• Treffer 5 von 329
Zurück zur Trefferliste

Brillouin light scattering anisotropy microscopy for imaging the viscoelastic anisotropy in living cells

  • Maintaining and modulating mechanical anisotropy is essential for biological processes. However, how this is achieved at the microscopic scale in living soft matter is not always clear. Although Brillouin light scattering (BLS) spectroscopy can probe the mechanical properties of materials, spatiotemporal mapping of mechanical anisotropies in living matter with BLS microscopy has been complicated by the need for sequential measurements with tilted excitation and detection angles. Here we introduce Brillouin light scattering anisotropy microscopy (BLAM) for mapping high-frequency viscoelastic anisotropy inside living cells. BLAM employs a radial virtually imaged phased array that enables the collection of angle-resolved dispersion in a single shot, thus enabling us to probe phonon modes in living matter along different directions simultaneously. We demonstrate a precision of 10 MHz in the determination of the Brillouin frequency shift, at a spatial resolution of 2 µm. FollowingMaintaining and modulating mechanical anisotropy is essential for biological processes. However, how this is achieved at the microscopic scale in living soft matter is not always clear. Although Brillouin light scattering (BLS) spectroscopy can probe the mechanical properties of materials, spatiotemporal mapping of mechanical anisotropies in living matter with BLS microscopy has been complicated by the need for sequential measurements with tilted excitation and detection angles. Here we introduce Brillouin light scattering anisotropy microscopy (BLAM) for mapping high-frequency viscoelastic anisotropy inside living cells. BLAM employs a radial virtually imaged phased array that enables the collection of angle-resolved dispersion in a single shot, thus enabling us to probe phonon modes in living matter along different directions simultaneously. We demonstrate a precision of 10 MHz in the determination of the Brillouin frequency shift, at a spatial resolution of 2 µm. Following proof-of-principle experiments on muscle myofibres, we apply BLAM to the study of two fundamental biological processes. In plant cell walls, we observe a switch from anisotropic to isotropic wall properties that may lead to asymmetric growth. In mammalian cell nuclei, we uncover a spatiotemporally oscillating elastic anisotropy correlated to chromatin condensation. Our results highlight the role that high-frequency mechanics can play in the regulation of diverse fundamental processes in biological systems. We expect BLAM to find diverse applications in biomedical imaging and material characterization.zeige mehrzeige weniger

Volltext Dateien herunterladen

  • Keshmiri_Brillouin light scattering anisotropy microscopy_2024.pdf
    eng

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar Anzahl der Zugriffe auf dieses Dokument
Metadaten
Autor*innen:Hamid KeshmiriORCiD, Domagoj CikesORCiD, Marketa SamalovaORCiD, Lukas SchindlerORCiD, Lisa-Marie AppelORCiD, Michal UrbanekORCiD, Ivan Yudushkin, Dea SladeORCiD, Wolfgang J. Weninger, Alexis Peaucelle, Josef Penninger, Kareem ElsayadORCiD
Dokumenttyp:Zeitschriftenartikel
Veröffentlichungsform:Verlagsliteratur
Sprache:Englisch
Titel des übergeordneten Werkes (Englisch):Nature Photonics
Jahr der Erstveröffentlichung:2024
Organisationseinheit der BAM:4 Material und Umwelt
4 Material und Umwelt / 4.1 Biologische Materialschädigung und Referenzorganismen
Verlag:Springer Science and Business Media LLC
Erste Seite:1
Letzte Seite:13
DDC-Klassifikation:Technik, Medizin, angewandte Wissenschaften / Ingenieurwissenschaften / Ingenieurwissenschaften und zugeordnete Tätigkeiten
Freie Schlagwörter:Atomic and Molecular Physics and Optics; Electronic; Optical and Magnetic Materials
Themenfelder/Aktivitätsfelder der BAM:Material
Material / Materialdesign
DOI:10.1038/s41566-023-01368-w
ISSN:1749-4885
Verfügbarkeit des Dokuments:Datei im Netzwerk der BAM verfügbar ("Closed Access")
Datum der Freischaltung:14.02.2024
Referierte Publikation:Ja
Datum der Eintragung als referierte Publikation:14.02.2024
Einverstanden
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.