• Treffer 10 von 192
Zurück zur Trefferliste

Quadtree decomposition as a meshing strategy for guided waves simulations using the scaled boundary finite element method

  • Structural health monitoring techniques associate strongly with damage detection and characterization. Ultrasonic guided waves (UGW), for such scope, arise as one of the most promising methods for many reasons i.e. UGW are able to travel long distances and they have high sensitivity to damage. In this context, the necessity to model realistic wave-defect interaction occurs to be critical. Realistic damage scenarios can be modeled through the usage of image-based quadtree meshes. Images, such as the outcome from X-ray scans, C-scans, etc., can be converted into meshes for further integration in a computational domain. Quadtree meshes are created by converting the intensity of the pixels to quadrilateral cells. Homogeneous regions inside one image result in one quad, whereas fine features such as discontinuities can be described with smaller quads. This contribution proposes an efficient methodology to model wave defect interaction, using as a framework the scaled boundary finiteStructural health monitoring techniques associate strongly with damage detection and characterization. Ultrasonic guided waves (UGW), for such scope, arise as one of the most promising methods for many reasons i.e. UGW are able to travel long distances and they have high sensitivity to damage. In this context, the necessity to model realistic wave-defect interaction occurs to be critical. Realistic damage scenarios can be modeled through the usage of image-based quadtree meshes. Images, such as the outcome from X-ray scans, C-scans, etc., can be converted into meshes for further integration in a computational domain. Quadtree meshes are created by converting the intensity of the pixels to quadrilateral cells. Homogeneous regions inside one image result in one quad, whereas fine features such as discontinuities can be described with smaller quads. This contribution proposes an efficient methodology to model wave defect interaction, using as a framework the scaled boundary finite element method (SBFEM) and quadtree meshes. Problems as non-conforming regions in the mesh due to the space tree decomposition can be easily avoided using SBFEM’s polygonal elements. Moreover, the semi-analytical nature of the SBFEM allows the modeling of arbitrarily long prismatic/undamaged regions of the waveguides without an increase in the computational burden.zeige mehrzeige weniger

Volltext Dateien herunterladen

  • 000435.pdf
    eng

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar Anzahl der Zugriffe auf dieses Dokument
Metadaten
Autor*innen:Daniel Lozano, Jannis Bulling, Jens PragerORCiD
Dokumenttyp:Beitrag zu einem Tagungsband
Veröffentlichungsform:Graue Literatur
Sprache:Englisch
Jahr der Erstveröffentlichung:2022
Organisationseinheit der BAM:8 Zerstörungsfreie Prüfung
8 Zerstörungsfreie Prüfung / 8.4 Akustische und elektromagnetische Verfahren
Verlagsort:Stuttgart
Erste Seite:887
Letzte Seite:890
DDC-Klassifikation:Naturwissenschaften und Mathematik / Chemie / Analytische Chemie
Freie Schlagwörter:Image-based models; Quadtree meshes; Scaled Boundary Finite Element Method; Transient analysis; Wave defect interaction
Themenfelder/Aktivitätsfelder der BAM:Chemie und Prozesstechnik
Veranstaltung:DAGA 2022
Veranstaltungsort:Stuttgart, Germany
Beginndatum der Veranstaltung:21.03.2022
Enddatum der Veranstaltung:24.03.2022
Verfügbarkeit des Dokuments:Datei im Netzwerk der BAM verfügbar ("Closed Access")
Datum der Freischaltung:16.03.2023
Referierte Publikation:Nein
Einverstanden
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.