysis determined mostly short-chained perfluorinated carboxylic acids and sulfonic acids, which however only made up less than 10% of the EOF. This study highlights that EOF screening using HR-CS-GFMAS is useful and advantageous compared to target analysis to identify pollution sites in urban water systems. (2) For soil samples, we optimized a fast and simple PFAS extraction method for EOF determination. The developed extraction method consists of a liquid-solid extraction without any additional SPE for fluoride removal. We investigated different soil samples using the optimized method with and without an additional SPE clean-up step and revealed a drastic underestimation of EOF mass fractions using SPE. The optimized method is a valuable screening tool for fast PFAS monitoring. (3) For plant samples, we conducted a study on the uptake and fate of PFASs in bean plants. For PFAS mass balancing HR-CS-GFMAS analysis was combined with LC-MS/MS analysis. PFASs were spiked as mixtures of known and unknown composition. Short-chained PFASs were determined with high mass fractions mainly in the fruits of the investigated plants while long-chained PFASs were mainly determined in roots. Overall, both methods indicate comparable results with target analysis being more reliable for known PFAS contamination and EOF/HR-CS-GFMAS analysis being more valuable to identify PFAS exposure of unknown composition.zeige mehrzeige weniger

Volltext Dateien herunterladen

  • ICCE23_Simon.pdf
    eng

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar Anzahl der Zugriffe auf dieses Dokument
Metadaten
Autor*innen:Fabian Simon
Koautor*innen:Lennart Gehrenkemper, Isabel Rühl, Björn Meermann
Dokumenttyp:Vortrag
Veröffentlichungsform:Präsentation
Sprache:Englisch
Jahr der Erstveröffentlichung:2023
Organisationseinheit der BAM:1 Analytische Chemie; Referenzmaterialien
1 Analytische Chemie; Referenzmaterialien / 1.1 Anorganische Spurenanalytik
DDC-Klassifikation:Naturwissenschaften und Mathematik / Chemie / Analytische Chemie
Freie Schlagwörter:Fluorine; HR-CS-GFMAS; PFAS; Plants; Soil; WWTP
Themenfelder/Aktivitätsfelder der BAM:Chemie und Prozesstechnik
Chemie und Prozesstechnik / Chemische Charakterisierung und Spurenanalytik
Veranstaltung:18th International Conference on Chemistry and the Environment (ICCE)
Veranstaltungsort:Venice, Italy
Beginndatum der Veranstaltung:11.06.2023
Enddatum der Veranstaltung:15.06.2023
Verfügbarkeit des Dokuments:Datei im Netzwerk der BAM verfügbar ("Closed Access")
Datum der Freischaltung:19.06.2023
Referierte Publikation:Nein
Eingeladener Vortrag:Nein
Einverstanden
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.