• Treffer 5 von 24
Zurück zur Trefferliste

Systems With Cryogenic Liquefied Gases In Fire-Incidents

  • The volumetric energy density of a gas can be increased by liquefaction, which occurs when the gas is cooled below the saturation point. Liquefied gases of great importance to the energy transition are Liquefied Hydrogen (LH2) and Liquefied Natural Gas (LNG), which can be liquefied at temperatures below 160°C. Systems for storing these gases typically must be overpressure resistant and require thermal super insulations (TSI) to hold cryogenic conditions and minimize boil-off losses from evaporation. TSI with vacuum and MLI or perlites are suitable for many applications involving LNG and LH2. Such systems are typically double-walled structures where the inner wall is in contact with the cryogenic liquefied gas. MLI or perlites are located in the gap between the inner and the outer wall, that is kept under vacuum conditions. This combination of insulations strongly reduces the heat transfer between the environment and the cryogenic liquefied gas. From an economic point of view theThe volumetric energy density of a gas can be increased by liquefaction, which occurs when the gas is cooled below the saturation point. Liquefied gases of great importance to the energy transition are Liquefied Hydrogen (LH2) and Liquefied Natural Gas (LNG), which can be liquefied at temperatures below 160°C. Systems for storing these gases typically must be overpressure resistant and require thermal super insulations (TSI) to hold cryogenic conditions and minimize boil-off losses from evaporation. TSI with vacuum and MLI or perlites are suitable for many applications involving LNG and LH2. Such systems are typically double-walled structures where the inner wall is in contact with the cryogenic liquefied gas. MLI or perlites are located in the gap between the inner and the outer wall, that is kept under vacuum conditions. This combination of insulations strongly reduces the heat transfer between the environment and the cryogenic liquefied gas. From an economic point of view the systems are well sophisticated. However, knowledge of the behavior of this kind of systems in a typical event such as a fire is limited, but necessary to evaluate the safety of the increasing number of applications. The objective of the research is to determine how TSI behaves at different fire temperatures during fire exposure and afterwards. Special attention is paid to changes in the heat flux, the material properties and vacuum state over time. For this purpose, thermogravimetric analysis (TGA) studies have been carried out. In addition, a test rig was developed that allows testing of TSI at temperatures up to 1000°C under realistic integration conditions and subsequent analysis of the TSI samples. In the test rig the double-wall with vacuum and MLI or perlites inside is simulated. The fire conditions are simulated on one side of the double-wall by adjustable electrical heating elements. This process allows the implementation of repeatable heat flows of up to 100 kW/m². On the other side of the double-wall, cold or cryogenic conditions are simulated with a heat exchanger through which water or the vapor of liquid nitrogen (approx. -196°C) flows. The heat exchanger is also used to determine the heat flux through the double-wall. Thus, the test rig allows thermal loading and performance analysis of TSI samples at the same time. Compared to tests with real cryogenic systems, tests with this experimental setup have the advantage that, first, the instrumentation is easier to realize, and a higher repeatability is ensured. Second, the local heat flow can be determined over time, and the sample of a TSI can be taken non-destructively and thus analyzed. Third, the tests are less risky as well as time+ and material intensive, so that more tests and variants can be investigated with the same budget. Preliminary results obtained considering several types of MLI under vacuum show that all observed typs of MLI can be damaged under strong thermal loading. The damages observed were outgassing, melting, shrinkage, cracking, lump formation, and concomitant local loss of the MLI's function as a radiation shield. However, the study also shows that a damage does not always have an extreme effect on the insulating performance.zeige mehrzeige weniger

Volltext Dateien herunterladen

  • ASME_Poster_V2_0.pdf
    eng

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar Anzahl der Zugriffe auf dieses Dokument
Metadaten
Autor*innen:Robert EberweinORCiD
Koautor*innen:Robert Eberwein, G. E. Scarponi, Alessandro Dal Pozzo, Frank Otremba
Dokumenttyp:Posterpräsentation
Veröffentlichungsform:Präsentation
Sprache:Englisch
Jahr der Erstveröffentlichung:2022
Organisationseinheit der BAM:3 Gefahrgutumschließungen; Energiespeicher
3 Gefahrgutumschließungen; Energiespeicher / 3.2 Gefahrguttanks und Unfallmechanik
DDC-Klassifikation:Technik, Medizin, angewandte Wissenschaften / Ingenieurwissenschaften / Angewandte Physik
Technik, Medizin, angewandte Wissenschaften / Ingenieurwissenschaften / Ingenieurbau
Freie Schlagwörter:Insulation; LH2; LNG; Safety; Tank
Themenfelder/Aktivitätsfelder der BAM:Energie
Energie / Wasserstoff
Infrastruktur
Infrastruktur / Fire Science
Veranstaltung:IMECE2022
Veranstaltungsort:Columbus, Ohio, USA
Beginndatum der Veranstaltung:30.10.2022
Enddatum der Veranstaltung:03.11.2022
Verfügbarkeit des Dokuments:Datei im Netzwerk der BAM verfügbar ("Closed Access")
Datum der Freischaltung:01.12.2022
Referierte Publikation:Nein
Einverstanden
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.